

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 22 November 2014 Accepted 28 November 2014

Edited by V. V. Chernyshev, Moscow State University, Russia

Keywords: crystal structure; hydrogen-bonded sheets; pyrimidine; $C = H \cdots \pi$ interactions; Knoevenagel condensation; three-dimensional structure

CCDC reference: 1036677 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 5,5-bis(4-methylbenzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione monohydrate

Bhaskarachar Ravi Kiran,^a Parameshwar Adimule Suchetan,^a Hosamani Amar^b and Giriyapura R Vijayakumar^a*

^aProf. CNR Rao Centre for Advanced Materials and Department of Chemistry, UCS, Tumkur University, Tumkur 572 103, India, and ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. *Correspondence e-mail: vijaykumargr18@yahoo.co.in

The asymmetric unit of the title compound, $C_{20}H_{20}N_2O_3 \cdot H_2O$, contains two independent molecules (A and B), with similar conformations and two independent water molecules. In the crystal, $N-H\cdots O$ and $O_{water}-H\cdots O$ hydrogen bonds link all moieties into two crystallographically independent kinds of sheets parallel to the *ac* plane. These independent sheets, each containing either A or B molecules, are further alternately stacked along the b axis and interconnected via $C-H\cdots \pi_{aryl}$ interactions.

1. Chemical Context

Barbituric acid and its derivatives have historically been classified as compounds which act on the central nervous system (Barbachyn *et al.*, 2007). These compounds have been widely used as therapeutic drugs such as anxiolytics, sedatives, hypnotics and anti-convulsants (Coupey, 1997). Recent investigations on barbituric acid derivatives revealed the applications of these compounds as antibacterial (Yilmaz *et al.*, 2006; Sweidan *et al.*, 2011), anti-viral (Clercq, 1986*a*,*b*; Baba *et al.*, 1987), analgesic (Vida *et al.*, 1975), anti-hypertensive (Bassin & Bleck, 2008) and as anti-cancer (Humar *et al.*, 2004; Singh *et al.*, 2009) agents. 5-Fluorouracil is a barbituric acid analogue, which has been widely employed as a clinically useful anti-cancer drug (Heidelberger & Arafield, 1963).

Inspired by the above facts, the title compound was synthesized by Knoevenagel condensation reaction (Prajapati and Gohain, 2006). A double-benzylated product of barbituric acid was obtained by using two equivalents of 4-methyl benzyl chloride in the presence of catalytic amounts of 1,8-diazabicycloundec-7-ene (DBU) and solvent acetonitrile. The obtained compound was characterized by ¹H-NMR and mass spectroscopy. We report herein on its crystal structure.

research communications

Figure 1

A view of (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The title compound (I) (Fig. 1) crystallizes with two molecules, A and B, in the asymmetric unit along with two water molecules of crystallization. In both molecules, the pyrimidine rings are nearly planar [r.m.s. deviations of 0.039 and 0.040 Å] and can be considered as a pseudo-mirror plane for each molecule. In A, the benzene rings form dihedral angles of 49.70 (17) and 51.66 (17)° with the pyrimidine ring and are inclined each to other by 62.9 (2)°. In B, the corresponding angles are 50.44 (18), 69.90 (19) and 59.8 (2)°, respectively. In the related compound 5,5-dibenzylbarbituric acid monohydrate (II) (Bhatt *et al.*, 2007), which crystallizes with one independent molecule and one water molecule in the asymmetric unit, the dihedral angles between the pyrimidine and two benzene rings are 54.09 (11) and 62.71 (11)°.

3. Supramolecular features

In the first level of packing, the independent molecules are linked directly to their symmetry equivalents via strong N2-

Figure 2

A portion of the crystal packing viewed along [100] and showing two kinds of hydrogen-bonded (thin blue lines) sheets, each containing either A or B molecules. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å, °).	

Cg is the centroid of the C13-C18 benzene ring.

•				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-HN1\cdotsO1$	0.86	1.94	2.787 (4)	167
$O1-H1A\cdots O3^{i}$	0.84 (3)	2.13 (3)	2.949 (3)	162
$O1-H1B\cdots O5^{ii}$	0.90 (3)	1.90 (3)	2.794 (4)	175
$N2-HN2\cdots O4^{iii}$	0.86	1.94	2.767 (2)	162
$O2-H2A\cdots O8^{iv}$	0.86 (6)	1.88 (6)	2.739 (4)	177
$O2 - H2B \cdots O6^{v}$	0.82(3)	2.16 (3)	2.961 (3)	169
$N3-HN3\cdots O7^{vi}$	0.86	1.90	2.739 (2)	164
$N4-HN4\cdots O2$	0.86	1.92	2.761 (4)	166
$C22-H22\cdots Cg^{vii}$	0.93	2.97	3.5693	124

Symmetry codes: (i) $x + \frac{1}{2}, -y + 2, z$; (ii) $-x + 2, -y + 2, z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, -y + 2, z$; (iv) $-x + \frac{3}{2}, y, z - \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + 1, z$; (vi) $x + \frac{1}{2}, -y + 1, z$; (vii) $-x + 1, -y, z + \frac{1}{2}$.

HN2...O4 (A) and N3-HN3...O7 (B) hydrogen bonds (Table 1), forming chains running along a-axis direction. Thus, the graph set motif is C(6)C(6). Six chains pass through the unit cell. These chains are linked via water molecules through N1-H1...O1 and O1-H1B...O5 (for A) and N4-HN4...O2 and O2-H2A...O8 (for B) hydrogen bonds (Table 1), each forming graph set motif D(2). In addition, the symmetry-dependent parallel chains are interconnected via bridging water molecules through O-H...O3 and O1-HIB...O5 (for A) and O2-H2B...O6 and O2-H2A...O8 (for B) hydrogen bonds (Table 1), forming sheets parallel to the ac plane (Fig. 2). The alternate sheets formed by A or B molecules and water molecules are interconnected via C-H... π interactions (Fig. 3, Table 1), thus forming a threedimensional structure.

There are several interesting differences between the two chemically closely related structures (I) and (II) (differing only by a methyl group on the two benzene rings). Firstly, (I) crystallizes in the orthorhombic space group $Pca2_1$, whereas (II) crystallizes in the monoclinic space group $P2_1/n$. Secondly, (I) crystallizes with two molecules in its asymmetric unit, while

A portion of the crystal packing viewed along [100] and showing C– $H \cdot \cdot \pi$ interactions as dotted lines. Magenta dots show the centroids of aryl rings. Thin blue lines denote hydrogen bonds. H atoms not involved in intermolecular interactions were omitted for clarity.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{20}N_2O_3 \cdot H_2O$
$M_{ m r}$	354.40
Crystal system, space group	Orthorhombic, Pca2 ₁
Temperature (K)	296
a, b, c (Å)	13.0920 (17), 19.198 (3), 15.827 (2)
$V(Å^3)$	3978.1 (9)
Ζ	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.39 \times 0.27 \times 0.19$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	0.973, 0.984
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	61392, 8543, 4909
R _{int}	0.057
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.135, 0.98
No. of reflections	8543
No. of parameters	489
No. of restraints	29
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.20, -0.14
Absolute structure	Flack (1983), 4587 Friedel pairs
Absolute structure parameter	0.1 (1)

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

(II) crystallizes with one independent molecule. Lastly, in the crystal of compound (II), hydrogen bonding leads to a twodimensional network in contrast to the three-dimensional architecture formed in (I).

4. Synthesis and crystallization

To an ice-cooled stirring solution of acetonitrile (5 ml), 4methyl benzyl chloride (0.5 g, 0.0035 mol), 1,8-diazabicycloundec-7-ene (DBU) (0.5 g, 0.0035 mol) and barbituric acid (0.22 g, 0.0017 mol) were added. The reaction mixture was stirred to the room temperature and then refluxed for 8 h. Thin-layer chromatography showed the absence of any starting material. The reaction mixture was cooled and poured into ice-cold water. The solid obtained was extracted with ethyl acetate and the organic layer was washed with saturated ammonium chloride solution and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to give the title compound as a white solid (Yield 0.54 g, 91.83%).

Colourless prisms of the title compound suitable for diffraction studies were grown from an ethyl acetate-petro-

leum ether solvent system in the ratio 2.5:7.5, by the solvent evaporation technique.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were located in a difference Fourier map and freely refined. The amino and C-bound H atoms were fixed geometrically (N-H = 0.86, C-H = 0.93-0.97 Å) and allowed to ride on their parent atoms with $1.5U_{eq}(C)$ for methyl H atoms and $= 1.2U_{eq}(N,C)$ for other H atoms.

Acknowledgements

The authors thank the Department of Science and Technology, New Delhi, for financial support under the DST–SERB scheme (grant No. SR/FT/CS-145/2010). The support and encouragement of Tumkur University administration is also acknowledged. In addition, the authors thank Sapala Organics Pvt. Ltd, Hyderabad, for recording the ¹H NMR and MS spectra of the title compound.

References

- Baba, M., Pauwels, R., Herdewijn, P., De Clercq, E., Desmyter, J. & Vandeputte, M. (1987). *Biochem. Biophys. Res. Commun.* 142, 128– 134.
- Barbachyn, M. R., Bundy, G. L., Dobrowolski, P. J., Hurd, A. R., Martin, G. E., McNamara, D. J., Palmer, J. R., Romero, D. L., Romero, A. G., Ruble, J. C., Sherry, D. A., Thomasco, L. M. & Toogood, P. L. (2007). US Patent 7208490 B2.
- Bassin, S. L. & Bleck, T. P. (2008). Crit. Care, 12, 185-186.
- Bhatt, P. M. & Desiraju, G. R. (2007). Acta Cryst. E63, 0771-0772.
- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clercq, E. D. (1986a). J. Med. Chem. 29, 1561-1569.
- Clercq, E. D. (1986b). Anticancer Res. 6, 549-556.
- Coupey, S. M. (1997). Pediatr. Rev. 18, 260-265.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Heidelberger, C. & Arafield, F. (1963). J. Cancer Res. 23, 1226.
- Humar, M., Andriopoulos, N., Pischke, S. E., Loop, T., Schmidt, R., Hoetzel, A., Roesslein, M., Pahl, H. L., Geiger, K. K. & Pannen, B. H. (2004). J. Pharmacol. Exp. Ther. **311**, 1232–1240.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Prajapati, D. & Gohain, M. (2006). Beilstein J. Org. Chem. 2, 611-617.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, P., Kaur, M. & Verma, P. (2009). *Bioorg. Med. Chem. Lett.* **19**, 3054–3058.
- Sweidan, K., Engelmann, J., Joshi, R., Mubarak, M. S. & El-Abadelah, M. M. (2011). *Lett. Org. Chem.* 8, 603–605.
- Vida, J. A., Samour, C. M., O'Dea, M. H. & Reinhard, J. F. (1975). J. Med. Chem. 18, 694–696.
- Yilmaz, V. T., Yilmaz, F., Karakaya, H., Büyükgüngör, O. & Harrison, W. T. A. (2006). *Polyhedron*, **25**, 2829–2840.

supporting information

Acta Cryst. (2015). E71, 19-21 [https://doi.org/10.1107/S205698901402619X]

Crystal structure of 5,5-bis(4-methylbenzyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione monohydrate

Bhaskarachar Ravi Kiran, Parameshwar Adimule Suchetan, Hosamani Amar and Giriyapura R Vijayakumar

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

5,5-Bis(4-methylbenzyl)pyrimidine-2,4,6(1H,3H,5H)-trione monohydrate

Crystal data

 $C_{20}H_{20}N_2O_3 \cdot H_2O$ $M_r = 354.40$ Orthorhombic, *Pca2*₁ Hall symbol: P 2c -2ac *a* = 13.0920 (17) Å *b* = 19.198 (3) Å *c* = 15.827 (2) Å *V* = 3978.1 (9) Å³ *Z* = 8 *F*(000) = 1504

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.973, T_{\max} = 0.984$ 61392 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.135$ S = 0.988543 reflections Prism $D_x = 1.183 \text{ Mg m}^{-3}$ Melting point: 443 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 138 reflections $\theta = 1.9-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.39 \times 0.27 \times 0.19 \text{ mm}$

8543 independent reflections 4909 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -16 \rightarrow 16$ $k = -24 \rightarrow 24$ $l = -19 \rightarrow 20$ 1 standard reflections every 1 reflections intensity decay: 1%

489 parameters29 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$(\Delta/\sigma)_{ m max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
and constrained refinement	Absolute structure: Flack (1983), 4587 Friedel
$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2]$	pairs
where $P = (F_0^2 + 2F_c^2)/3$	Absolute structure parameter: 0.1 (1)

Special details

Experimental. All the solvents employed were of analytical grade. Starting materials and reagents were purchased from Sigma Chemical co. (Saint Louis, USA). The reaction progress was monitored by thin layer chromatography using TLC Silica gel 60 F254 (Merck), and spots were visualized by using ultraviolet light of 254 nm. Melting point was determined by using open capillary and uncorrected value is given. 1*H*-NMR spectrum was recorded on Jeol-400 MHz NMR instrument using CDCl3/DMSO-d6 as solvent. Chemical shift values were expressed in δ (p.p.m.) relative to tetramethylsilane (TMS) as an internal reference standard. Mass spectrum of the compound was recorded on Shimadzu LC-2010EV with ESI probe.

1*H*-NMR spectral data of I clearly indicated the formation of I. In the spectrum, a singlet at δ (p.p.m.) value 2.23 corresponds to the two *para*-methyl groups, while, a singlet signal at δ (p.p.m.) value 3.22 is for four alkyl protons (two CH2 groups) and two doublets at 6.93 and 7.07 corresponds to the eight aromatic protons. Two NH protons of the barbituric acid moiety appeared at δ value 7.85 as a singlet. Mass spectrum of I gave a peak with (m/z) value = 335.0 which exactly matches with its calculated mass.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C6	0.8772 (3)	0.7536 (2)	0.0448 (3)	0.1148 (12)	
H6	0.8098	0.7382	0.0448	0.138*	
C19	0.9200 (4)	0.6505 (2)	0.1358 (3)	0.174 (2)	
H19A	0.9340	0.6568	0.1949	0.262*	
H19B	0.9595	0.6122	0.1147	0.262*	
H19C	0.8487	0.6409	0.1281	0.262*	
C39	0.8413 (4)	0.8470 (2)	0.2588 (3)	0.205 (3)	
H39A	0.8257	0.8861	0.2944	0.308*	
H39B	0.8045	0.8512	0.2066	0.308*	
H39C	0.9133	0.8461	0.2474	0.308*	
C40	0.7798 (5)	0.1883 (2)	0.2643 (4)	0.192 (2)	
H40A	0.8105	0.1576	0.3049	0.288*	
H40B	0.8263	0.1956	0.2182	0.288*	
H40C	0.7179	0.1678	0.2434	0.288*	
H2B	0.520(2)	0.5106 (14)	0.109 (2)	0.088 (10)*	
H2A	0.583 (3)	0.513 (2)	0.036 (4)	0.156 (19)*	
H1A	1.225 (2)	0.9802 (12)	0.272 (2)	0.092 (10)*	
H1B	1.1706 (19)	1.0021 (12)	0.342 (2)	0.070 (8)*	
C1	0.9482 (4)	0.7161 (2)	0.0883 (3)	0.1193 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C2	1.0471 (4)	0.7405 (2)	0.0846 (2)	0.1205 (13)
H2	1.0982	0.7152	0.1115	0.145*
C3	1.0739 (3)	0.8016 (2)	0.0421 (2)	0.1027 (11)
Н3	1.1413	0.8168	0.0427	0.123*
C4	1.0001 (2)	0.83994 (14)	-0.00130 (15)	0.0727 (7)
C5	0.9012 (2)	0.81420 (17)	0.0001 (2)	0.0877 (9)
Н5	0.8500	0.8376	-0.0291	0.105*
C7	1.02806 (17)	0.90622 (13)	-0.04658(16)	0.0715 (7)
H7A	0.9901	0.9082	-0.0992	0.086*
H7B	1.1001	0.9044	-0.0608	0.086*
C8	1.00757 (17)	0.97436(13)	0.00349 (16)	0.0563 (6)
C9	0.89331 (16)	0.98272 (13)	0.01741 (17)	0.0522 (6)
C10	0.91876 (18)	1,00450(11)	0.1679(2)	0.0510(6)
C11	1 06796 (15)	0.97321(12)	0.08499(16)	0.0561 (6)
C12	1 04400 (17)	1,03834(13)	-0.04920(18)	0.0678(7)
H12A	1 1174	1.0350	-0.0565	0.081*
H12R	1.0132	1.0356	-0 1048	0.081*
C13	1.01968 (17)	1 10829 (15)	-0.01215(17)	0.061
C14	0.9285(2)	1 14188 (16)	-0.0302(2)	0.0005(7) 0.0845(8)
H14	0.8828	1 1210	-0.0673	0.0015 (0)
C15	0.0020	1.1210 1 2049 (2)	0.0073	0.101 0.1032(11)
H15	0.8415	1.2049 (2)	-0.0085	0.1052 (11)
C16	0.0413 0.9688 (4)	1.2237	0.0003	0.124 0.1149(12)
C17	1.0608(4)	1.25776(17) 1.2054(2)	0.0002(3)	0.1145(12) 0.1245(14)
U17	1.0008 (4)	1.2054 (2)	0.0784 (3)	0.1243(14) 0.140*
C18	1.1000	1.2208	0.1132 0.0425 (2)	0.149°
U18	1.0639 (2)	1.14120 (16)	0.0423 (2)	0.0941(9) 0.112*
C20	0.0410(4)	1.1204 1 3003 (2)	0.0330 0.0084 (4)	0.113
	0.9419(4)	1.3093 (2)	0.0984 (4)	0.180(2) 0.270*
H20A	0.9712	1.3131	0.1338	0.270°
	0.0090	1.3139	0.1022	0.270°
H20C	0.908/	1.5450	0.0029	0.270°
C21	0.8100(4)	0.7794(2) 0.7422(2)	0.3035(3)	0.1294(14) 0.1207(12)
0.22	0.8734 (3)	0.7433 (2)	0.3340 (3)	0.1207 (12)
H22	0.9391	0.7398	0.3042	0.145^{*}
U23	0.8418(2)	0.08184 (19)	0.3932 (2)	0.0984 (11)
H23	0.8869	0.6585	0.4287	0.118*
C24	0.7465 (2)	0.65484 (16)	0.38039 (18)	0.0820 (8)
C25	0.6804 (3)	0.6924 (2)	0.3298 (2)	0.1110 (12)
H25	0.6142	0.6764	0.3210	0.133*
C26	0.7127 (4)	0.7546 (2)	0.2916 (3)	0.1376 (16)
H26	0.6674	0.7794	0.2577	0.165*
C27	0.71252 (17)	0.58865 (16)	0.42374 (18)	0.0824 (9)
H2/A	0.6397	0.5916	0.4342	0.099*
H2/B	0.7464	0.5857	0.4/81	0.099*
C28	0.73450 (17)	0.52040 (14)	0.37356 (17)	0.0655 (7)
C29	0.67384 (16)	0.52234 (14)	0.29184 (18)	0.0635 (6)
C30	0.82374 (18)	0.49247 (12)	0.20860 (19)	0.0514 (6)
C31	0.84770 (17)	0.51243 (15)	0.35966 (18)	0.0630(7)

C32	0.69710 (19)	0.45597 (16)	0.42547 (17)	0.0812 (8)
H32A	0.7295	0.4571	0.4806	0.097*
H32B	0.6240	0.4601	0.4342	0.097*
C33	0.7185 (2)	0.38700 (16)	0.38549 (18)	0.0784 (8)
C34	0.8099 (2)	0.3523 (2)	0.3962 (2)	0.1020 (10)
H34	0.8596	0.3716	0.4311	0.122*
C35	0.8296 (4)	0.2887 (3)	0.3557 (4)	0.1307 (16)
H35	0.8928	0.2673	0.3622	0.157*
C36	0.7556 (5)	0.2579 (2)	0.3061 (3)	0.1243 (12)
C37	0.6641 (4)	0.2918 (2)	0.2993 (3)	0.1226 (13)
H37	0.6127	0.2711	0.2676	0.147*
C38	0.6443 (2)	0.3541 (2)	0.3365 (2)	0.0993 (10)
H38	0.5808	0.3750	0.3293	0.119*
N1	1.01988 (13)	0.98950 (10)	0.15858 (17)	0.0572 (6)
HN1	1.0568	0.9904	0.2035	0.069*
N2	0.85962 (14)	0.99882 (10)	0.09608 (16)	0.0534 (5)
HN2	0.7952	1.0062	0.1017	0.064*
N3	0.88084 (14)	0.49787 (10)	0.28006 (15)	0.0558 (6)
HN3	0.9455	0.4913	0.2743	0.067*
N4	0.72171 (13)	0.50664 (10)	0.21786 (16)	0.0584 (6)
HN4	0.6847	0.5055	0.1730	0.070*
01	1.16630 (18)	0.99390 (14)	0.2863 (2)	0.0976 (8)
O2	0.57806 (19)	0.51299 (15)	0.0904 (2)	0.1084 (10)
O3	0.88202 (13)	1.02084 (10)	0.23583 (12)	0.0709 (5)
O4	1.15820 (10)	0.95863 (10)	0.08464 (13)	0.0775 (5)
O5	0.83276 (12)	0.97775 (9)	-0.04055 (11)	0.0726 (5)
O6	0.86065 (13)	0.47823 (10)	0.14088 (12)	0.0709 (5)
O7	0.58342 (12)	0.53645 (12)	0.29178 (14)	0.0953 (6)
O8	0.90867 (13)	0.51705 (12)	0.41774 (13)	0.0874 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.137 (3)	0.088 (3)	0.119 (3)	-0.038 (2)	-0.003 (2)	-0.026 (2)
C19	0.312 (6)	0.093 (3)	0.119 (3)	-0.044 (3)	0.006 (4)	-0.005 (2)
C39	0.362 (8)	0.094 (3)	0.159 (4)	-0.046 (4)	0.014 (5)	-0.006 (3)
C40	0.294 (7)	0.109 (3)	0.172 (5)	0.019 (4)	0.044 (5)	0.025 (3)
C1	0.190 (4)	0.088 (3)	0.080(2)	-0.001 (3)	-0.010 (3)	-0.019 (2)
C2	0.179 (4)	0.103 (3)	0.079 (2)	0.028 (3)	-0.022 (3)	0.003 (2)
C3	0.113 (2)	0.108 (3)	0.087 (2)	0.022 (2)	-0.009 (2)	-0.009 (2)
C4	0.0893 (18)	0.0841 (18)	0.0448 (15)	0.0125 (16)	0.0001 (14)	-0.0115 (14)
C5	0.094 (2)	0.087 (2)	0.082 (2)	-0.0126 (17)	-0.0143 (17)	-0.0221 (18)
C7	0.0651 (14)	0.105 (2)	0.0445 (16)	0.0115 (13)	0.0061 (12)	-0.0133 (15)
C8	0.0431 (11)	0.0879 (17)	0.0379 (13)	-0.0012 (12)	0.0014 (10)	0.0050 (13)
C9	0.0401 (12)	0.0792 (15)	0.0375 (16)	-0.0035 (10)	-0.0045 (11)	0.0052 (11)
C10	0.0432 (12)	0.0672 (15)	0.0426 (18)	-0.0026 (9)	0.0024 (13)	0.0077 (11)
C11	0.0365 (11)	0.0798 (16)	0.0520 (15)	-0.0043 (11)	0.0038 (11)	0.0030 (13)
C12	0.0529 (12)	0.097 (2)	0.0537 (16)	-0.0022 (12)	0.0092 (12)	0.0155 (15)

supporting information

C13	0.0573 (13)	0.094 (2)	0.0543 (18)	-0.0113 (13)	-0.0003 (12)	0.0191 (15)
C14	0.0796 (18)	0.086 (2)	0.088 (2)	-0.0055 (15)	-0.0074 (15)	0.0160 (17)
C15	0.101 (2)	0.099 (3)	0.110 (3)	-0.002 (2)	0.006 (2)	0.029 (2)
C16	0.172 (4)	0.086 (3)	0.086 (3)	0.002 (3)	0.017 (3)	0.014 (2)
C17	0.178 (4)	0.114 (3)	0.082 (3)	-0.035 (3)	-0.038 (3)	0.011 (2)
C18	0.095 (2)	0.098 (2)	0.089 (2)	-0.0124 (18)	-0.0202 (17)	0.0148 (18)
C20	0.275 (6)	0.117 (3)	0.148 (4)	0.007 (3)	0.036 (4)	-0.011 (3)
C21	0.192 (4)	0.114 (3)	0.083 (3)	-0.010 (3)	-0.015 (3)	-0.039 (2)
C22	0.140 (3)	0.099 (3)	0.123 (3)	-0.013 (2)	-0.010 (3)	-0.030 (3)
C23	0.095 (2)	0.108 (3)	0.091 (3)	0.004 (2)	-0.0182 (18)	-0.036 (2)
C24	0.0795 (17)	0.115 (2)	0.0511 (16)	0.0048 (17)	-0.0033 (15)	-0.0236 (17)
C25	0.114 (2)	0.130 (3)	0.089 (3)	0.009 (2)	-0.034 (2)	-0.026 (2)
C26	0.203 (5)	0.109 (3)	0.100 (3)	0.015 (3)	-0.054 (3)	-0.018 (3)
C27	0.0600 (15)	0.135 (3)	0.0525 (18)	0.0095 (15)	0.0060 (12)	-0.0218 (18)
C28	0.0446 (12)	0.114 (2)	0.0377 (15)	-0.0038 (13)	0.0058 (11)	-0.0082 (15)
C29	0.0391 (12)	0.1030 (19)	0.0486 (15)	-0.0098 (12)	-0.0013 (11)	0.0014 (14)
C30	0.0467 (13)	0.0750 (16)	0.0327 (16)	-0.0054 (10)	-0.0042 (12)	0.0004 (10)
C31	0.0447 (13)	0.108 (2)	0.0363 (16)	-0.0031 (12)	-0.0027 (12)	-0.0025 (13)
C32	0.0672 (14)	0.133 (3)	0.0432 (15)	-0.0126 (16)	0.0118 (13)	0.0041 (17)
C33	0.0753 (17)	0.112 (2)	0.0479 (17)	-0.0106 (16)	0.0049 (14)	0.0165 (17)
C34	0.084 (2)	0.125 (3)	0.096 (2)	-0.0012 (19)	-0.0010 (18)	0.034 (2)
C35	0.127 (3)	0.118 (4)	0.147 (4)	0.027 (3)	0.024 (3)	0.053 (3)
C36	0.171 (4)	0.105 (3)	0.097 (3)	-0.002 (3)	0.026 (3)	0.011 (2)
C37	0.146 (4)	0.123 (3)	0.099 (3)	-0.004 (3)	-0.008 (3)	0.008 (3)
C38	0.101 (2)	0.113 (3)	0.084 (2)	-0.0056 (19)	-0.0081 (18)	0.004 (2)
N1	0.0406 (10)	0.0901 (14)	0.0408 (15)	-0.0008 (8)	-0.0098 (10)	0.0026 (10)
N2	0.0325 (9)	0.0872 (14)	0.0405 (14)	0.0011 (7)	-0.0005 (10)	0.0027 (8)
N3	0.0336 (10)	0.0979 (15)	0.0360 (15)	-0.0022 (8)	0.0001 (10)	-0.0017 (9)
N4	0.0423 (11)	0.0982 (15)	0.0347 (14)	-0.0044 (8)	-0.0038 (10)	-0.0027 (9)
01	0.0577 (12)	0.192 (2)	0.0431 (15)	0.0075 (11)	-0.0041 (12)	-0.0181 (12)
O2	0.0582 (13)	0.223 (3)	0.0443 (16)	0.0125 (12)	-0.0046 (12)	0.0058 (14)
03	0.0593 (10)	0.1132 (14)	0.0402 (11)	0.0041 (9)	0.0053 (8)	-0.0093 (9)
O4	0.0389 (8)	0.1202 (15)	0.0733 (12)	0.0012 (8)	-0.0007 (8)	-0.0006 (11)
05	0.0535 (9)	0.1195 (15)	0.0448 (11)	-0.0020 (9)	-0.0080 (9)	-0.0004 (10)
O6	0.0649 (10)	0.1105 (14)	0.0373 (11)	0.0007 (9)	0.0047 (8)	-0.0088 (10)
O7	0.0366 (9)	0.174 (2)	0.0751 (13)	-0.0020 (10)	-0.0013 (9)	-0.0119 (13)
08	0.0517 (9)	0.1655 (18)	0.0449 (11)	0.0017 (10)	-0.0126 (9)	-0.0159 (11)

Geometric parameters (Å, °)

C6—C1	1.363 (5)	C16—C20	1.541 (6)
C6—C5	1.397 (5)	C17—C18	1.396 (5)
C19—C1	1.513 (6)	C21—C22	1.351 (6)
C39—C21	1.534 (6)	C21—C26	1.373 (5)
C40—C36	1.524 (6)	C22—C23	1.392 (5)
C1—C2	1.378 (6)	C23—C24	1.367 (4)
С2—С3	1.396 (5)	C24—C25	1.383 (5)
C3—C4	1.396 (4)	C24—C27	1.511 (4)

supporting information

C4—C5	1.386 (4)	C25—C26	1.403 (6)
C4—C7	1.506 (4)	C27—C28	1.559 (4)
С7—С8	1.553 (3)	C28—C31	1.506 (3)
C8—C11	1.513 (3)	C28—C29	1.518 (4)
С8—С9	1.521 (3)	C28—C32	1.564 (4)
C8—C12	1.559 (4)	C29—O7	1.214 (3)
C9—O5	1.216 (3)	C29—N4	1.362 (4)
C9—N2	1.357 (3)	C30—O6	1.207 (3)
C10—O3	1.218 (3)	C30—N3	1.360 (3)
C10—N1	1.363 (3)	C30—N4	1.371 (3)
C10—N2	1.380 (4)	C31—08	1.221 (3)
C11-04	1.214 (2)	C31—N3	1.361 (4)
C11—N1	1.210(2)	C_{32} $-C_{33}$	1 494 (4)
C12—C13	1.500 (4)	C33—C34	1.380 (4)
C13—C18	1 378 (4)	C33-C38	1 393 (4)
C13—C14	1.376 (1)	C34-C35	1 403 (6)
C14-C15	1.372 (5)	$C_{35} - C_{36}$	1 380 (6)
C15-C16	1.372(5) 1 374(5)	$C_{36} - C_{37}$	1 368 (6)
C16-C17	1.371(5) 1 387(6)	$C_{37} - C_{38}$	1 358 (6)
	1.507 (0)	037 030	1.550 (0)
C1—C6—C5	122.8 (4)	C26—C21—C39	118 6 (5)
C6-C1-C2	116.1 (4)	$C_{21} - C_{22} - C_{23}$	1210(4)
C6-C1-C19	121.7(5)	C^{24} C^{23} C^{22}	121.0(1) 121.9(3)
$C^2 - C^1 - C^{19}$	121.7(5) 122.2(5)	C^{23} C^{24} C^{25}	1173(3)
C1 - C2 - C3	122.2(3) 122.8(4)	C_{23} C_{24} C_{27}	117.5(3) 121 4 (3)
C4 - C3 - C2	122.0(1) 120.4(4)	$C_{25} = C_{24} = C_{27}$	121.7(3) 121.2(3)
$C_{1} = C_{2}$	126.1(1) 116.8(3)	C_{24} C_{25} C_{26} C_{26}	121.2(3) 1204(4)
$C_{5} - C_{4} - C_{7}$	1224(3)	$C_{21} - C_{26} - C_{25}$	120.1(1) 121.0(4)
$C_{3} - C_{4} - C_{7}$	122.1(3) 120.8(3)	C_{24} C_{27} C_{28}	121.0(1) 114.9(2)
C4 - C5 - C6	120.0(3) 121.0(3)	$C_{24} = C_{27} = C_{20}$	114.9(2) 113.1(2)
C4-C7-C8	1153(2)	$C_{31} - C_{28} - C_{27}$	110.0(2)
C11 - C8 - C9	113.3(2) 113.1(2)	C_{29} C_{28} C_{27}	108.5(2)
C11 - C8 - C7	119.1(2) 109.4(2)	$C_{2}^{31} - C_{2}^{38} - C_{3}^{32}$	100.3(2) 107.7(2)
C9 - C8 - C7	109.4(2) 109.44(19)	C_{29} C_{28} C_{32}	107.7(2) 107.7(2)
$C_{11} = C_{8} = C_{12}$	107.91 (19)	C_{2}^{2} C_{2}^{2} C_{3}^{2} C_{3}^{2}	107.7(2) 109.8(2)
C9 - C8 - C12	107.91(19) 107.17(18)	0.7 - 0.29 - 0.4	109.8(2)
C7 - C8 - C12	109.7(2)	07 - C29 - C28	119.0(2) 121 1 (2)
05 - C9 - N2	109.7(2) 119.9(2)	N4 - C29 - C28	121.1(2) 119 10 (19)
05 - 09 - 08	119.9(2) 121.6(2)	06-030-N3	119.10(19) 122.4(2)
$N_{2} - C_{9} - C_{8}$	121.0(2) 118.5(2)	06 - C30 - N4	122.1(2) 122.0(2)
03 - C10 - N1	110.3(2) 122 3(3)	N_{3} C_{30} N_{4}	122.0(2) 115.6(2)
03 - C10 - N2	122.3(3) 121.7(2)	08-031-N3	110.0(2) 120.2(2)
N1-C10-N2	121.7(2) 1160(2)	08 - C31 - C28	120.2(2) 121.7(2)
04-C11-N1	120.5(2)	N3-C31-C28	121.7(2) 1180(2)
04-C11-C8	120.5(2) 120.5(2)	C_{33} C_{32} C_{28}	110.0(2) 114.8(2)
N1_C11_C8	110.0 (18)	C_{34} C_{33} C_{28}	117.0(2)
C13 - C12 - C8	115.6(2)	C_{34} C_{33} C_{32}	117.0(3) 1225(3)
C13 - C12 - C0 C18 - C13 - C14	113.0(2) 117.2(2)	C_{38} C_{32} C_{32}	122.3(3) 120.5(3)
010-013-014	11/.2(3)	030-033-032	120.3 (3)

C18—C13—C12	121.5 (2)	C33—C34—C35	121.6 (4)
C14—C13—C12	121.3 (3)	C36—C35—C34	120.3 (4)
C15—C14—C13	122.2 (3)	C37—C36—C35	117.0 (4)
C14—C15—C16	121.0 (4)	C37—C36—C40	124.4 (6)
C_{15} C_{16} C_{17}	1178(4)	C_{35} C_{36} C_{40}	118.5 (6)
$C_{15} - C_{16} - C_{20}$	121.1(4)	C_{38} C_{37} C_{36}	123.6(4)
C_{17} C_{16} C_{20}	121.1(4) 121.1(5)	C_{37} C_{38} C_{33}	120.5(3)
C_{16} C_{17} C_{18}	121.1(5) 121.0(4)	C_{11} N_{1} C_{10}	126.3(3)
$C_{10} = C_{17} = C_{18}$	121.0(4) 120.8(3)	C9 N2 C10	120.2(2) 126.20(10)
$C_{13}^{} C_{13}^{} C_{14}^{} C_{15}^{} C_{-$	120.8(5)	$C_{2} = 1 - C_{10}$	120.29(19) 127.6(2)
$C_{22} = C_{21} = C_{20}$	110.3(5)	$C_{30} = N_3 = C_{31}$	127.0(2) 125.7(2)
C22—C21—C39	125.1 (5)	C29—N4—C30	123.7 (2)
C5-C6-C1-C2	-1.3(5)	C39 - C21 - C26 - C25	179.0 (4)
$C_{5} - C_{6} - C_{1} - C_{19}$	-1797(3)	C_{24} C_{25} C_{26} C_{26} C_{21}	0.0(6)
C_{6} C_{1} C_{2} C_{3}	27(6)	C_{23} C_{24} C_{27} C_{28}	-90.5(3)
$C_{1}^{0} - C_{1}^{1} - C_{2}^{2} - C_{3}^{3}$	-1789(3)	C_{25} C_{24} C_{27} C_{28}	93.0 (3)
$C_{1}^{1} = C_{2}^{1} = C_{3}^{2} = C_{3}^{2}$	-20(5)	$C_{23} - C_{24} - C_{27} - C_{28}$	55.0(3)
$C_1 - C_2 - C_3 - C_4$	2.0(3)	$C_{24} = C_{27} = C_{28} = C_{31}$	-62.2(2)
$C_2 = C_3 = C_4 = C_3$	-0.2(4)	C_{24} C_{27} C_{28} C_{29} C_{24} C_{27} C_{28} C_{29}	-03.3(3)
$C_2 = C_3 = C_4 = C_7$	1/9.4 (5)	$C_{24} = C_{27} = C_{26} = C_{32}$	179.5 (2)
C_{3} C_{4} C_{5} C_{6}	1.5 (4)	$C_{31} = C_{28} = C_{29} = 07$	-1/1.5(3)
C/-C4-C5-C6	-1/8.1(3)	$C_2/-C_2 = C_2 = 07$	-49.2 (3)
C1 - C6 - C5 - C4	-0.7(5)	C_{32} — C_{28} — C_{29} — O_{7}	69.6 (3)
C5—C4—C7—C8	82.6 (3)	C31—C28—C29—N4	9.8 (3)
C3—C4—C7—C8	-97.0 (3)	C27—C28—C29—N4	132.0 (2)
C4—C7—C8—C11	59.5 (3)	C32—C28—C29—N4	-109.2 (3)
C4—C7—C8—C9	-64.9 (3)	C29—C28—C31—O8	172.4 (3)
C4—C7—C8—C12	177.7 (2)	C27—C28—C31—O8	50.9 (3)
C11—C8—C9—O5	-172.6 (2)	C32—C28—C31—O8	-68.7 (3)
C7—C8—C9—O5	-50.3 (3)	C29—C28—C31—N3	-9.4 (3)
C12—C8—C9—O5	68.6 (3)	C27—C28—C31—N3	-130.8 (3)
C11—C8—C9—N2	10.0 (3)	C32—C28—C31—N3	109.5 (3)
C7—C8—C9—N2	132.3 (2)	C31—C28—C32—C33	-57.5 (3)
C12—C8—C9—N2	-108.8(2)	C29—C28—C32—C33	64.8 (3)
C9—C8—C11—O4	171.2 (2)	C27—C28—C32—C33	-177.3 (2)
C7—C8—C11—O4	48.9 (3)	C28—C32—C33—C34	86.1 (3)
C12—C8—C11—O4	-70.4(3)	C28—C32—C33—C38	-95.3 (3)
C9—C8—C11—N1	-9.5 (3)	C38—C33—C34—C35	3.6 (5)
C7—C8—C11—N1	-131.8(2)	C32—C33—C34—C35	-177.7 (3)
C12—C8—C11—N1	108.9 (2)	C33—C34—C35—C36	-2.5(6)
$C_{11} - C_{8} - C_{12} - C_{13}$	-66.5(2)	C_{34} C_{35} C_{36} C_{37}	-0.3(7)
C9-C8-C12-C13	55 6 (3)	$C_{34} - C_{35} - C_{36} - C_{40}$	-1791(4)
C7 - C8 - C12 - C13	174 32 (19)	C_{35} C_{36} C_{37} C_{38}	19(7)
C8-C12-C13-C18	89 4 (3)	C40-C36-C37-C38	-1794(4)
C8-C12-C13-C14	-89 2 (3)	$C_{36} - C_{37} - C_{38} - C_{33}$	-0.6(7)
C_{18} C_{13} C_{14} C_{15}	-0.7(4)	C_{34} C_{33} C_{38} C_{37}	-21(5)
C_{12} C_{13} C_{14} C_{15} C_{12} C_{13} C_{14} C_{15}	178 0 (3)	C_{32} C_{32} C_{30} C_{30} C_{37}	2.1(3) 170 2 (2)
$C_{12} = C_{13} = C_{14} = C_{15}$	170.0(3)	04 C11 N1 C10	-1777(3)
C_{13} C_{14} C_{15} C_{16} C_{17}	0.2(3)	$C_{1} = C_{1} = C_{1} = C_{1} = C_{1}$	$\frac{1}{1}$ (2)
U14 - U13 - U10 - U1/	0.5(0)	U0-U11-N1-U10	3.0(3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$178.6 (4) \\ -0.6 (6) \\ -178.7 (4) \\ 0.6 (4) \\ -178.1 (3) \\ 0.0 (6) \\ 1.2 (6) \\ -179.4 (4) \\ 0.8 (6) \\ -2.4 (5) \\ -179.0 (3) \\ 1.9 (5) \\ 1.9 (5) \\ 0.0 \\ 0.$	O3—C10—N1—C11 N2—C10—N1—C11 O5—C9—N2—C10 C8—C9—N2—C10 O3—C10—N2—C9 N1—C10—N2—C9 O6—C30—N3—C31 N4—C30—N3—C31 O8—C31—N3—C30 C28—C31—N3—C30 O7—C29—N4—C30 C28—C29—N4—C30	-177.6 (2) 3.6 (3) 178.3 (2) -4.3 (3) 178.3 (2) -2.9 (3) -178.9 (3) 3.3 (3) -178.5 (2) 3.3 (4) 177.3 (2) -3.9 (4)
C23—C24—C25—C26	1.9 (5)	C28—C29—N4—C30	-3.9 (4)
C27—C24—C25—C26	178.5 (3)	O6—C30—N4—C29	179.2 (2)
C22—C21—C26—C25	-1.6 (6)	N3—C30—N4—C29	-2.9 (3)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 benzene ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—HN1…O1	0.86	1.94	2.787 (4)	167
O1—H1A···O3 ⁱ	0.84 (3)	2.13 (3)	2.949 (3)	162
O1—H1 <i>B</i> ···O5 ⁱⁱ	0.90 (3)	1.90 (3)	2.794 (4)	175
N2—HN2····O4 ⁱⁱⁱ	0.86	1.94	2.767 (2)	162
O2— $H2A$ ···O8 ^{iv}	0.86 (6)	1.88 (6)	2.739 (4)	177
$O2-H2B\cdots O6^{\vee}$	0.82 (3)	2.16 (3)	2.961 (3)	169
N3—HN3····O7 ^{vi}	0.86	1.90	2.739 (2)	164
N4—H <i>N</i> 4····O2	0.86	1.92	2.761 (4)	166
С22—Н22…Сд ^{vii}	0.93	2.97	3.5693	124

Symmetry codes: (i) x+1/2, -y+2, z; (ii) -x+2, -y+2, z+1/2; (iii) x-1/2, -y+2, z; (iv) -x+3/2, y, z-1/2; (v) x-1/2, -y+1, z; (vi) x+1/2, -y+1, z; (vii) -x+1, -y, z+1/2.