

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of $bis(\eta^5$ -cyclopentadienvl)(2,3-diethylbutane-1,4-diyl)hafnium(IV)

Vladimir V. Burlakov,^a Wolfgang Baumann,^b Perdita Arndt,^b Anke Spannenberg^b and Uwe Rosenthal^{b*}

^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St 28, 119991 Moscow, Russia, and ${}^{\mathbf{b}}\!Leibniz-Institut$ für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany. *Correspondence e-mail: uwe.rosenthal@catalysis.de

Received 26 November 2014: accepted 8 December 2014

Edited by H. Ishida, Okayama University, Japan

The title compound, $[Hf(C_5H_5)_2(C_8H_{16})]$, proves a structural motif of hafnacyclopentane besides the coordination of two cyclopentadienyl ligands in an η^5 -fashion. The hafnacyclopentane ring has a twist conformation and is substituted by two ethyl groups in the β , β' -positions, which are *trans* orientated to each other. One cyclopentadienyl ring and one ethyl group are each disordered over two positions with siteoccupancy ratios of 0.679 (15):0.321 (15) and 0.702 (18): 0.298 (18), respectively.

Keywords: crystal structure; hafnocene; five-membered metallacycle.

CCDC reference: 1038060

1. Related literature

For crystal structures of unsubstituted metallacyclopentane complexes of group 4 metallocenes, see: Beweries, Fischer et al. (2009); Mansel et al. (1997); Takahashi et al. (1996); Klahn et al. (2009); McGovern et al. (2012); Lee et al. (1999). For crystal structures of 2,4-phenylsubstituted metallacyclopentane complexes of group 4 metallocenes, see: Beweries, Burlakov et al. (2009); Mansel et al. (1997).

 $M_r = 420.88$

2. Experimental 2.1. Crystal data [Hf(C5H5)2(C8H16)]

OPEN access

Monoclinic, $P2_1/c$ a = 12.7055 (6) Å b = 15.5909 (5) Å c = 8.1035 (3) Å $\beta = 93.982 \ (3)^{\circ}$ $V = 1601.35 (11) \text{ Å}^3$

2.2. Data collection

Stoe IPDS II diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe
& Cie, 2005)
$T_{\min} = 0.157, T_{\max} = 0.361$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.069$ S = 1.153679 reflections 193 parameters

64 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 1.51 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -1.55 \text{ e } \text{\AA}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014.

Z = 4

Mo $K\alpha$ radiation

 $0.50 \times 0.48 \times 0.15~\text{mm}$

25548 measured reflections

3679 independent reflections 3120 reflections with $I > 2\sigma(I)$

 $\mu = 6.50 \text{ mm}^-$

T = 200 K

 $R_{\rm int} = 0.033$

Acknowledgements

We would like to thank our technical and analytical staff for assistance. Financial support by the Deutsche Forschungsgemeinschaft (RO 1269/9-1) and the Russian Foundation for Basic Research (project code 12-03-00036-a) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5384).

References

- Beweries, T., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2009). Eur. J. Inorg. Chem. pp. 1456-1459.
- Beweries, T., Fischer, C., Peitz, S., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A., Heller, D. & Rosenthal, U. (2009). J. Am. Chem. Soc. 131, 4463-4469.

Klahn, M., Baumann, W., Arndt, P., Burlakov, V. V., Schareina, T., Spannenberg, A. & Rosenthal, U. (2009). Organometallics, 28, 915-918.

- Lee, L. W. M., Piers, W. E., Parvez, M., Rettig, S. J. & Young, V. G. Jr (1999). Organometallics, 18, 3904-3912.
- Mansel, S., Thomas, D., Lefeber, C., Heller, D., Kempe, R., Baumann, W. & Rosenthal, U. (1997). Organometallics, 16, 2886-2890.
- McGovern, G. P., Hung-Low, F., Tye, J. W. & Bradley, C. A. (2012). Organometallics, 31, 3865-3879.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Takahashi, T., Fischer, R., Xi, Z. & Nakajima, K. (1996). Chem. Lett. pp. 357-358.

supporting information

Acta Cryst. (2015). E71, m7 [https://doi.org/10.1107/S2056989014026929]

Crystal structure of bis(η^5 -cyclopentadienyl)(2,3-diethylbutane-1,4-diyl)hafnium(IV)

Vladimir V. Burlakov, Wolfgang Baumann, Perdita Arndt, Anke Spannenberg and Uwe Rosenthal

S1. Synthesis and crystallization

A suspension of Cp₂HfCl₂ (2.243 g, 5.91 mmol) in 20 ml of toluene was treated with 7.5 ml (12.0 mmol) of a 1.6 M solution of *n*-BuLi in *n*-hexane. The mixture was stirred for 30 minutes at room temperature. After filtration bis(trimethylsilyl)acetylene (1.5 ml, 6.67 mmol) and pyridine (0.60 ml, 7.45 mmol) were added to the resulting yellow solution. The reaction mixture was stirred 3.5 hours at 100 °C. All volatiles were evaporated from the dark purple solution and the residue was extracted with 40–50 ml of *n*-hexane at 55 °C. The solution was filtered, concentrated in vacuum to 10–15 ml and stored at -78° C. After one day dark purple crystals had formed which were isolated by decanting of the mother liquor, washed with cold *n*-hexane and dried in vacuum to give a mixture of the alkyne complex Cp₂Hf(η^{2} -Me₃SiC₂SiMe₃)(py) and the title compound in a ratio of 2:1 (checked by NMR). After recrystallization from *n*-hexane brown crystals of the title complex were isolated: 0,120 g, yield: 5 %. Anal. Calcd. for C₁₈H₂₆Hf (420.89 g·mol⁻¹): C 51.37, H 6.23%. Found: C 50.99, H 6.03%.

Single Crystals were obtained from a saturated solution (*n*-hexane) at ambient temperature.

S2. Refinement

H atoms were placed in idealized positions with d(C-H) = 0.95-1.00 Å (CH), 0.99 Å (CH₂) and 0.98 Å (CH₃), and refined using a riding model with $U_{iso}(H)$ fixed at 1.2 $U_{eq}(C)$ for CH and CH₂ and 1.5 $U_{eq}(C)$ for CH₃. SADI and SAME instructions were used to improve the geometry of the cyclopentadienyl rings. Additionally, the anisotropic displacement parameters of C6A–C10A were restrained to be equal (*SIMU*). SADI was used for the disordered ethyl group. For the ethyl group C15, C16 the use of *DFIX* was necessary due to unresolved disorder. Atoms of the disordered ethyl group and the minor occupied atoms of the disordered cyclopentadienyl ring are refined isotropically. The highest peak in the final difference Fourier map is located 1.36 Å from C13 and the deepest hole 0.83 Å from C3.

Figure 1

Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 30% probability level. H atoms have been omitted for clarity.

 $Bis(\eta^5$ -cyclopentadienyl)(2,3-diethylbutane-1,4-diyl)hafnium(IV)

Crystal data

[Hf(C₅H₅)₂(C₈H₁₆)] $M_r = 420.88$ Monoclinic, $P2_1/c$ a = 12.7055 (6) Å b = 15.5909 (5) Å c = 8.1035 (3) Å $\beta = 93.982$ (3)° V = 1601.35 (11) Å³ Z = 4

Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (*X-SHAPE* and *X-RED32*; Stoe & Cie, 2005) $T_{\min} = 0.157, T_{\max} = 0.361$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.069$ F(000) = 824 $D_x = 1.746 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7164 reflections $\theta = 2.0-29.6^{\circ}$ $\mu = 6.50 \text{ mm}^{-1}$ T = 200 KPrism, colourless $0.50 \times 0.48 \times 0.15 \text{ mm}$

25548 measured reflections 3679 independent reflections 3120 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -16 \rightarrow 16$ $k = -20 \rightarrow 20$ $l = -10 \rightarrow 10$

S = 1.153679 reflections 193 parameters 64 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0254P)^{2} + 4.0826P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.51 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.55 \text{ e } \text{Å}^{-3}$

Special details

Experimental. ¹H NMR (400 MHz, C₆D₆, 297 K): 0.30 (dd, 2H, Hf-CH₂); 1.02 (t, 6H, CH₃); 1.14 (m, 2H, CH₂); 1.18 (dd, 2H, Hf-CH₂); 1.60 (m, 2H, CH); 1.78 (m, 2H, CH₂); 5.79 (s, 10H, Cp).

¹³C NMR (100 MHz, C₆D₆, 297 K): 11.0 (CH₃); 31.7 (CH₂), 45.8 (CH), 50.9 (Hf-CH₂), 110.8 (Cp).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.8579 (5)	0.5055 (4)	-0.1657 (8)	0.0641 (18)	
H1	0.9276	0.5267	-0.1441	0.077*	
C2	0.8303 (6)	0.4204 (4)	-0.1904 (8)	0.073 (2)	
H2	0.8773	0.3729	-0.1868	0.088*	
C3	0.7219 (6)	0.4168 (4)	-0.2213 (8)	0.072 (2)	
H3	0.6814	0.3665	-0.2439	0.087*	
C4	0.6830 (5)	0.4995 (4)	-0.2133 (8)	0.0659 (19)	
H4	0.6110	0.5157	-0.2296	0.079*	
C5	0.7669 (4)	0.5545 (4)	-0.1778 (8)	0.0593 (17)	
Н5	0.7628	0.6149	-0.1641	0.071*	
C6A	0.6598 (9)	0.3385 (6)	0.1957 (12)	0.063 (2)	0.679 (15)
H6A	0.5865	0.3318	0.1671	0.075*	0.679 (15)
C7A	0.7430 (9)	0.3033 (6)	0.1132 (12)	0.063 (2)	0.679 (15)
H7A	0.7356	0.2671	0.0189	0.075*	0.679 (15)
C8A	0.8388 (9)	0.3302 (6)	0.1926 (13)	0.064 (2)	0.679 (15)
H8A	0.9072	0.3168	0.1596	0.077*	0.679 (15)
C9A	0.8161 (8)	0.3803 (6)	0.3292 (12)	0.063 (2)	0.679 (15)
H9A	0.8660	0.4058	0.4072	0.076*	0.679 (15)
C10A	0.7060 (8)	0.3858 (6)	0.3289 (11)	0.062 (2)	0.679 (15)
H10A	0.6685	0.4167	0.4070	0.074*	0.679 (15)
C6B	0.6940 (15)	0.3112 (15)	0.115 (3)	0.058 (6)*	0.321 (15)
H6B	0.6423	0.2903	0.0350	0.070*	0.321 (15)
C7B	0.8033 (15)	0.3073 (12)	0.111 (2)	0.045 (5)*	0.321 (15)
H7B	0.8393	0.2798	0.0267	0.054*	0.321 (15)
C8B	0.8529 (15)	0.3498 (17)	0.248 (3)	0.069 (8)*	0.321 (15)
H8B	0.9266	0.3577	0.2704	0.083*	0.321 (15)
C9B	0.7724 (19)	0.3784 (16)	0.345 (3)	0.064 (7)*	0.321 (15)
H9B	0.7815	0.4092	0.4464	0.077*	0.321 (15)
C10B	0.6771 (17)	0.353 (2)	0.265 (3)	0.085 (9)*	0.321 (15)
H10B	0.6098	0.3627	0.3063	0.102*	0.321 (15)
C11	0.6206 (5)	0.5450 (4)	0.1446 (9)	0.0581 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11A	0.5699	0.5547	0.0481	0.070*	
H11B	0.5828	0.5167	0.2326	0.070*	
C12	0.6663 (5)	0.6305 (4)	0.2073 (9)	0.0670 (18)	
H12	0.6837	0.6629	0.1062	0.080*	
C13	0.7739 (4)	0.6145 (3)	0.3070 (7)	0.0437 (12)	
H13A	0.7572	0.5775	0.4026	0.052*	0.702 (18)
H13B	0.7510	0.5680	0.3816	0.052*	0.298 (18)
C14	0.8524 (5)	0.5617 (4)	0.2094 (8)	0.0505 (14)	
H14A	0.9068	0.5346	0.2859	0.061*	
H14B	0.8878	0.5989	0.1312	0.061*	
C15	0.5878 (6)	0.6866 (4)	0.2924 (8)	0.074 (2)	
H15A	0.6193	0.7438	0.3149	0.089*	
H15B	0.5235	0.6943	0.2177	0.089*	
C16	0.5580 (7)	0.6471 (5)	0.4531 (8)	0.083 (2)	
H16A	0.5294	0.5895	0.4317	0.125*	
H16B	0.5047	0.6829	0.5013	0.125*	
H16C	0.6207	0.6434	0.5303	0.125*	
C17A	0.8212 (6)	0.6962 (5)	0.3831 (12)	0.048 (2)*	0.702 (18)
H17A	0.7703	0.7219	0.4560	0.057*	0.702 (18)
H17B	0.8324	0.7378	0.2937	0.057*	0.702 (18)
C18A	0.9256 (7)	0.6813 (6)	0.4832 (12)	0.056 (3)*	0.702 (18)
H18A	0.9522	0.7360	0.5290	0.083*	0.702 (18)
H18B	0.9148	0.6412	0.5737	0.083*	0.702 (18)
H18C	0.9770	0.6571	0.4113	0.083*	0.702 (18)
C17B	0.8322 (14)	0.6707 (13)	0.4368 (19)	0.051 (6)*	0.298 (18)
H17C	0.8474	0.6334	0.5345	0.061*	0.298 (18)
H17D	0.7802	0.7136	0.4696	0.061*	0.298 (18)
C18B	0.9336 (15)	0.7204 (14)	0.415 (3)	0.060 (7)*	0.298 (18)
H18D	0.9545	0.7514	0.5170	0.090*	0.298 (18)
H18E	0.9897	0.6804	0.3893	0.090*	0.298 (18)
H18F	0.9217	0.7614	0.3237	0.090*	0.298 (18)
Hf1	0.75401 (2)	0.46108 (2)	0.07167 (2)	0.03553 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.057 (4)	0.096 (5)	0.042 (3)	-0.001 (4)	0.019 (3)	0.012 (3)
C2	0.102 (6)	0.078 (5)	0.044 (4)	0.023 (5)	0.027 (4)	-0.001 (3)
C3	0.124 (7)	0.049 (4)	0.045 (4)	-0.030 (4)	0.013 (4)	-0.013 (3)
C4	0.054 (4)	0.097 (5)	0.046 (4)	0.007 (4)	-0.001 (3)	0.022 (4)
C5	0.075 (4)	0.056 (4)	0.048 (3)	-0.005 (3)	0.015 (3)	0.019 (3)
C6A	0.090 (5)	0.047 (3)	0.052 (3)	-0.007(3)	0.008 (3)	0.013 (2)
C7A	0.090 (5)	0.045 (3)	0.053 (3)	-0.004 (3)	0.007 (3)	0.011 (2)
C8A	0.091 (5)	0.047 (3)	0.054 (3)	-0.001 (3)	0.006 (3)	0.012 (2)
C9A	0.090 (5)	0.048 (3)	0.051 (3)	-0.002 (3)	0.006 (3)	0.014 (2)
C10A	0.089 (5)	0.048 (3)	0.050 (3)	-0.005 (3)	0.009 (3)	0.014 (2)
C11	0.050 (3)	0.065 (4)	0.060 (4)	0.000 (3)	0.014 (3)	-0.014 (3)
C12	0.070 (4)	0.067 (4)	0.066 (4)	0.013 (4)	0.016 (3)	0.005 (3)

supporting information

C13	0.055 (3)	0.037 (2)	0.039 (3)	0.010 (2)	0.001 (2)	-0.003 (2)
C14	0.046 (3)	0.050 (3)	0.057 (4)	-0.004 (2)	0.015 (3)	-0.014 (3)
C15	0.072 (5)	0.076 (5)	0.075 (5)	0.010 (4)	0.011 (4)	0.007 (4)
C16	0.109 (7)	0.083 (5)	0.058 (5)	0.005 (5)	0.005 (4)	-0.005 (4)
Hf1	0.04715 (12)	0.03087 (10)	0.02962 (10)	-0.00094 (11)	0.01014 (7)	-0.00135 (9)

Geometric parameters (Å, °)

C1—C2	1.383 (4)	C8B—H8B	0.9500
C1—C5	1.384 (4)	C9B—C10B	1.390 (17)
C1—Hf1	2.505 (6)	C9B—Hf1	2.56 (3)
C1—H1	0.9500	С9В—Н9В	0.9500
C2—C3	1.383 (4)	C10B—Hf1	2.54 (3)
C2—Hf1	2.477 (6)	C10B—H10B	0.9500
С2—Н2	0.9500	C11—C12	1.527 (9)
C3—C4	1.383 (4)	C11—Hf1	2.253 (6)
C3—Hf1	2.478 (6)	C11—H11A	0.9900
С3—Н3	0.9500	C11—H11B	0.9900
C4—C5	1.383 (4)	C12—C15	1.526 (2)
C4—Hf1	2.493 (6)	C12—C13	1.560 (9)
C4—H4	0.9500	C12—H12	1.0000
C5—Hf1	2.506 (6)	C13—C17A	1.521 (8)
С5—Н5	0.9500	C13—C17B	1.522 (8)
C6A—C10A	1.401 (5)	C13—C14	1.552 (7)
C6A—C7A	1.402 (5)	С13—Н13А	1.0000
C6A—Hfl	2.502 (9)	C13—H13B	1.0000
С6А—Н6А	0.9500	C14—Hf1	2.253 (6)
C7A—C8A	1.401 (5)	C14—H14A	0.9900
C7A—Hf1	2.488 (10)	C14—H14B	0.9900
С7А—Н7А	0.9500	C15—C16	1.511 (2)
C8A—C9A	1.401 (5)	C15—H15A	0.9900
C8A—Hf1	2.478 (10)	C15—H15B	0.9900
C8A—H8A	0.9500	C16—H16A	0.9800
C9A—C10A	1.401 (5)	C16—H16B	0.9800
C9A—Hf1	2.517 (10)	C16—H16C	0.9800
С9А—Н9А	0.9500	C17A—C18A	1.524 (10)
C10A—Hf1	2.504 (9)	C17A—H17A	0.9900
C10A—H10A	0.9500	C17A—H17B	0.9900
C6B—C7B	1.392 (16)	C18A—H18A	0.9800
C6B—C10B	1.410 (17)	C18A—H18B	0.9800
C6B—Hf1	2.49 (2)	C18A—H18C	0.9800
C6B—H6B	0.9500	C17B—C18B	1.524 (10)
C7B—C8B	1.404 (17)	C17B—H17C	0.9900
C7B—Hf1	2.492 (18)	C17B—H17D	0.9900
С7В—Н7В	0.9500	C18B—H18D	0.9800
C8B—C9B	1.407 (17)	C18B—H18E	0.9800
C8B—Hf1	2.53 (3)	C18B—H18F	0.9800

C2—C1—C5	108.5 (5)	C17A—C13—H13A	105.5
C2—C1—Hf1	72.8 (4)	C14—C13—H13A	105.5
C5—C1—Hf1	74.0 (3)	С12—С13—Н13А	105.5
C2—C1—H1	125.7	C17B—C13—H13B	98.5
С5—С1—Н1	125.7	C14—C13—H13B	98.5
Hf1—C1—H1	119.2	C12—C13—H13B	98.5
C1-C2-C3	107.7 (6)	C13-C14-Hf1	105.5 (4)
C1-C2-Hf1	75.0 (4)	C13-C14-H14A	110.6
$C_3 - C_2 - Hfl$	73 8 (4)	Hf1-C14-H14A	110.6
C1-C2-H2	126.1	C_{13} — C_{14} — H_{14B}	110.6
C_{3} C_{2} H_{2}	126.1	Hf1 - C14 - H14B	110.6
$H_1 = C_2 = H_2$	117.1	H14A - C14 - H14B	108.8
C4-C3-C2	108.0(5)	C_{16} C_{15} C_{12}	111.5 (6)
C4 - C3 - Hfl	744(4)	C_{16} C_{15} H_{15A}	109.3
$C_2 = C_3 = Hfl$	73.8(4)	C_{12} C_{15} H_{15A}	109.3
$C_2 = C_3 = H_3$	126.0	C16-C15-H15B	109.3
$C_2 C_3 H_3$	126.0	C12 C15 H15B	109.3
$U_2 = U_3 = U_3$	120.0	H15A C15 H15B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.0
$C_3 = C_4 = C_3$	106.4(3)	C15 - C16 - H16A	109.5
$C_5 = C_4 = H_1$	75.5 (4)		109.5
$C_3 = C_4 = H_1$	74.5 (5) 125 9	HI0A - CI0 - HI0B	109.5
$C_3 = C_4 = H_4$	125.8		109.5
	125.8	H10A - C10 - H10C	109.5
HfI - C4 - H4	118.4	H16B - C16 - H16C	109.5
C4—C5—C1	107.4 (5)	C13—C17A—C18A	113.1 (7)
C4—C5—Hfl	73.4 (3)		109.0
Cl—C5—Hfl	73.9 (3)		109.0
C4—C5—H5	126.3	С13—С17А—Н17В	109.0
C1—C5—H5	126.3	C18A—C17A—H17B	109.0
Hf1—C5—H5	118.4	H17A—C17A—H17B	107.8
C10A—C6A—C7A	106.4 (8)	C17A—C18A—H18A	109.5
C10A—C6A—Hf1	73.8 (5)	C17A—C18A—H18B	109.5
C7A—C6A—Hf1	73.1 (6)	H18A—C18A—H18B	109.5
C10A—C6A—H6A	126.8	C17A—C18A—H18C	109.5
С7А—С6А—Н6А	126.8	H18A—C18A—H18C	109.5
Hf1—C6A—H6A	118.4	H18B—C18A—H18C	109.5
C8A—C7A—C6A	108.9 (8)	C13—C17B—C18B	125.9 (14)
C8A—C7A—Hfl	73.2 (6)	C13—C17B—H17C	105.8
C6A—C7A—Hfl	74.2 (5)	C18B—C17B—H17C	105.8
С8А—С7А—Н7А	125.5	C13—C17B—H17D	105.8
С6А—С7А—Н7А	125.5	C18B—C17B—H17D	105.8
Hfl—C7A—H7A	118.8	H17C—C17B—H17D	106.2
C9A—C8A—C7A	108.0 (8)	C17B—C18B—H18D	109.5
C9A—C8A—Hf1	75.2 (5)	C17B—C18B—H18E	109.5
C7A—C8A—Hf1	74.0 (6)	H18D—C18B—H18E	109.5
С9А—С8А—Н8А	126.0	C17B—C18B—H18F	109.5
С7А—С8А—Н8А	126.0	H18D—C18B—H18F	109.5
Hf1—C8A—H8A	116.8	H18E—C18B—H18F	109.5

C10A—C9A—C8A	107.0 (8)	C11—Hf1—C14	82.4 (2)
C10A—C9A—Hfl	73.3 (5)	C11—Hf1—C2	136.1 (3)
C8A—C9A—Hf1	72.2 (5)	C14—Hf1—C2	111.5 (2)
С10А—С9А—Н9А	126.5	C11—Hf1—C8A	133.6 (3)
C8A—C9A—H9A	126.5	C14—Hf1— $C8A$	99.6 (3)
Hf1 - C9A - H9A	119.9	C_2 —Hfl—C8A	867(3)
C9A - C10A - C6A	109.6 (8)	C_11 —Hf1—C3	109.7(3)
C_{0A} C_{10A} H_{f1}	74.3 (5)	C_{14} Hf1 C_{3}	105.7(2) 135.8(2)
C6A = C10A = Hf1	73.7(5)	C_2 Hfl C_3	133.0(2) 32 41 (9)
$C_{0A} = C_{10A} = H_{10A}$	125.2	C_2 H_{f1} C_2	32.41(3)
C_{A} C_{IOA} H_{IOA}	125.2	C_{0A} H_{11} C_{2A}	100.8(3)
COA = CIOA = HIOA	123.2	C14 $UE C74$	119.2(3)
HII—CIUA—HIUA	118.0	C14—HII— C/A	131.0(3)
C/B—C6B—C10B	104.8 (16)	C2—HfI—C/A	83.8 (3)
C/B—C6B—Hfl	73.8 (11)	C8A—HfI—C/A	32.78 (13)
C10B—C6B—Hf1	75.8 (15)	C3—Hf1—C7A	81.2 (3)
C7B—C6B—H6B	127.6	C11—Hf1—C6B	105.3 (5)
C10B—C6B—H6B	127.6	C14—Hf1—C6B	138.4 (5)
Hf1—C6B—H6B	115.4	C2—Hf1—C6B	91.3 (6)
C6B—C7B—C8B	110.6 (15)	C3—Hf1—C6B	81.0 (5)
C6B—C7B—Hfl	73.7 (12)	C11—Hf1—C7B	135.4 (4)
C8B—C7B—Hf1	75.1 (13)	C14—Hf1—C7B	118.7 (5)
С6В—С7В—Н7В	124.7	C2—Hf1—C7B	75.7 (4)
C8B—C7B—H7B	124.7	C3—Hf1—C7B	83.0 (4)
Hf1—C7B—H7B	118.2	C6B—Hf1—C7B	32.4 (4)
C7B—C8B—C9B	106.8 (15)	C11—Hf1—C4	82.7 (2)
C7B—C8B—Hfl	72.5 (12)	C14—Hf1—C4	116.4 (2)
C9B—C8B—Hf1	75.3 (14)	C2—Hf1—C4	53.5 (2)
C7B—C8B—H8B	126.6	C8A—Hf1—C4	133.1 (3)
C9B—C8B—H8B	126.6	C3—Hf1—C4	32.30 (9)
Hf1—C8B—H8B	117.7	C7A—Hf1—C4	110.0(3)
C10B-C9B-C8B	107.0 (15)	C6B—Hf1—C4	105.2(5)
C10B - C9B - Hf1	73 5 (15)	C7B—Hf1—C4	100.2(0) 1149(4)
C8B C9B Hf1	73.5(13) 72 5 (14)	C_{11} H_{f1} C_{f4}	870(3)
CIOR COR HOR	126.5	C_{14} Hf1 C_{64}	1267(3)
$C_{AB} = C_{AB} = H_{AB}$	126.5	$C_1 = H_1 = C_0 A$	120.7(3)
LET COR HOR	110 /	$C_2 = H_1 = C_0 A$	54.5(3)
HII - C9B - H9B	119.4	C_{0A} H_{1} C_{0A}	34.3(3)
$C_{9}B$ $-C_{10}D$ U_{5}	110.7(10)	C_{2}	90.9(3)
C9B—C10B—HII	74.9 (15)	C/A—HII—C6A	32.62 (13)
CoB-CloB-HI	/1./(14)	C4—HII—C6A	113.8 (3)
C9B—C10B—H10B	124.7	CII—HfI—CI0A	79.8 (3)
C6B—C10B—H10B	124.7	C14—Hf1—C10A	94.2 (3)
Hf1—C10B—H10B	120.3	C2—Hf1—C10A	136.5 (3)
C12—C11—Hf1	108.6 (4)	C8A—Hf1—C10A	53.8 (3)
C12—C11—H11A	110.0	C3—Hf1—C10A	129.3 (3)
Hf1—C11—H11A	110.0	C7A—Hf1—C10A	53.5 (3)
C12—C11—H11B	110.0	C4—Hf1—C10A	142.2 (3)
Hf1—C11—H11B	110.0	C6A—Hf1—C10A	32.51 (13)
H11A—C11—H11B	108.3	C11—Hf1—C1	119.2 (2)

supporting information

C15—C12—C11	113.9 (6)	C14—Hf1—C1	83.3 (2)
C15—C12—C13	115.7 (6)	C2—Hf1—C1	32.22 (9)
C11—C12—C13	109.4 (5)	C8A—Hf1—C1	107.1 (3)
C15—C12—H12	105.6	C3—Hf1—C1	53.3 (2)
C11—C12—H12	105.6	C7A—Hf1—C1	114.5 (3)
C13—C12—H12	105.6	C6B—Hf1—C1	123.4 (6)
C17A—C13—C14	113.7 (5)	C7B—Hf1—C1	102.9 (4)
C17B—C13—C14	111.0 (9)	C4—Hf1—C1	53.0 (2)
C17A—C13—C12	112.5 (5)	C6A—Hf1—C1	144.3 (3)
C17B—C13—C12	129.3 (10)	C10A—Hf1—C1	160.1 (3)
C14—C13—C12	113.1 (5)		
C5—C1—C2—C3	1.2 (8)	C10B—C6B—C7B—Hf1	-70.1 (18)
Hf1-C1-C2-C3	67.1 (5)	C6B—C7B—C8B—C9B	2 (3)
C5—C1—C2—Hf1	-66.0 (5)	Hf1-C7B-C8B-C9B	68.1 (18)
C1—C2—C3—C4	-0.8 (8)	C6B—C7B—C8B—Hf1	-65.7 (15)
Hf1—C2—C3—C4	67.2 (5)	C7B-C8B-C9B-C10B	0 (3)
C1—C2—C3—Hf1	-67.9 (5)	Hf1-C8B-C9B-C10B	66 (2)
C2—C3—C4—C5	0.0 (8)	C7B-C8B-C9B-Hf1	-66.1 (16)
Hf1—C3—C4—C5	66.7 (5)	C8B-C9B-C10B-C6B	-2 (3)
C2—C3—C4—Hf1	-66.7 (5)	Hf1-C9B-C10B-C6B	63 (2)
C3—C4—C5—C1	0.7 (7)	C8B-C9B-C10B-Hf1	-65.3 (19)
Hf1—C4—C5—C1	66.6 (4)	C7B—C6B—C10B—C9B	3 (3)
C3—C4—C5—Hfl	-66.0 (5)	Hf1-C6B-C10B-C9B	-65 (2)
C2-C1-C5-C4	-1.2 (7)	C7B-C6B-C10B-Hf1	68.7 (15)
Hf1—C1—C5—C4	-66.3 (4)	Hf1-C11-C12-C15	-168.5 (5)
C2-C1-C5-Hf1	65.2 (5)	Hf1-C11-C12-C13	-37.3 (6)
C10A—C6A—C7A—C8A	-1.3 (11)	C15—C12—C13—C17A	-46.1 (8)
Hf1—C6A—C7A—C8A	65.5 (7)	C11—C12—C13—C17A	-176.3 (6)
C10A—C6A—C7A—Hf1	-66.8 (6)	C15—C12—C13—C17B	-28.1 (13)
C6A—C7A—C8A—C9A	2.0 (11)	C11—C12—C13—C17B	-158.3 (10)
Hfl—C7A—C8A—C9A	68.2 (7)	C15-C12-C13-C14	-176.6 (5)
C6A—C7A—C8A—Hfl	-66.2 (7)	C11—C12—C13—C14	53.2 (7)
C7A—C8A—C9A—C10A	-1.8 (11)	C17A—C13—C14—Hf1	-169.1 (5)
Hf1—C8A—C9A—C10A	65.5 (7)	C17B-C13-C14-Hf1	166.4 (10)
C7A—C8A—C9A—Hf1	-67.3 (7)	C12-C13-C14-Hfl	-39.2 (6)
C8A—C9A—C10A—C6A	1.0 (11)	C11-C12-C15-C16	67.2 (9)
Hf1—C9A—C10A—C6A	65.8 (6)	C13—C12—C15—C16	-60.9 (9)
C8A—C9A—C10A—Hf1	-64.8 (7)	C17B—C13—C17A—C18A	37.4 (19)
C7A—C6A—C10A—C9A	0.2 (10)	C14—C13—C17A—C18A	-50.7 (10)
Hf1—C6A—C10A—C9A	-66.2 (7)	C12—C13—C17A—C18A	179.1 (7)
C7A—C6A—C10A—Hf1	66.4 (7)	C17A—C13—C17B—C18B	-61 (2)
C10B—C6B—C7B—C8B	-4 (3)	C14—C13—C17B—C18B	40 (3)
Hf1-C6B-C7B-C8B	66.6 (16)	C12-C13-C17B-C18B	-109 (2)