

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of 2,2-dichloro-1-(piperidin-1-yl)butane-1,3-dione

Markus Schwierz,^a Helmar Görls^b and Wolfgang Imhof^a*

^aUniversity Koblenz-Landau, Institute for Natural Sciences, Universitätsstrasse 1, 56070 Koblenz, Germany, and ^bFriedrich-Schiller-University Jena, Institute of Inorganic and Analytical Chemistry, Humboldtstrasse 8, 07743 Jena, Germany. *Correspondence e-mail: imhof@uni-koblenz.de

Received 19 November 2014; accepted 28 November 2014

Edited by P. C. Healy, Griffith University, Australia

In the title compound, $C_9H_{13}Cl_2NO_2$, the piperidine ring shows a chair conformation and the O-C-C-O torsion angle between the carbonyl groups is $183.6 (4)^{\circ}$. In the crystal, molecules are linked into an infinite layer along the *ab* plane by a bifurcated $C-H\cdots O$ hydrogen bond between the carbonyl O atom adjacent to the methyl group and one of the methylene groups next to nitrogen and an additional hydrogen bond of the C-H···Cl type. These layers are connected into a three-dimensional supramolecular arrangement by $O \cdot \cdot \cdot Cl$ contacts [2.8979 (12) and 3.1300 (12) Å].

Keywords: crystal structure; 2,2-dichloro-1-(piperidin-1-yl)butane-1,3dione; hydrogen bonding; O···Cl contacts.

CCDC reference: 1036594

1. Related literature

For the synthetic procedure, see: Schank (1967). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999). For a description of the nature of intermolecular interactions between chlorine and oxygen, see: Lommerse et al. (1996). For the X-ray structure of the starting compound, see: Schwierz et al. (2014).

2. Experimental

2.1. Crystal data

C₉H₁₃Cl₂NO₂ $M_r = 238.10$

Monoclinic, P2 a = 5.9548 (3) Å

b = 10.5510 (4) Å OPEN d ACCESS c = 8.5747 (3) Å $\beta = 100.568 \ (2)^{\circ}$ V = 529.60 (4) Å³ Z = 2

2.2. Data collection

Nonius KappaCCD diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2002)	
$T_{\min} = 0.616, \ T_{\max} = 0.746$	

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.059$	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
S = 1.09	Absolute structure: Flack (1983)
2402 reflections	1115 Friedel pairs
128 parameters	Absolute structure parameter:
1 restraint	0.08 (4)
All H-atom parameters refined	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1A\cdots O1^{i}$	0.99	2.56	3.413 (2)	145
$C9-H9C\cdotsO1^{i}$	0.98	2.53	3.494 (2)	168
$C9-H9C\cdots Cl1^{ii}$	0.98	2.79	3.770 (2)	176

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 2; (ii) x - 1, y, z.

Data collection: COLLECT (Nonius, 1998): cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Acknowledgements

MS gratefully acknowledges a PhD grant from the Deutsche Bundesstiftung Umwelt.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5420).

References

- Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Schank, K. (1967). Chem. Ber. 100, 2292-2295.
- Schwierz, M., Görls, H. & Imhof, W. (2014). Acta Cryst. E70, o1297.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation

 $0.07 \times 0.05 \times 0.02 \ \mathrm{mm}$

3076 measured reflections

2402 independent reflections

2085 reflections with $I > 2\sigma(I)$

 $\mu = 0.59 \text{ mm}^{-3}$

T = 133 K

 $R_{\rm int} = 0.030$

supporting information

Acta Cryst. (2015). E71, o19 [https://doi.org/10.1107/S2056989014026164]

Crystal structure of 2,2-dichloro-1-(piperidin-1-yl)butane-1,3-dione

Markus Schwierz, Helmar Görls and Wolfgang Imhof

S1. Comment

The title compound is an intermediate in the synthesis of 2,2-dimethoxy-1-(pyridin-2-yl)ethanone and has been synthesized from 1-(piperidin-1-yl)butane-1,3-dione (Schwierz *et al.*, 2014) following a modified procedure (Schank, 1967). As it is expected the piperidine ring shows a chair conformation and the amide substructure is planar (Figure 1). The dihedral angle O1—C6—C8—O2 between the carbonyl groups measures to 183.6 (4)°. The C—O bond of the amide carbonyl group is slightly elongated with respect to the other carbonyl group due to delocalization of the nitrogen lone pair (C6—O1 1.221 (3) Å *versus*. C8—O2 1.205 (3) Å). In the crystal structure, molecules are linked to infinite layers along the *ab* plane by a bifurcated hydrogen bond between one of the carbonyl oxygen atoms (O1) towards the methyl group and one of the methylene groups next to nitrogen and an additional hydrogen bond of the C—H…C1 type (Desiraju & Steiner, 1999). In addition, these layers are connected to a 3D supramolecular arrangement by oxygen chlorine contacts (Lommerse *et al.*, 1996).

S2. Experimental

25.4 g (0.15 mol) 1-(piperidin-1-yl)butane-1,3-dione were dissolved in 70 ml dichloromethane. To this solution, 24.3 ml (40.6 g, 0.3 mol) sulfuryl dichloride was added dropwise and the resulting mixture refluxed for 5 h. After cooling to room temperature 30 ml diethylether were added and the solution washed with brine (3×20 ml), dried over CaCl₂, filtered and evaporated to dryness. The resulting highly viscous product was distilled *in vacuo* (0.2 mbar). Condensation of the distillate into a Schlenk tube cooled with liquid nitrogen yielded crystalline material suitable for X-ray diffraction (Combined yield of all fractions: 32.5 g, 91%).

S3. Refinement

Hydrogen atoms have been calculated into idealized positions with C–H = 0.98 - 0.99 Å. Methylene and methyl hydrogen atoms were refined with $U_{iso} = 1.2 U_{eq}(C)$ and 1.5 $U_{eq}(C)$ respectively.

Molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

Figure 2

Crystal structure of the title compound showing a 3D supramolecular network built up by C–H…O and C–H…Cl hydrogen bonds and chlorine oxygen contacts. Hydrogen atoms at piperidine residues that are not involved in hydrogen bonding are omitted for the sake of clarity.

2,2-Dichloro-1-(piperidin-1-yl)butane-1,3-dione

Crystal data	
$C_9H_{13}Cl_2NO_2$	Z = 2
$M_r = 238.10$	F(000) = 248
Monoclinic, $P2_1$	$D_{\rm x} = 1.493 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: P 2yb	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.9548 (3) Å	$\mu = 0.59 \text{ mm}^{-1}$
b = 10.5510 (4) Å	T = 133 K
c = 8.5747 (3) Å	Prism, colourless
$\beta = 100.568 \ (2)^{\circ}$	$0.07 \times 0.05 \times 0.02 \text{ mm}$
$V = 529.60 (4) Å^3$	
Data collection	
Nonius KappaCCD	3076 measured reflections
diffractometer	2402 independent reflections
Radiation source: fine-focus sealed tube	2085 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
$phi-+\omega$ -scan	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 7$
(SADABS; Bruker, 2002)	$k = -13 \rightarrow 13$
$T_{\min} = 0.616, \ T_{\max} = 0.746$	$l = -11 \rightarrow 11$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: mixed
All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.0215P)^2 + 0.1164P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta ho_{ m max} = 0.33 \ m e \ m \AA^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983), 1115 Friedel pairs
Absolute structure parameter: 0.08 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.44673 (6)	0.94886 (3)	0.75108 (4)	0.01711 (9)	
Cl2	0.97291 (6)	1.00243 (3)	0.62597 (4)	0.01824 (9)	
01	0.9936 (2)	1.00543 (12)	0.95581 (13)	0.0203 (2)	
O2	1.2365 (2)	0.72093 (11)	0.60201 (14)	0.0228 (3)	
N1	1.2241 (2)	0.83853 (12)	1.03862 (15)	0.0149 (3)	
C1	1.3935 (3)	0.73987 (14)	1.02007 (18)	0.0156 (3)	
H1A	1.4037	0.7314	0.9066	0.019*	
H1B	1.3440	0.6574	1.0572	0.019*	
C2	1.6274 (3)	0.77486 (15)	1.11579 (19)	0.0183 (3)	
H2A	1.6857	0.8511	1.0689	0.022*	
H2B	1.7358	0.7046	1.1101	0.022*	
C3	1.6153 (3)	0.80114 (17)	1.28938 (19)	0.0211 (3)	
H3A	1.5787	0.7217	1.3409	0.025*	
H3B	1.7656	0.8316	1.3458	0.025*	
C4	1.4336 (3)	0.90029 (16)	1.30135 (19)	0.0208 (3)	
H4A	1.4784	0.9824	1.2603	0.025*	
H4B	1.4203	0.9120	1.4139	0.025*	
C5	1.2036 (3)	0.85828 (15)	1.20554 (18)	0.0183 (3)	
H5A	1.1546	0.7785	1.2501	0.022*	
H5B	1.0867	0.9238	1.2120	0.022*	
C6	1.1183 (3)	0.91946 (13)	0.92819 (18)	0.0140 (3)	
C7	1.1618 (3)	0.90173 (14)	0.75549 (18)	0.0145 (3)	
C8	1.1108 (3)	0.76732 (14)	0.68101 (18)	0.0160 (3)	

supporting information

C9	0.8979 (3)	0.70565 (15)	0.7144 (2)	0.0202 (3)	
H9D	0.8409	0.6448	0.6300	0.030*	
H9C	0.7814	0.7705	0.7187	0.030*	
H9B	0.9321	0.6613	0.8164	0.030*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.01400 (17)	0.01793 (17)	0.02027 (18)	-0.00249 (13)	0.00546 (13)	-0.00093 (14)
Cl2	0.01831 (18)	0.01753 (16)	0.01794 (17)	0.00204 (14)	0.00086 (13)	0.00373 (14)
01	0.0207 (6)	0.0196 (5)	0.0218 (5)	0.0062 (5)	0.0069 (5)	-0.0008 (5)
O2	0.0234 (6)	0.0232 (6)	0.0229 (6)	-0.0011 (5)	0.0071 (5)	-0.0076 (5)
N1	0.0130 (6)	0.0157 (6)	0.0162 (6)	0.0009 (5)	0.0030 (5)	0.0001 (5)
C1	0.0147 (7)	0.0140 (7)	0.0177 (8)	0.0028 (6)	0.0020 (6)	-0.0007 (5)
C2	0.0133 (7)	0.0199 (7)	0.0212 (8)	0.0014 (6)	0.0019 (6)	0.0002 (6)
C3	0.0184 (8)	0.0259 (8)	0.0178 (8)	-0.0008 (6)	-0.0001 (6)	0.0001 (6)
C4	0.0226 (9)	0.0232 (8)	0.0171 (7)	-0.0012 (7)	0.0050 (6)	-0.0035 (6)
C5	0.0179 (8)	0.0221 (8)	0.0160 (7)	0.0006 (6)	0.0062 (6)	0.0011 (6)
C6	0.0101 (7)	0.0151 (7)	0.0169 (7)	-0.0040 (5)	0.0026 (6)	-0.0014 (5)
C7	0.0115 (7)	0.0153 (7)	0.0172 (7)	-0.0009 (6)	0.0041 (6)	0.0009 (6)
C8	0.0169 (8)	0.0148 (7)	0.0152 (7)	0.0004 (6)	0.0001 (6)	0.0008 (6)
C9	0.0187 (8)	0.0177 (7)	0.0246 (8)	-0.0040 (7)	0.0047 (7)	-0.0016 (6)

Geometric parameters (Å, °)

Cl1—C7	1.7752 (16)	С3—НЗА	0.9900
Cl2—C7	1.7802 (15)	С3—Н3В	0.9900
O1—C6	1.2226 (19)	C4—C5	1.528 (2)
O2—C8	1.202 (2)	C4—H4A	0.9900
N1-C6	1.3431 (19)	C4—H4B	0.9900
N1C5	1.4734 (19)	C5—H5A	0.9900
N1—C1	1.4782 (19)	С5—Н5В	0.9900
C1—C2	1.527 (2)	C6—C7	1.561 (2)
C1—H1A	0.9900	С7—С8	1.562 (2)
C1—H1B	0.9900	C8—C9	1.499 (2)
C2—C3	1.529 (2)	C9—H9D	0.9800
C2—H2A	0.9900	С9—Н9С	0.9800
C2—H2B	0.9900	С9—Н9В	0.9800
C3—C4	1.522 (2)		
C6—N1—C5	118.90 (12)	H4A—C4—H4B	108.2
C6—N1—C1	127.81 (13)	N1C5C4	109.73 (13)
C5—N1—C1	112.57 (12)	N1—C5—H5A	109.7
N1-C1-C2	110.19 (12)	C4—C5—H5A	109.7
N1—C1—H1A	109.6	N1—C5—H5B	109.7
C2—C1—H1A	109.6	C4—C5—H5B	109.7
N1—C1—H1B	109.6	H5A—C5—H5B	108.2
C2—C1—H1B	109.6	O1—C6—N1	123.93 (14)

supporting information

108.1	O1—C6—C7	119.03 (13)
111.45 (13)	N1—C6—C7	117.04 (12)
109.3	C6—C7—C8	116.30 (12)
109.3	C6—C7—C11	108.20 (10)
109.3	C8—C7—C11	111.13 (11)
109.3	C6—C7—C12	108.94 (10)
108.0	C8—C7—C12	103.51 (10)
110.58 (13)	Cl1—C7—Cl2	108.45 (8)
109.5	O2—C8—C9	124.54 (14)
109.5	O2—C8—C7	120.38 (14)
109.5	C9—C8—C7	115.07 (13)
109.5	C8—C9—H9D	109.5
108.1	С8—С9—Н9С	109.5
110.03 (14)	H9D—C9—H9C	109.5
109.7	С8—С9—Н9В	109.5
109.7	H9D—C9—H9B	109.5
109.7	H9C—C9—H9B	109.5
109.7		
	108.1 111.45 (13) 109.3 109.3 109.3 109.3 109.3 108.0 110.58 (13) 109.5 109.5 109.5 109.5 108.1 110.03 (14) 109.7 109.7 109.7	108.1 $O1-C6-C7$ $111.45(13)$ $N1-C6-C7$ 109.3 $C6-C7-C8$ 109.3 $C6-C7-C11$ 109.3 $C8-C7-C11$ 109.3 $C6-C7-C12$ 109.3 $C6-C7-C12$ 109.3 $C6-C7-C12$ 109.3 $C6-C7-C12$ 108.0 $C8-C7-C12$ 109.5 $O2-C8-C9$ 109.5 $O2-C8-C7$ 109.5 $C9-C8-C7$ 109.5 $C9-C8-C7$ 109.5 $C8-C9-H9D$ 108.1 $C8-C9-H9C$ $110.03(14)$ $H9D-C9-H9C$ 109.7 $C8-C9-H9B$ 109.7 $H9C-C9-H9B$ 109.7 $H9C-C9-H9B$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
C1—H1A···O1 ⁱ	0.99	2.56	3.413 (2)	145
C9—H9 <i>C</i> ···O1 ⁱ	0.98	2.53	3.494 (2)	168
С9—H9 <i>C</i> …Cl1 ⁱⁱ	0.98	2.79	3.770 (2)	176

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+2; (ii) *x*-1, *y*, *z*.