organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-methyl-4-methyl­sulfanyl-1H-pyrazolo­[3,4-d]pyrimidine

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bMedicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elfal_mohammed@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 15 November 2014; accepted 17 November 2014; online 21 November 2014)

In the title compound, C7H8N4S, the non-H atoms of the pyrazolo­[3,4-d]pyrimidine ring system and the methyl­sulfanyl group lie on a crystallographic mirror plane. In the crystal, mol­ecules are linked via a number of ππ inter­actions [centroid–centroid distances vary from 3.452 (7) to 3.6062 (8) Å], forming a three-dimensional structure.

1. Related literature

For similar compounds, see: El Fal et al. (2013[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.], 2014a[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o1005-o1006.],b[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o1038.]); Ouzidan et al. (2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.]). For pharmacological and biochemical properties of pyrazolo­[3,4-d]pyrimidine-4(5H)-thione derivatives, see: Chauhan & Kumar (2013[Chauhan, M. & Kumar, R. (2013). Bioorg. Med. Chem. 21, 5657-5668.]); Venkatesan et al. (2014[Venkatesan, G., Paira, P., Cheong, S. L., Vamsikrishna, K., Federico, S., Klotz, K., Spalluto, G. & Pastorin, G. (2014). Bioorg. Med. Chem. 22, 1751-1765.]); Rashad et al. (2011[Rashad, A. E., Mahmoud, A. E. & Ali, M. M. (2011). Eur. J. Med. Chem. 46, 1019-1026.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H8N4S

  • Mr = 180.23

  • Orthorhombic, P b c m

  • a = 7.9309 (14) Å

  • b = 15.335 (3) Å

  • c = 6.7158 (12) Å

  • V = 816.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.19 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.746

  • 2970 measured reflections

  • 1227 independent reflections

  • 1017 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.09

  • 1227 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Synthesis of 1H-pyrazolo [3,4-d] pyrimidine-4-thiol derivatives has received considerable attention due to their biological activity especially as anti­microbial (Chauhan et al., 2013), anti­tubercular (Venkatesan et al., 2014) and anti­cancer (Rashad et al., 2011) agents. During the search for new anti­bacterial agents synthesis, some 1H-pyrazolo­[3,4-d] pyrimidine-4-thiol derivatives were prepared (El Fal et al., 2013, 2014a, 2014b; Ouzidan et al., 2011). These compounds are currently under investigation for possible biological activity.

The molecule of the title compound is build up from two fused five- and six-membered rings linked to methyl­sulfanyl group. All non hydrogen atoms of the molecule are coplanar as shown in Fig. 1. In the crystal, the molecules are linked together by a number of ππ inter­actions [centroid–centroid distances vary from 3.452 (7) to 3.6062 (8) Å], forming a three-dimensional structure.

Synthesis and crystallization top

To a solution of 1H-pyrazolo [3,4-d] pyrimidine-4-thiol (0.5 g, 3.28 mmol) dissolved in DMF (20 ml) was added iodo­methane (0.43 ml, 6.62 mmol), potassium carbonate (0.93 g, 7.1 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol). The mixture was stirred for 48 h and monitored by thin layer chromatography. The mixture was filtered and the solvent was removed in vacuo. The solid obtained was crystallized from ethanol to give the title compound as orange crystals (yield: 65%).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq (aromatic) and Uiso(H) = 1.5 Ueq (methyl).

Related literature top

For similar compounds, see: El Fal et al. (2013, 2014a,b); Ouzidan et al. (2011). For pharmacological and biochemical properties of pyrazolo[3,4-d]pyrimidine-4(5H)-thione derivatives, see: Chauhan & Kumar (2013); Venkatesan et al. (2014); Rashad et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1-Methyl-4-methylsulfanyl-1H-pyrazolo[3,4-d]pyrimidine top
Crystal data top
C7H8N4SF(000) = 376
Mr = 180.23Dx = 1.466 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 1227 reflections
a = 7.9309 (14) Åθ = 2.6–29.6°
b = 15.335 (3) ŵ = 0.34 mm1
c = 6.7158 (12) ÅT = 296 K
V = 816.8 (3) Å3Block, orange
Z = 40.37 × 0.28 × 0.19 mm
Data collection top
Bruker X8 APEX
diffractometer
1227 independent reflections
Radiation source: fine-focus sealed tube1017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 29.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 104
Tmin = 0.637, Tmax = 0.746k = 2119
2970 measured reflectionsl = 39
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.3181P]
where P = (Fo2 + 2Fc2)/3
1227 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H8N4SV = 816.8 (3) Å3
Mr = 180.23Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 7.9309 (14) ŵ = 0.34 mm1
b = 15.335 (3) ÅT = 296 K
c = 6.7158 (12) Å0.37 × 0.28 × 0.19 mm
Data collection top
Bruker X8 APEX
diffractometer
1227 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1017 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.746Rint = 0.017
2970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
1227 reflectionsΔρmin = 0.29 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5519 (3)0.06804 (13)0.25000.0393 (5)
H10.49280.01560.25000.047*
C20.5516 (3)0.21199 (12)0.25000.0279 (4)
C30.7675 (3)0.30515 (13)0.25000.0322 (4)
H30.87630.32770.25000.039*
C40.7284 (2)0.21512 (11)0.25000.0264 (4)
C50.8115 (3)0.13396 (11)0.25000.0285 (4)
C60.3247 (3)0.32714 (15)0.25000.0450 (6)
H6A0.31210.36580.13860.068*
H6B0.24140.28180.25000.068*
C71.0858 (3)0.02097 (16)0.25000.0483 (6)
H7A0.98650.01480.25000.072*
H7B1.14990.00950.13160.072*
N10.7221 (2)0.06053 (10)0.25000.0348 (4)
N20.4577 (2)0.13910 (11)0.25000.0369 (4)
N30.4970 (2)0.29563 (11)0.25000.0323 (4)
N40.6289 (3)0.35277 (10)0.25000.0349 (4)
S11.03110 (7)0.13414 (4)0.25000.0447 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (10)0.0218 (9)0.0644 (15)0.0024 (7)0.0000.000
C20.0294 (9)0.0221 (8)0.0321 (9)0.0016 (7)0.0000.000
C30.0301 (10)0.0230 (8)0.0434 (11)0.0032 (7)0.0000.000
C40.0280 (9)0.0216 (8)0.0295 (9)0.0008 (6)0.0000.000
C50.0295 (9)0.0232 (9)0.0329 (9)0.0005 (7)0.0000.000
C60.0329 (11)0.0330 (11)0.0692 (16)0.0095 (9)0.0000.000
C70.0376 (12)0.0393 (12)0.0680 (17)0.0119 (10)0.0000.000
N10.0307 (9)0.0199 (7)0.0536 (11)0.0005 (6)0.0000.000
N20.0290 (9)0.0250 (9)0.0568 (12)0.0015 (6)0.0000.000
N30.0318 (8)0.0221 (7)0.0429 (9)0.0024 (6)0.0000.000
N40.0399 (10)0.0211 (7)0.0439 (10)0.0021 (6)0.0000.000
S10.0264 (3)0.0316 (3)0.0761 (5)0.00110 (18)0.0000.000
Geometric parameters (Å, º) top
C1—N21.321 (3)C5—N11.331 (2)
C1—N11.355 (3)C5—S11.741 (2)
C1—H10.9300C6—N31.449 (3)
C2—N21.343 (3)C6—H6A0.9598
C2—N31.354 (2)C6—H6B0.9599
C2—C41.403 (3)C7—S11.789 (3)
C3—N41.319 (3)C7—H7A0.9600
C3—C41.415 (2)C7—H7B0.9599
C3—H30.9300N3—N41.365 (3)
C4—C51.408 (2)
N2—C1—N1129.3 (2)C4—C5—S1117.82 (14)
N2—C1—H1115.3N3—C6—H6A107.7
N1—C1—H1115.3N3—C6—H6B114.1
N2—C2—N3127.68 (18)H6A—C6—H6B112.1
N2—C2—C4125.63 (18)S1—C7—H7A110.8
N3—C2—C4106.69 (17)S1—C7—H7B107.8
N4—C3—C4110.97 (17)H7A—C7—H7B109.3
N4—C3—H3124.5C5—N1—C1117.33 (17)
C4—C3—H3124.5C1—N2—C2111.89 (18)
C2—C4—C5115.96 (17)C2—N3—N4111.29 (17)
C2—C4—C3104.60 (16)C2—N3—C6128.13 (19)
C5—C4—C3139.45 (19)N4—N3—C6120.59 (17)
N1—C5—C4119.88 (19)C3—N4—N3106.45 (16)
N1—C5—S1122.30 (14)C5—S1—C7103.95 (11)

Experimental details

Crystal data
Chemical formulaC7H8N4S
Mr180.23
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)296
a, b, c (Å)7.9309 (14), 15.335 (3), 6.7158 (12)
V3)816.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.37 × 0.28 × 0.19
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.637, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
2970, 1227, 1017
Rint0.017
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.09
No. of reflections1227
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChauhan, M. & Kumar, R. (2013). Bioorg. Med. Chem. 21, 5657–5668.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o1005–o1006.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o1038.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRashad, A. E., Mahmoud, A. E. & Ali, M. M. (2011). Eur. J. Med. Chem. 46, 1019–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatesan, G., Paira, P., Cheong, S. L., Vamsikrishna, K., Federico, S., Klotz, K., Spalluto, G. & Pastorin, G. (2014). Bioorg. Med. Chem. 22, 1751–1765.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds