organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-3-benz­yl­oxy-6-[(2-hy­dr­oxy­anilino)methyl­­idene]cyclo­hexa-2,4-dien-1-one

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria
*Correspondence e-mail: nitov2013@hotmail.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 29 October 2014; accepted 8 November 2014; online 26 November 2014)

In the title compound, C20H17NO3, the methyl­idene­cyclo­hexa-2,4-dienone moiety is approximately planar [maximum deviation = 0.0615 (10) Å] and is oriented at diherdral angles of 69.60 (7) and 1.69 (9)° to the phenyl and hy­droxy­benzene rings, respectively. The amino group links with the carbonyl O atom via an intra­molecular N—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional supra­molecular architecture.

1. Related literature

For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011[Prakash, A. & Adhikari, D. (2011). Int. J. Chem. Tech. Res. 3, 1891-1896.]). For the effect of hydro­philicity on drug properties, see: Lin & Lu (1997[Lin, J.-H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403-449.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H17NO3

  • Mr = 319.21

  • Monoclinic, P 21 /c

  • a = 12.890 (5) Å

  • b = 8.343 (5) Å

  • c = 19.908 (5) Å

  • β = 129.616 (15)°

  • V = 1649.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.01 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 10996 measured reflections

  • 2845 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.01

  • 2845 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O2 0.94 1.81 2.594 (2) 139
O1—H3⋯O2i 0.82 1.75 2.563 (3) 170
C13—H13⋯O3ii 0.93 2.53 3.309 (3) 141
C14—H14ACg1iii 0.97 2.66 3.406 (3) 134
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Azomethine compounds are extensively incoporated in many pharmaceutical and food industry applications (Prakash & Adhikari, 2011). Elimination of excess drugs from the bloodstream or body is an essential process to protect against potential toxicity. In most cases the more hydrophilic drugs/pharmacophores are the more they are readily excreted by the kidneys in urine (Lin & Lu, 1997). The existence of conjugated double bonds and more hydroxylic groups in bioactive molecules increases not only their hydrophilicity but also the rate of their membrane absorption. Based on such facts we herein report the crystal structure of a potential bioactive hydrophilic azomethine derivative.

A view of the molecular structure of (I) with numbering Scheme is shown in Fig. 1. In the molecule, the methylene-cyclohexa-2,4-dienone moiety is approximately planar [maximum deviation = 0.0615 (10) Å] and its mean plane is oriented with respect to the terminal benzene rings at 69.60 (7) and 1.69 (9)°, respectively. The amino group links with the carbonyl O atom via an intramolecular N—H···O hydrogen bond, forming an S(6) ring motif. In the crystal, the molecules are linked by the intermolecular O—H···O hydrogen bond, weak C—H···O and C—H···π interactions to form the three dimensional supramolecular architecture.

Related literature top

For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011). For the effect of hydrophilicity on drug properties, see: Lin & Lu (1997).

Experimental top

A mixture of 2-aminophenol (1 mmol), and 4-(benzyloxy)-2-hydroxybenzaldehyde (1 mmol) was added and heated to form a clear solution. To this a few drops of conc. HCL was added as a catalyst and refluxed for 4 h. After cooling the solution, After stirring at 80°C for 45 min the formed precipitate was filtered off and washed with ice ether and ethyl acetate to give pure Schiff base as an Orange solid in an 35% yield. The crude product was dissolved in ethyl acetate and two spoons of activated charcoal were added. the mixture was filtered and the product was crystallized from an ethyl acetate solution.

Refinement top

All hydrogen atoms were fixed geometrically and treated as riding with C—H = 0.93–0.97 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Partial view along the b axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).
(Z)-3-Benzyloxy-6-[(2-hydroxyanilino)methylidene]cyclohexa-2,4-dien-1-one top
Crystal data top
C20H17NO3Z = 4
Mr = 319.21F(000) = 672
Monoclinic, P21/cDx = 1.286 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.890 (5) ŵ = 0.09 mm1
b = 8.343 (5) ÅT = 293 K
c = 19.908 (5) ÅBlock, orange
β = 129.616 (15)°0.03 × 0.02 × 0.01 mm
V = 1649.2 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2019 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.1°, θmin = 2.7°
phi and ω scansh = 1514
10996 measured reflectionsk = 99
2845 independent reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1282P]
where P = (Fo2 + 2Fc2)/3
2845 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H17NO3V = 1649.2 (12) Å3
Mr = 319.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.890 (5) ŵ = 0.09 mm1
b = 8.343 (5) ÅT = 293 K
c = 19.908 (5) Å0.03 × 0.02 × 0.01 mm
β = 129.616 (15)°
Data collection top
Bruker APEXII CCD
diffractometer
2019 reflections with I > 2σ(I)
10996 measured reflectionsRint = 0.026
2845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
2845 reflectionsΔρmin = 0.18 e Å3
217 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08170 (10)0.46817 (14)0.29489 (8)0.0510 (4)
O20.13038 (10)0.09947 (13)0.24415 (7)0.0445 (4)
O30.29081 (10)0.34273 (14)0.18059 (7)0.0497 (4)
N10.29329 (12)0.33924 (15)0.32821 (8)0.0349 (4)
C10.20033 (17)0.7115 (2)0.37366 (11)0.0465 (6)
C20.19333 (15)0.56093 (19)0.34232 (10)0.0368 (5)
C30.30842 (14)0.49543 (19)0.36000 (9)0.0327 (5)
C40.42609 (15)0.5832 (2)0.40563 (10)0.0418 (6)
C50.43154 (17)0.7336 (2)0.43620 (11)0.0469 (6)
C60.31962 (18)0.7966 (2)0.42096 (12)0.0499 (7)
C70.38268 (14)0.2492 (2)0.33441 (10)0.0359 (5)
C80.35558 (14)0.09631 (19)0.29854 (10)0.0334 (5)
C90.22447 (14)0.02458 (18)0.25091 (10)0.0333 (5)
C100.20234 (14)0.12504 (19)0.21107 (10)0.0364 (5)
C110.30365 (15)0.2003 (2)0.21852 (10)0.0373 (5)
C120.43407 (15)0.1325 (2)0.26765 (11)0.0429 (6)
C130.45764 (14)0.0112 (2)0.30572 (10)0.0391 (6)
C140.15921 (15)0.4129 (2)0.12213 (11)0.0459 (6)
C150.16707 (14)0.5500 (2)0.07665 (10)0.0413 (6)
C160.1628 (2)0.7053 (2)0.09686 (12)0.0615 (8)
C170.1699 (2)0.8323 (3)0.05546 (15)0.0794 (9)
C180.1801 (2)0.8034 (3)0.00759 (15)0.0718 (9)
C190.18242 (19)0.6501 (3)0.02999 (14)0.0675 (9)
C200.17652 (16)0.5232 (2)0.01228 (12)0.0550 (7)
H10.124780.755750.362940.0558*
H010.209560.288010.298160.0419*
H30.019530.515310.287810.0765*
H40.501650.540710.415730.0501*
H50.510900.792640.467150.0562*
H60.324290.897330.442720.0599*
H70.469140.289980.364500.0430*
H100.118110.173240.179380.0437*
H120.502540.186600.273510.0515*
H130.543130.055990.337610.0469*
H14A0.094450.334090.079910.0551*
H14B0.131020.451100.154310.0551*
H160.154850.725800.139340.0738*
H170.167860.937020.070520.0953*
H180.185380.888710.035360.0861*
H190.187980.630630.073610.0811*
H200.178960.418650.002850.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (6)0.0491 (8)0.0727 (8)0.0009 (5)0.0345 (6)0.0098 (7)
O20.0309 (6)0.0414 (7)0.0679 (8)0.0004 (5)0.0346 (6)0.0052 (6)
O30.0290 (6)0.0565 (8)0.0542 (8)0.0006 (5)0.0221 (6)0.0197 (6)
N10.0274 (7)0.0368 (8)0.0406 (8)0.0005 (6)0.0217 (6)0.0000 (6)
C10.0482 (10)0.0438 (11)0.0555 (11)0.0055 (9)0.0368 (9)0.0001 (9)
C20.0342 (9)0.0397 (10)0.0399 (9)0.0004 (8)0.0252 (8)0.0017 (8)
C30.0319 (8)0.0343 (10)0.0322 (9)0.0013 (7)0.0206 (7)0.0037 (7)
C40.0333 (9)0.0445 (11)0.0432 (10)0.0003 (8)0.0224 (8)0.0027 (9)
C50.0432 (10)0.0440 (11)0.0450 (10)0.0104 (8)0.0242 (9)0.0048 (9)
C60.0596 (12)0.0405 (11)0.0516 (11)0.0026 (9)0.0364 (10)0.0060 (9)
C70.0278 (8)0.0434 (11)0.0375 (9)0.0000 (7)0.0213 (7)0.0039 (8)
C80.0273 (8)0.0374 (10)0.0363 (9)0.0027 (7)0.0207 (7)0.0038 (8)
C90.0276 (8)0.0360 (10)0.0404 (9)0.0048 (7)0.0236 (7)0.0071 (8)
C100.0248 (8)0.0411 (10)0.0409 (10)0.0020 (7)0.0198 (7)0.0014 (8)
C110.0303 (8)0.0431 (10)0.0368 (9)0.0040 (7)0.0206 (7)0.0023 (8)
C120.0282 (9)0.0507 (12)0.0500 (11)0.0048 (8)0.0250 (8)0.0036 (9)
C130.0246 (8)0.0464 (11)0.0449 (10)0.0011 (7)0.0215 (7)0.0017 (9)
C140.0306 (9)0.0520 (11)0.0459 (10)0.0006 (8)0.0201 (8)0.0089 (9)
C150.0266 (8)0.0496 (12)0.0345 (9)0.0029 (8)0.0134 (7)0.0049 (8)
C160.0778 (14)0.0555 (14)0.0382 (11)0.0166 (11)0.0309 (10)0.0072 (10)
C170.1057 (18)0.0477 (14)0.0607 (15)0.0198 (12)0.0418 (14)0.0049 (12)
C180.0623 (13)0.0730 (17)0.0628 (15)0.0103 (12)0.0318 (12)0.0223 (13)
C190.0553 (12)0.0960 (19)0.0647 (14)0.0165 (12)0.0445 (11)0.0287 (14)
C200.0482 (11)0.0627 (13)0.0620 (12)0.0134 (9)0.0388 (10)0.0119 (11)
Geometric parameters (Å, º) top
O1—C21.352 (2)C15—C201.381 (3)
O2—C91.293 (3)C15—C161.368 (3)
O3—C111.360 (2)C16—C171.381 (3)
O3—C141.434 (3)C17—C181.364 (4)
O1—H30.8200C18—C191.361 (4)
N1—C71.314 (3)C19—C201.384 (3)
N1—C31.407 (2)C1—H10.9300
N1—H010.9400C4—H40.9300
C1—C61.382 (3)C5—H50.9300
C1—C21.380 (3)C6—H60.9300
C2—C31.399 (3)C7—H70.9300
C3—C41.380 (3)C10—H100.9300
C4—C51.377 (3)C12—H120.9300
C5—C61.375 (4)C13—H130.9300
C7—C81.393 (2)C14—H14A0.9700
C8—C131.420 (3)C14—H14B0.9700
C8—C91.439 (3)C16—H160.9300
C9—C101.407 (2)C17—H170.9300
C10—C111.369 (3)C18—H180.9300
C11—C121.416 (3)C19—H190.9300
C12—C131.346 (2)C20—H200.9300
C14—C151.502 (3)
O1···N12.594 (3)C10···H14A2.6800
O1···O2i2.563 (3)C14···H102.5200
O2···C2ii3.364 (3)C15···H13iii3.0900
O2···N12.594 (2)C15···H14Aix2.9300
O2···O1ii2.563 (3)C16···H14Aix2.9300
O3···C13iii3.309 (3)C17···H14Aix3.0100
O1···H18iv2.8100C18···H14Aix3.0700
O1···H012.2000C19···H6x3.0600
O2···H16v2.7200C19···H14Aix3.0400
O2···H1ii2.8500C20···H13iii2.9400
O2···H3ii1.7500C20···H14Aix2.9700
O2···H011.8100H1···H32.3500
O3···H13iii2.5300H1···O2i2.8500
N1···O12.594 (3)H01···O12.2000
N1···O22.594 (2)H01···O21.8100
C1···C10v3.528 (3)H01···C92.4500
C2···O2i3.364 (3)H3···H12.3500
C4···C4vi3.248 (3)H3···O2i1.7500
C4···C11v3.483 (3)H3···C9i2.7200
C4···C5vi3.592 (3)H4···C72.7800
C5···C11v3.563 (3)H4···H72.2500
C5···C4vi3.592 (3)H6···C19xi3.0600
C5···C7vi3.559 (3)H6···H19xi2.5000
C5···C12v3.556 (4)H7···C42.7500
C6···C10v3.481 (3)H7···H42.2500
C6···C9v3.360 (3)H7···H132.3800
C7···C5vi3.559 (3)H10···C142.5200
C8···C16v3.509 (3)H10···H14A2.2500
C9···C16v3.465 (3)H10···H14B2.4000
C9···C6vii3.360 (3)H13···H72.3800
C10···C1vii3.528 (3)H13···O3viii2.5300
C10···C6vii3.481 (3)H13···C15viii3.0900
C11···C4vii3.483 (3)H13···C20viii2.9400
C11···C5vii3.563 (3)H14A···C102.6800
C12···C5vii3.556 (4)H14A···H102.2500
C13···O3viii3.309 (3)H14A···H202.5900
C14···C20ix3.377 (4)H14A···C15ix2.9300
C14···C19ix3.568 (4)H14A···C16ix2.9300
C14···C15ix3.496 (3)H14A···C17ix3.0100
C15···C14ix3.496 (3)H14A···C18ix3.0700
C15···C15ix3.435 (3)H14A···C19ix3.0400
C16···C9vii3.465 (3)H14A···C20ix2.9700
C16···C8vii3.509 (3)H14B···C102.8600
C19···C14ix3.568 (4)H14B···H102.4000
C20···C14ix3.377 (4)H14B···H162.3600
C2···H18iv2.8800H16···O2vii2.7200
C4···H72.7500H16···C7vii3.0300
C7···H42.7800H16···C8vii2.9100
C7···H16v3.0300H16···C9vii2.7400
C8···H16v2.9100H16···H14B2.3600
C9···H3ii2.7200H17···C10vii2.9800
C9···H16v2.7400H18···O1xii2.8100
C9···H012.4500H18···C2xii2.8800
C10···H17v2.9800H19···H6x2.5000
C10···H14B2.8600H20···H14A2.5900
C11—O3—C14117.99 (16)C17—C18—C19120.2 (2)
C2—O1—H3109.00C18—C19—C20119.9 (2)
C3—N1—C7128.73 (17)C15—C20—C19120.79 (18)
C7—N1—H01112.00C2—C1—H1120.00
C3—N1—H01119.00C6—C1—H1120.00
C2—C1—C6120.0 (2)C3—C4—H4120.00
C1—C2—C3119.26 (18)C5—C4—H4120.00
O1—C2—C3115.96 (15)C4—C5—H5120.00
O1—C2—C1124.8 (2)C6—C5—H5120.00
C2—C3—C4120.16 (16)C1—C6—H6120.00
N1—C3—C4124.50 (18)C5—C6—H6120.00
N1—C3—C2115.34 (16)N1—C7—H7118.00
C3—C4—C5120.0 (2)C8—C7—H7118.00
C4—C5—C6120.0 (2)C9—C10—H10120.00
C1—C6—C5120.60 (17)C11—C10—H10120.00
N1—C7—C8123.86 (18)C11—C12—H12120.00
C9—C8—C13118.82 (15)C13—C12—H12120.00
C7—C8—C9121.60 (18)C8—C13—H13119.00
C7—C8—C13119.54 (18)C12—C13—H13119.00
O2—C9—C8119.83 (14)O3—C14—H14A110.00
O2—C9—C10122.04 (17)O3—C14—H14B110.00
C8—C9—C10118.12 (18)C15—C14—H14A110.00
C9—C10—C11120.61 (18)C15—C14—H14B110.00
C10—C11—C12121.45 (16)H14A—C14—H14B108.00
O3—C11—C12113.76 (18)C15—C16—H16119.00
O3—C11—C10124.78 (18)C17—C16—H16119.00
C11—C12—C13119.2 (2)C16—C17—H17120.00
C8—C13—C12121.81 (19)C18—C17—H17120.00
O3—C14—C15107.49 (17)C17—C18—H18120.00
C14—C15—C16120.87 (18)C19—C18—H18120.00
C14—C15—C20121.07 (16)C18—C19—H19120.00
C16—C15—C20118.05 (18)C20—C19—H19120.00
C15—C16—C17121.4 (2)C15—C20—H20120.00
C16—C17—C18119.7 (2)C19—C20—H20120.00
C14—O3—C11—C106.0 (2)C13—C8—C9—O2179.46 (15)
C14—O3—C11—C12173.65 (15)C13—C8—C9—C102.1 (2)
C11—O3—C14—C15169.43 (14)C7—C8—C13—C12175.87 (16)
C7—N1—C3—C2179.48 (16)C9—C8—C13—C121.5 (2)
C7—N1—C3—C40.4 (3)O2—C9—C10—C11179.13 (15)
C3—N1—C7—C8178.54 (16)C8—C9—C10—C110.7 (2)
C6—C1—C2—O1179.47 (17)C9—C10—C11—O3178.27 (15)
C6—C1—C2—C30.8 (3)C9—C10—C11—C121.3 (3)
C2—C1—C6—C50.9 (3)O3—C11—C12—C13177.70 (15)
O1—C2—C3—N11.9 (2)C10—C11—C12—C131.9 (3)
O1—C2—C3—C4177.97 (15)C11—C12—C13—C80.5 (3)
C1—C2—C3—N1177.80 (15)O3—C14—C15—C16107.2 (2)
C1—C2—C3—C42.3 (2)O3—C14—C15—C2073.9 (2)
N1—C3—C4—C5178.08 (15)C14—C15—C16—C17180.0 (2)
C2—C3—C4—C52.0 (2)C20—C15—C16—C171.1 (3)
C3—C4—C5—C60.3 (3)C14—C15—C20—C19179.4 (2)
C4—C5—C6—C11.2 (3)C16—C15—C20—C190.4 (3)
N1—C7—C8—C90.1 (3)C15—C16—C17—C180.6 (4)
N1—C7—C8—C13177.38 (16)C16—C17—C18—C190.4 (4)
C7—C8—C9—O23.2 (2)C17—C18—C19—C201.0 (4)
C7—C8—C9—C10175.25 (16)C18—C19—C20—C150.6 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z1/2; (v) x, y1, z; (vi) x+1, y1, z+1; (vii) x, y+1, z; (viii) x+1, y1/2, z+1/2; (ix) x, y+1, z; (x) x, y3/2, z3/2; (xi) x, y3/2, z1/2; (xii) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H01···O20.941.812.594 (2)139
O1—H3···O2i0.821.752.563 (3)170
C13—H13···O3viii0.932.533.309 (3)141
C14—H14A···Cg1ix0.972.663.406 (3)134
Symmetry codes: (i) x, y1/2, z+1/2; (viii) x+1, y1/2, z+1/2; (ix) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H01···O20.941.812.594 (2)139
O1—H3···O2i0.821.752.563 (3)170
C13—H13···O3ii0.932.533.309 (3)141
C14—H14A···Cg1iii0.972.663.406 (3)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit, University of Constantine 1, Algeria, for their valuable assistance and MESRS (Algeria) for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, J.-H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403–449.  CAS PubMed Google Scholar
First citationPrakash, A. & Adhikari, D. (2011). Int. J. Chem. Tech. Res. 3, 1891–1896.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds