Received 3 November 2014 Accepted 17 November 2014

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; dehydro peptides; α , β -dehydroamino acids; dehydroalanine; herringbone packing

CCDC reference: 1034604 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of *N*-(*tert*-butoxycarbonyl)phenylalanyldehydroalanine isopropyl ester (Boc-Phe- Δ Ala-OiPr)

Paweł Lenartowicz, Maciej Makowski, Bartosz Zarychta* and Krzysztof Ejsmont

Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland. *Correspondence e-mail: bzarychta@uni.opole.pl

In the title compound, the dehydrodipeptide (Boc–Phe– Δ Ala–OiPr, $C_{20}H_{28}N_2O_5$), the molecule has a *trans* conformation of the *N*-methylamide group. The geometry of the dehydroalanine moiety is to some extent different from those usually found in simple peptides, indicating conjugation between the H_2C =-C group and the peptide bond. The bond angles around dehydroalanine have unusually high values due to the steric hindrance, the same interaction influencing the slight distortion from planarity of the dehydroalanine. The molecule is stabilized by intramolecular interactions between the isopropyl group and the N atoms of the peptide main chain. In the crystal, an N-H···O hydrogen bond links the molecules into ribbons, giving a herringbone head-to-head packing arrangement extending along the [100] direction. In the stacks, the molecules are linked by weak C-H···O hydrogen-bonding associations.

1. Chemical context

Dehydropeptides are a class of compounds containing at least one residue of an α,β -dehydroamino acid. These compounds are of interest in many fields of science because of their structural and chemical properties. Dehvdroamino acids are found in natural products (Bonauer et al., 2006). One of the important classes of natural bacteriocins are lantibiotics (e.g. nisin, subtilin), which are biosynthesized by Gram-positive bacteria. The unsaturated amino acid is introduced into the structure of these polycyclic peptides by post-translational modification of selected serine and threonine residues (Willey & van der Donk, 2007). The development of synthetic methods for dehydropeptide preparation has resulted in a search for practical applications for these compounds. The dehydroamino acids are considered to be building blocks for the synthesis of new non-proteinogenic amino acids (Ferreira et al., 2010). The double bond of the dehydropeptide can be used in different types of reaction, namely: addition of nucleophiles (Ferreira et al., 2001); alkylation, providing α, α disubstituted amino acids (Miyabe et al., 2005); Rh-catalysed conjugate addition of arylboronic acids providing β -arylalanine derivatives (Ferreira et al., 2013); Cu-catalysed asymmetric hydroboration as a step in the preparation of β hydroxy- α -amino acid derivatives being then used for the preparation of chiral drugs and bioactive molecules (He et al., 2014). Compounds containing dehydroamino acid residues also are considered to be inhibitors of enzymes (Makowski et al., 2001; Latajka et al., 2006, 2008). They are more resistant towards proteolytic enzymes than saturated analogues

research communications

(English & Stammer, 1978). The presence of sp^2 hybridized carbon atoms in structures of dehydropeptides and the coupling of π -electrons between double and peptide bonds entail a number of structural consequences in the conformation of the peptides, and make them excellent subjects for conformational study (*e.g.* Jewgiński *et al.*, 2014, 2013; Demizu *et al.*, 2010; Lisowski *et al.*, 2008). In this paper, the preparation of the title compound, *N*-(*tert*-butoxycarbonyl)-phenylalanyldehydroalanine isopropyl ester and its structure determination by single-crystal X-ray crystallographic methods are presented.

2. Structural commentary

The molecular structure of *N*-(*tert*-butoxycarbonyl)phenylalanyldehydroalanine isopropyl ester (Boc–Phe– Δ Ala–OiPr, C₂₀H₂₈N₂O₅) is shown in Fig. 1. The molecule has a *trans*conformation of the *N*-methylamide group. The geometry of the dehydroalanine is to some extent different from those usually found in simple peptides (Pauling, 1960). In particular, the N19–C20 bond length is shorter while C17–N19 is longer [1.402 (3) Å and 1.354 (3) Å, respectively]. This is in excellent agreement with the values reported for *N*-acetyldehydroalanine (Ajó *et al.*, 1979), *N*-acetylbis-(dehydrophenylalanyl)glycine (Pieroni *et al.* 1975) and *N*-acetylodehydrodimethylamide (Rzeszotarska *et al.*, 2002) and seems to be typical for α , β -unsaturated peptide systems (Jain & Chauhan, 1996). This indicates conjugation between the H₂C=C group

Figure 1

The molecular structure of N-(*tert*-butoxycarbonyl)phenylalanyldehydroalanine isopropyl ester (Boc–Phe– Δ Ala–OiPr) showing 50% displacement ellipsoids. Intramolecular C–H···O interactions are shown as dashed lines.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N8–H8A····O7 ⁱ	0.88	2.21	2.952 (2)	141
$C3-H3C\cdots O18^{ii}$	0.98	2.51	3.423 (3)	155
C21-H21A···O18	0.95	2.27	2.869 (3)	120
$C26-H26B\cdots O23^{i}$	0.98	2.52	3.462 (3)	162

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y - 1, z.

and the peptide bond. The valance angles around dehydroalanine have unusually large values [C21-C20-N19 =126.9 (2), C17-N19-C20 = 126.8 (2) and O18-C17-N19 = $123.5 (2)^{\circ}$] due to the steric hindrance between atoms C21 and O18. The same interaction influences the slight distortion from planarity of the dehydroalanine moiety. The ω , φ and ψ torsion angles (C9-C17-N19-C20, C17-N19-C20-C22 and N19-C20-C22-O24, respectively) of the dehydroalanine residue are -166.9 (2), 175.1 (2) and $178.0 (2)^{\circ}$. The geometries of the phenylaniline and the protecting groups are normal. There are four intramolecular C-H···O close contacts but three of them have a $D-H \cdots A$ angle of less than 120° .

3. Supramolecular features

In the crystal, strong intermolecular N8–H···O7ⁱ hydrogen bonds (Table 1) link the molecules, giving a herringbone headto-head packing arrangement, forming ribbons which extend along [100] (Fig. 2). The ribbon structures are consolidated by weak intra-chain C–H···O hydrogen-bonding interactions.

4. Synthesis and crystallization

The dehydrodipeptide was obtained by condensation of N-protected phenylalanylamide with pyruvic acid in the presence of p-toluenesulfonic acid (Makowski *et al.*, 1985). The esterification of the dehydrodipeptide was performed using the methodology described by Cossec *et al.* (2008). For this

Figure 2

The packing diagram of the title compound, viewed along the b axis, showing the intermolecular hydrogen-bonding scheme (dashed lines).

purpose 0.669 g (2 m*M*) of Boc–Phe– Δ Ala was dissolved in 5 ml of methanol and calcium carbonate 0.329 g (1 m*M*) was added. The mixture was stirred for one h at room temperature, after which the solvent was evaporated. The residue was dissolved in 7 ml of DMF and isopropyl iodide (1.01 ml, 10 m*M*) was added in portions to the stirred mixture at room temperature during the reaction, the progress of which was monitored by thin-layer chromatography, using 5% methanol in chloroform as eluent. After completion of the reaction, the solvent was evaporated and the oily residue was dissolved in ethyl acetate and washed consecutively with: 1 *M* HCl, saturated KHCO₃, 0.1 *M* Na₂S₂O₃ and brine. The organic layer was dried over anhydrous MgSO₄ and the title compound was obtained in 81% yield (m.p. = 367–369 K). Recrystallization was performed using mixture of diethyl ether and hexane.

¹H NMR (400 MHz, DMSO) δ 1.26 (*d*, *J* = 6.2 Hz, 6H, 2 × CH_{3Pr}), 1.30 (*s*, 9H, CH_{3 t-Boc}), 2.76 (*dd*, ABX system, *J* = 13.6, 10.8 Hz, 1H, CH_AH_{B Phe}), 3.02 (*dd*, ABX system, *J* = 13.6, 3.9 Hz, 1H, CH_AH_{B Phe}), 4.27–4.39 (*m*, 1H, CH_{Phe}), 5.01 (hept, *J* = 6.2 Hz, 1H, CH_{Pr}), 5.70 (*s*, 1H, C=CH_AH_B), 6.23 (*s*, 1H, C=CH_AH_B), 7.15–7.36 (*m*, 6H, ArH_{Phe} overlapped with NH_{Phe}), δ 9.30 (*s*, 1H, NH_{ΔAla}). ¹³C NMR (101 MHz, DMSO) δ 21.43, 28.10, 36.63, 56.34, 69.40, 78.41, 108.65, 126.29, 128.07, 129.25, 132.71, 138.03, 155.53, 162.81, 171.53. IR (KBr, cm⁻¹) 3600–2800 broad (H-bonding), 1715 (C=O_{ester}), 1700 (C=O_{urethane}), 1690 IAB (C=O_{amide}), 1632 (C=C), 1526 IIAB (C–N and N–H), 1317 (CO–N–C=and N–(C=C)–CO), 1196 and 1166 (C–O–C), 896 (=CH₂).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were positioned geometrically and treated as riding on their parent atoms with N-H = 0.88 Å and $U_{\rm iso}$ (H) = $1.2U_{\rm eq}(N)$, C-H_{aromatic} = 0.95 Å and $U_{\rm iso}$ (H) = $1.2U_{\rm eq}(C)$, C-H_{methyl} = 0.98 Å and $U_{\rm iso}$ (H) = $1.5U_{\rm eq}(C)$; C-H_{methylene} = 0.99 Å or C-H_{methine} = 0.95 Å and $U_{\rm iso}$ (H) = $1.2U_{\rm eq}(C)$. Although not definitive, the absolute structure factor (Parsons *et al.*, 2013) with the C9(S) configuration, was -0.1 (6) for 1095 Friedel pairs.

Acknowledgements

These studies were supported by Wroclaw Research Centre EIT+ under the project 'Biotechnologies and advanced medical technologies' – BioMed (POIG.01.01.02–02-003/08) financed from the European Regional Development Fund (Operational Programme Innovative Economy, 1.1.2). PL is the recipient of a PhD fellowship from a project funded by the European Social Foundation. MSc Błażej Dziuk is thanked for help with editing the manuscript.

References

- Ajó, D., Granozzi, G., Tondello, E., Del Pra, A. & Zanotti, G. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 927–929.
- Bonauer, C., Walenzyk, T. & König, B. (2006). Synthesis, pp. 1-20.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{20}H_{28}N_2O_5$
M _r	376.44
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	5.2123 (2), 9.5031 (3), 41.3363 (17)
$V(Å^3)$	2047.51 (13)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.33 \times 0.18 \times 0.14$
Data collection	
Diffractometer	Oxford Diffraction Xealibur CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14003, 4025, 3235
R _{int}	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.079, 0.98
No. of reflections	4025
No. of parameters	244
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.22, -0.22
Absolute structure	Flack x determined using 1095 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al. 2013)
Absolute structure parameter	-0.1 (6)
······································	

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008), SHELXL2014 and SHELXTL (Sheldrick, 2008).

- Cossec, B., Cosnier, F. & Burgart, M. (2008). *Molecules*, **13**, 2394–2407.
- Demizu, Y., Yamagata, N., Sato, Y., Doi, M., Tanaka, M., Okuda, H. & Kurihara, M. (2010). J. Pept. Sci. 16, 153–158.
- English, M. L. & Stammer, C. H. (1978). Biochem. Biophys. Res. Commun. 83, 1464–1467.
- Ferreira, P. M. T., Maia, H. L. S., Monteiro, L. S. & Sacramento, J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3167–3173.
- Ferreira, P. M. T., Monteiro, L. S. & Pereira, G. (2010). *Amino Acids*, **39**, 499–513.
- Ferreira, P. M. T., Monteiro, L. S., Pereira, G., Castanheira, E. M. S. & Frost, C. G. (2013). *Eur. J. Org. Chem.* 3, 550–556.
- He, Z. T., Zhao, Y. S., Tian, P., Wang, C. C., Dong, H. Q. & Lin, G. Q. (2014). Org. Lett. 16, 1426–1429.
- Jain, R. & Chauhan, V. S. (1996). Biopolymers, 40, 105-119.
- Jewgiński, M., Krzciuk-Gula, J., Makowski, M., Latajka, R. & Kafarski, P. (2014). *Beilstein J. Org. Chem.* **10**, 660–666.
- Jewgiński, M., Latajka, R., Krezel, A., Haremza, K., Makowski, M. & Kafarski, P. (2013). J. Mol. Struct. 1035, 129–139.
- Latajka, R., Jewgiński, M., Makowski, M., Pawełczak, M., Huber, T., Sewald, N. & Kafarski, P. (2008). J. Pept. Sci. 14, 1084–1095.
- Latajka, R., Makowski, M., Jewgiński, M., Pawełczak, M., Koroniak, H. & Kafarski, P. (2006). *New J. Chem.* **30**, 1009–1018.
- Lisowski, M., Latajka, R., Picur, B., Lis, T., Bryndal, I., Rospenk, M., Makowski, M. & Kafarski, P. (2008). *Biopolymers*, **89**, 220–234.
- Makowski, M., Pawełczak, M., Latajka, R., Nowak, K. & Kafarski, P. (2001). J. Pept. Sci. 7, 141–145.
- Makowski, M., Rzeszotarska, B., Kubica, R. & Pietrzyńsi, G. (1985). Liebigs Ann. Chem. 5, 893–900.
- Miyabe, H., Asada, R. & Takemoto, Y. (2005). *Tetrahedron*, **61**, 385–393.
- Oxford Diffraction (2008). *CrysAlis PRO* and *CrysAlis RED*. Oxford Diffraction Ltd., Yarnton, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

- Pauling, L. (1960). *The Nature of the Chemical Bond*, p. 282. New York: Cornell University Press.
- Pieroni, O., Montagnoli, G., Fissi, A., Merlino, S. & Ciardelli, F. (1975). J. Am. Chem. Soc. 97, 6820–6826.
- Rzeszotarska, B., Siodłak, D., Broda, M. A., Dybała, I. & Kozioł, A. E. (2002). J. Pept. Res. 59, 79–89.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Willey, J. M. & van der Donk, W. A. (2007). Annu. Rev. Microbiol. 61, 477–501.

supporting information

Acta Cryst. (2014). E70, 599-602 [doi:10.1107/S1600536814025197]

Crystal structure of *N*-(*tert*-butoxycarbonyl)phenylalanyldehydroalanine isopropyl ester (Boc–Phe– Δ Ala–OiPr)

Paweł Lenartowicz, Maciej Makowski, Bartosz Zarychta and Krzysztof Ejsmont

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED* (Oxford Diffraction, 2008); program(s) used to solve structure: *SHELXL2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2008).

N-(tert-Butoxycarbonyl)phenylalanyldehydroalanine isopropyl ester

Crystal data	
$C_{20}H_{28}N_2O_5$ $M_r = 376.44$ Orthorhombic, $P2_12_12_1$ $a = 5.2123 (2) Å$ $b = 9.5031 (3) Å$ $c = 41.3363 (17) Å$ $V = 2047.51 (13) Å^3$ $Z = 4$ $F(000) = 808$	$D_x = 1.221 \text{ Mg m}^{-3}$ Melting point = 367–369 K Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4025 reflections $\theta = 3.3-26.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Irregular, colourless $0.33 \times 0.18 \times 0.14 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 14003 measured reflections 4025 independent reflections	3235 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -3 \rightarrow 6$ $k = -11 \rightarrow 11$ $l = -50 \rightarrow 50$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.079$ S = 0.98 4025 reflections 244 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å ⁻³ $\Delta\rho_{min} = -0.22$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 1095 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: -0.1 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.2709 (4)	0.0969 (2)	0.10948 (7)	0.0184 (6)
C2	1.4195 (5)	0.1063 (3)	0.14083 (7)	0.0249 (7)
H2A	1.5204	0.1933	0.1411	0.037*
H2B	1.5348	0.0252	0.1427	0.037*
H2C	1.2995	0.1065	0.1591	0.037*
C3	1.1120 (5)	-0.0366 (3)	0.10835 (8)	0.0325 (7)
H3A	1.0176	-0.0406	0.0879	0.049*
H3B	0.9903	-0.0369	0.1264	0.049*
H3C	1.2254	-0.1185	0.1100	0.049*
C4	1.4374 (5)	0.1068 (3)	0.07954 (7)	0.0264 (7)
H4A	1.5397	0.1932	0.0804	0.040*
H4B	1.3282	0.1085	0.0602	0.040*
H4C	1.5520	0.0252	0.0786	0.040*
05	1.0713 (3)	0.20736 (16)	0.10856 (4)	0.0194 (4)
C6	1.1322 (5)	0.3446 (2)	0.10987 (6)	0.0151 (5)
07	1.3475 (3)	0.39442 (16)	0.10970 (4)	0.0188 (4)
N8	0.9116 (3)	0.4203 (2)	0.11214 (5)	0.0148 (5)
H8A	0.7675	0.3751	0.1160	0.018*
С9	0.9025 (4)	0.5718 (2)	0.10849 (6)	0.0150 (5)
H9A	1.0784	0.6105	0.1122	0.018*
C10	0.8141 (5)	0.6145 (3)	0.07443 (6)	0.0176 (6)
H10A	0.6402	0.5761	0.0707	0.021*
H10B	0.8020	0.7184	0.0734	0.021*
C11	0.9882 (5)	0.5648 (3)	0.04781 (6)	0.0167 (6)
C12	1.1944 (5)	0.6462 (3)	0.03752 (6)	0.0231 (6)
H12A	1.2281	0.7335	0.0479	0.028*
C13	1.3509 (5)	0.6026 (3)	0.01250 (7)	0.0312 (7)
H13A	1.4897	0.6601	0.0056	0.037*
C14	1.3057 (6)	0.4757 (3)	-0.00244 (7)	0.0338 (8)
H14A	1.4134	0.4455	-0.0196	0.041*
C15	1.1046 (5)	0.3924 (3)	0.00748 (7)	0.0317 (7)
H15A	1.0739	0.3046	-0.0028	0.038*
C16	0.9473 (5)	0.4367 (3)	0.03241 (6)	0.0244 (7)
H16A	0.8088	0.3787	0.0391	0.029*
C17	0.7185 (5)	0.6377 (3)	0.13324 (6)	0.0177 (6)
O18	0.6189 (4)	0.75177 (19)	0.12844 (4)	0.0266 (5)
N19	0.6785 (4)	0.5605 (2)	0.16029 (5)	0.0168 (5)
H19A	0.7841	0.4897	0.1636	0.020*
C20	0.4865 (4)	0.5814 (3)	0.18356 (6)	0.0163 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C21	0.3165 (5)	0.6849 (3)	0.18436 (6)	0.0233 (6)
H21A	0.3171	0.7549	0.1679	0.028*
H21B	0.1940	0.6892	0.2013	0.028*
C22	0.4947 (5)	0.4660 (3)	0.20809 (6)	0.0197 (6)
O23	0.6457 (4)	0.36963 (19)	0.20637 (4)	0.0282 (5)
O24	0.3215 (3)	0.48235 (17)	0.23152 (4)	0.0232 (4)
C25	0.3210 (5)	0.3753 (3)	0.25720 (6)	0.0249 (6)
H25A	0.5018	0.3520	0.2633	0.030*
C26	0.1889 (6)	0.2446 (3)	0.24504 (6)	0.0274 (7)
H26A	0.2849	0.2060	0.2267	0.041*
H26B	0.0143	0.2682	0.2381	0.041*
H26C	0.1814	0.1746	0.2624	0.041*
C27	0.1881 (6)	0.4430 (3)	0.28559 (6)	0.0323 (7)
H27A	0.2836	0.5269	0.2923	0.049*
H27B	0.1807	0.3761	0.3036	0.049*
H27C	0.0135	0.4699	0.2793	0.049*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0114 (11)	0.0108 (13)	0.0330 (15)	0.0059 (10)	-0.0014 (12)	-0.0004 (12)
C2	0.0222 (14)	0.0209 (15)	0.0315 (16)	0.0048 (13)	0.0001 (13)	0.0041 (13)
C3	0.0235 (14)	0.0132 (13)	0.061 (2)	0.0028 (12)	-0.0025 (16)	0.0000 (14)
C4	0.0188 (14)	0.0302 (17)	0.0301 (16)	0.0049 (14)	-0.0019 (12)	-0.0077 (14)
O5	0.0107 (9)	0.0111 (9)	0.0364 (11)	0.0019 (7)	0.0009 (9)	-0.0001 (8)
C6	0.0163 (13)	0.0113 (12)	0.0177 (14)	-0.0004 (11)	-0.0003 (12)	-0.0001 (11)
O7	0.0097 (8)	0.0159 (9)	0.0308 (10)	-0.0025 (8)	0.0001 (8)	0.0022 (8)
N8	0.0084 (9)	0.0100 (10)	0.0261 (12)	0.0007 (8)	0.0041 (9)	0.0023 (10)
C9	0.0126 (11)	0.0106 (12)	0.0218 (14)	-0.0004 (10)	0.0007 (11)	0.0011 (12)
C10	0.0163 (12)	0.0147 (13)	0.0218 (14)	0.0026 (12)	-0.0026 (12)	0.0014 (11)
C11	0.0146 (12)	0.0189 (14)	0.0167 (13)	0.0044 (12)	-0.0036 (11)	0.0053 (12)
C12	0.0219 (14)	0.0228 (15)	0.0246 (15)	0.0011 (14)	-0.0054 (14)	0.0055 (12)
C13	0.0203 (14)	0.047 (2)	0.0261 (16)	0.0016 (16)	0.0003 (14)	0.0160 (15)
C14	0.0245 (15)	0.056 (2)	0.0208 (16)	0.0117 (17)	0.0058 (13)	0.0011 (15)
C15	0.0312 (16)	0.0375 (19)	0.0265 (16)	0.0061 (16)	0.0001 (14)	-0.0093 (14)
C16	0.0197 (14)	0.0281 (16)	0.0254 (16)	-0.0011 (13)	0.0002 (12)	0.0002 (13)
C17	0.0154 (13)	0.0148 (14)	0.0228 (15)	-0.0031 (12)	-0.0022 (12)	-0.0021 (12)
O18	0.0284 (11)	0.0159 (10)	0.0356 (12)	0.0083 (9)	0.0094 (9)	0.0026 (9)
N19	0.0135 (10)	0.0170 (11)	0.0198 (12)	0.0047 (10)	0.0000 (9)	0.0016 (10)
C20	0.0149 (12)	0.0171 (14)	0.0168 (13)	-0.0033 (12)	-0.0017 (11)	-0.0029 (12)
C21	0.0232 (14)	0.0245 (15)	0.0221 (15)	0.0037 (13)	0.0067 (14)	0.0011 (12)
C22	0.0165 (13)	0.0235 (16)	0.0193 (14)	-0.0037 (12)	-0.0031 (12)	0.0003 (12)
O23	0.0242 (10)	0.0282 (11)	0.0322 (11)	0.0096 (10)	0.0027 (10)	0.0085 (9)
O24	0.0231 (10)	0.0256 (11)	0.0207 (10)	0.0009 (9)	0.0058 (9)	0.0035 (8)
C25	0.0228 (14)	0.0280 (15)	0.0238 (15)	-0.0029 (15)	0.0007 (13)	0.0102 (13)
C26	0.0238 (15)	0.0253 (15)	0.0333 (16)	0.0004 (14)	0.0023 (14)	0.0057 (13)
C27	0.0368 (17)	0.0341 (18)	0.0262 (16)	-0.0036 (16)	0.0039 (14)	0.0025 (14)

Geometric parameters (Å, °)

<u>C1–05</u>	1.478 (3)	C13—C14	1.375 (4)
C1—C2	1.513 (4)	C13—H13A	0.9500
C1—C4	1.514 (4)	C14—C15	1.376 (4)
C1—C3	1.516 (3)	C14—H14A	0.9500
C2—H2A	0.9800	C15—C16	1.382 (4)
C2—H2B	0.9800	C15—H15A	0.9500
C2—H2C	0.9800	C16—H16A	0.9500
С3—НЗА	0.9800	C17—O18	1.218 (3)
С3—Н3В	0.9800	C17—N19	1.354 (3)
С3—НЗС	0.9800	N19—C20	1.402 (3)
C4—H4A	0.9800	N19—H19A	0.8800
C4—H4B	0.9800	C20—C21	1.324 (3)
C4—H4C	0.9800	C20—C22	1.494 (3)
O5—C6	1.343 (3)	C21—H21A	0.9500
C6—O7	1.218 (3)	C21—H21B	0.9500
C6—N8	1.360 (3)	C22—O23	1.209 (3)
N8—C9	1.448 (3)	C22—O24	1.333 (3)
N8—H8A	0.8800	O24—C25	1.470 (3)
C9—C10	1.536 (3)	C25—C26	1.506 (4)
C9—C17	1.536 (3)	C25—C27	1.507 (4)
С9—Н9А	1.0000	C25—H25A	1.0000
C10—C11	1.503 (3)	C26—H26A	0.9800
C10—H10A	0.9900	C26—H26B	0.9800
C10—H10B	0.9900	C26—H26C	0.9800
C11—C16	1.390 (4)	C27—H27A	0.9800
C11—C12	1.391 (3)	C27—H27B	0.9800
C12—C13	1.381 (4)	C27—H27C	0.9800
C12—H12A	0.9500		
O5—C1—C2	109.9 (2)	C11—C12—H12A	119.4
O5—C1—C4	109.7 (2)	C14—C13—C12	119.9 (3)
C2—C1—C4	113.8 (2)	C14—C13—H13A	120.0
O5—C1—C3	102.06 (17)	C12—C13—H13A	120.0
C2—C1—C3	110.8 (2)	C13—C14—C15	120.1 (3)
C4—C1—C3	109.9 (2)	C13—C14—H14A	120.0
C1—C2—H2A	109.5	C15—C14—H14A	120.0
C1—C2—H2B	109.5	C14—C15—C16	119.9 (3)
H2A—C2—H2B	109.5	C14—C15—H15A	120.0
C1—C2—H2C	109.5	C16—C15—H15A	120.0
H2A—C2—H2C	109.5	C15—C16—C11	121.1 (3)
H2B—C2—H2C	109.5	C15—C16—H16A	119.4
C1—C3—H3A	109.5	C11—C16—H16A	119.4
C1—C3—H3B	109.5	O18—C17—N19	123.5 (2)
НЗА—СЗ—НЗВ	109.5	O18—C17—C9	121.4 (2)
C1—C3—H3C	109.5	N19—C17—C9	115.1 (2)
НЗА—СЗ—НЗС	109.5	C17—N19—C20	126.8 (2)

НЗВ—СЗ—НЗС	109.5	C17—N19—H19A	116.6
C1—C4—H4A	109.5	C20—N19—H19A	116.6
C1—C4—H4B	109.5	C21—C20—N19	126.9 (2)
H4A—C4—H4B	109.5	C21—C20—C22	123.2 (2)
C1—C4—H4C	109.5	N19—C20—C22	109.9 (2)
H4A—C4—H4C	109.5	C20—C21—H21A	120.0
H4B—C4—H4C	109.5	C20—C21—H21B	120.0
C6—O5—C1	121.48 (18)	H21A—C21—H21B	120.0
O7—C6—O5	126.5 (2)	O23—C22—O24	124.9 (2)
07—C6—N8	125.0 (2)	O23—C22—C20	122.3 (2)
O5—C6—N8	108.46 (19)	O24—C22—C20	112.8 (2)
C6—N8—C9	123.12 (19)	C22—O24—C25	116.4 (2)
C6—N8—H8A	118.4	O24—C25—C26	109.3 (2)
C9—N8—H8A	118.4	O24—C25—C27	105.5 (2)
N8—C9—C10	111.61 (19)	C26—C25—C27	113.7 (2)
N8—C9—C17	110.89 (19)	O24—C25—H25A	109.4
C10—C9—C17	108.39 (19)	C26—C25—H25A	109.4
N8—C9—H9A	108.6	С27—С25—Н25А	109.4
С10—С9—Н9А	108.6	С25—С26—Н26А	109.5
С17—С9—Н9А	108.6	C25—C26—H26B	109.5
C11—C10—C9	114.0 (2)	H26A—C26—H26B	109.5
C11—C10—H10A	108.7	С25—С26—Н26С	109.5
C9—C10—H10A	108.7	H26A—C26—H26C	109.5
C11—C10—H10B	108.7	H26B—C26—H26C	109.5
C9—C10—H10B	108.7	С25—С27—Н27А	109.5
H10A—C10—H10B	107.6	С25—С27—Н27В	109.5
C16—C11—C12	117.8 (2)	H27A—C27—H27B	109.5
C16—C11—C10	121.2 (2)	С25—С27—Н27С	109.5
C12—C11—C10	121.0 (2)	Н27А—С27—Н27С	109.5
C13—C12—C11	121.2 (3)	H27B—C27—H27C	109.5
C13—C12—H12A	119.4		
C2—C1—O5—C6	60.9 (3)	C12—C11—C16—C15	-0.6 (4)
C4—C1—O5—C6	-65.0 (3)	C10—C11—C16—C15	178.7 (2)
C3—C1—O5—C6	178.5 (2)	N8—C9—C17—O18	-156.2 (2)
C1	5.3 (4)	C10—C9—C17—O18	-33.4 (3)
C1	-173.4 (2)	N8—C9—C17—N19	24.2 (3)
O7—C6—N8—C9	12.2 (4)	C10—C9—C17—N19	147.0 (2)
O5—C6—N8—C9	-169.1 (2)	O18—C17—N19—C20	13.5 (4)
C6—N8—C9—C10	99.5 (3)	C9—C17—N19—C20	-166.9(2)
C6—N8—C9—C17	-139.5 (2)	C17—N19—C20—C21	-3.8 (4)
N8—C9—C10—C11	-61.4 (3)	C17—N19—C20—C22	175.1 (2)
C17—C9—C10—C11	176.2 (2)	C21—C20—C22—O23	177.4 (2)
C9—C10—C11—C16	91.7 (3)	N19—C20—C22—O23	-1.5 (3)
C9—C10—C11—C12	-89.0 (3)	C21—C20—C22—O24	-3.0(3)
C16—C11—C12—C13	1.0 (4)	N19—C20—C22—O24	178.0 (2)
C10-C11-C12-C13	-178.3 (2)	O23—C22—O24—C25	1.1 (4)
C11—C12—C13—C14	-0.7 (4)	C20—C22—O24—C25	-178.4 (2)

C12—C13—C14—C15	0.1 (4)	C22—O24—C25—C26	-78.0 (3)
C13—C14—C15—C16	0.3 (4)	C22—O24—C25—C27	159.4 (2)
C14—C15—C16—C11	0.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N8—H8A····O7 ⁱ	0.88	2.21	2.952 (2)	141
C2—H2A…O7	0.98	2.48	3.049 (3)	117
C3—H3 <i>C</i> ···O18 ⁱⁱ	0.98	2.51	3.423 (3)	155
C4—H4 <i>A</i> …O7	0.98	2.47	3.040 (3)	116
C21—H21A····O18	0.95	2.27	2.869 (3)	120
C26—H26A····O23	0.98	2.58	3.104 (3)	114
C26—H26 <i>B</i> ···O23 ⁱ	0.98	2.52	3.462 (3)	162

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*-1, *z*.