COMMUNICATIONS

Received 25 November 2014
Accepted 11 December 2014

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; 4,4'-(ethane-1,2-diyl)bis(2,6-dibromoaniline); framework structures

CCDC reference: 1038844
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 4,4'-(ethane-1,2-diyl)bis(2,6-dibromoaniline)

Ines Hauptvogel, Wilhelm Seichter and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany. *Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{~N}_{2}$, the molecule lies across an inversion center and hence the benzene rings are strictly coplanar. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, forming a twodimensional network parallel to (101). In addition, type II $\mathrm{Br} \cdots \mathrm{Br}$ interactions [3.625 (4) Å] complete a three-dimensional supramolecular network.

1. Chemical context

Spacer-type compounds are vital for the generation of a variety of framework structures including metal organic (MOF) (MacGillivray, 2010), hydrogen-bonded (HBN) (Elemans et al., 2009) or covalent organic (COF) (El-Kaden et al., 2007) network species. The title compound is an intermediate substance of a corresponding synthesis of a corresponding spacer molecule. Moreover, tecton-like molecules having terminally attached interacting sites are interesting building blocks in the field of organic crystal engineering (Tiekink et al., 2010), in particular involving potentially competitive groups, in itself forming hydrogen bonds (Braga \& Crepioni, 2004) or halogen contacts (Awwadi et al., 2006; Metrangolo \& Resnati, 2008) by preference in the crystal state. Such a test case is given with the oligobromoaminocontaining title compound.

2. Structural commentary

The title molecule lies across an inversion center and hence the benzene rings are strictly coplanar (Fig. 1). The confor-

Figure 1
The molecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level. Unlabeled atoms are related by the symmetry operator $(-x+1,-y+2,-z)$.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.88(2)$	$2.45(3)$	$3.206(4)$	$145(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.88(2)$	$3.03(3)$	$3.521(4)$	$117(2)$

Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
mation of the molecular backbone agrees well with those found in the structure of 1,2-biphenylethane (Harada \& Ogawa, 2001) and a great number of its ring-substituted derivatives (Kahr et al., 1995; Moorthy et al., 2005). The Csp3 $C s p^{3}$ and $\mathrm{Csp}^{3}-\mathrm{Csp}^{2}$ bond lengths of 1.535 (6) and 1.514 (4) \AA are in the normal range.

3. Supramolecular features

The amino group hydrogen atoms take part in molecular association (Table 1) by forming conventional $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Jeffrey, 1997, see Table 1) and weak N$\mathrm{H} \cdots \mathrm{Br}$ contacts (Desiraju \& Steiner, 1999) resulting in the formation of a layer structure parallel to (101) (Fig. 2). Interlayer association is accomplished by type II, $\mathrm{Br} \cdots \mathrm{Br}$ contacts [3.625 (4) $\AA, \theta_{1}=109.7$ (2), $\theta_{2}=150.7$ (2) ${ }^{\circ}$] (Awwadi et al., 2006; Metrangolo \& Resnati, 2008).

4. Synthesis and crystallization

In an imitation of a described procedure (Berger et al., 1998) preparation of the title compound was achieved by a bromination reaction of a solution of $4,4^{\prime}$-diaminobiphenyl (10.0 g , 47.14 mmol) in glacial acetic acid (760 ml) using bromine ($30.3 \mathrm{~g}, 0.19 \mathrm{~mol}$, dissolved in 40 ml glacial acetic acid). After

Figure 2
Part of the crystal structure viewed along the b axis. N atoms are displayed as blue and Br atoms as violet circles. Hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ contacts are shown as dashed lines.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{~N}_{2}$
M_{r}	527.86
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	153
$a, b, c(\AA)$	$8.1219(4), 4.4962(2), 21.5327(9)$
$\beta\left({ }^{\circ}\right)$	$96.706(3)$
$V\left(\AA^{3}\right)$	$780.95(6)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	10.30
Crystal size (mm)	$0.30 \times 0.20 \times 0.08$
Data collection	Bruker APEXII CCD area
Diffractometer	detector
	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2007)$
	$0.148,0.493$
$T_{\text {min }}, T_{\text {max }}$	$6211,1356,1213$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.034
$R_{\text {int }}$	0.597
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.023,0.057,1.05$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	1356
No. of reflections	99
No. of parameters	2
No. of restraints	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.52,-0.29$

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
having stirred for 2 h at room temperature, water was added to the mixture. The raw product which precipitated was collected, washed with water and treated with boiling glacial acetic acid to yield $19.6 \mathrm{~g}(79 \%)$ of a greenish powder. Slow crystallization from toluene gave colourless needles of the title compound suitable for X-ray structural analysis. M.p. >593 K. IR (KBr) 3329, 3190, 3033, 2940, 2915, 2851, 1617, 1581, 1542, 1486, 1060, 892, 871. MS (EI) m / z : found -527.5 ; calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}_{4}-527.87$. Elemental analysis: found - C 31.53, H 2.34, N 5.59; calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}_{4}-\mathrm{C} 31.85$, H $2.29, \mathrm{~N}$ 5.31. 4,4'-Diaminobibenzyl was purchased (Sigma-Aldrich). The melting point was measured on a hot-stage microscope (Rapido Dresden). IR and mass (EI-MS) spectra were performed using Nicolet 510 FTIR and Finnigan Mat 8200 instruments, respectively.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic and $\mathrm{C}-\mathrm{H} 0.97 \AA$ for methylene H) and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The amino H atoms were located in a Fourier map and the $\mathrm{N}-\mathrm{H}$ distances restrained to 0.89 (1) \AA.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the priority program 'Porous Metal-Organic Frameworks’ (DFG-Project SPP 1362).

References

Awwadi, F. F., Willett, R. D., Peterson, K. A. \& Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.
Berger, R., Beckmann, R. \& Reichelt, H. (1998). Ger. Offen. DE 19643769 A1 19980430.
Braga, D. \& Crepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry, pp. 357-363. Boca Raton: CRC Press.
Bruker (2007). APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.
Elemans, J. A. A. W., Lei, S. \& De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298-7332.

El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortés, J. L., Côté, A. P., Taylor, R. E., O’Keeffe, M. \& Yaghi, O. M. (2007). Science, 316, 268-272.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Harada, J. \& Ogawa, K. (2001). Struct. Chem. 12, 243-250.
Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.
Kahr, B., Mitchell, C. A., Chance, J. M., Clark, R. V., Gantzel, P., Baldridge, K. K. \& Siegel, J. S. (1995). J. Am. Chem. Soc. 117, 44794482.

MacGillivray, L. R. (2010). Editor. Metal-Organic Frameworks. Hoboken: Wiley.
Metrangolo, P. \& Resnati, G. (2008). In Halogen Bonding - Structure and Bonding, Vol. 126. Berlin-Heidelberg: Springer.
Moorthy, J. N., Natarajan, R. \& Venugopalan, R. (2005). J. Mol. Struct. 741, 107-114.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tiekink, E. R. T., Vittal, J. J. \& Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.

supporting information

Acta Cryst. (2015). E71, 97-99 [https://doi.org/10.1107/S2056989014027182]

Crystal structure of 4,4'-(ethane-1,2-diyl)bis(2,6-dibromoaniline)

Ines Hauptvogel, Wilhelm Seichter and Edwin Weber

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4'-(Ethane-1,2-diyl)bis(2,6-dibromoaniline)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{~N}_{2}$
$M_{r}=527.86$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.1219$ (4) \AA
$b=4.4962(2) \AA$
$c=21.5327(9) \AA$
$\beta=96.706(3)^{\circ}$
$V=780.95(6) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.148, T_{\text {max }}=0.493$

$$
F(000)=500
$$

$D_{\mathrm{x}}=2.245 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3117 reflections
$\theta=2.6-26.4^{\circ}$
$\mu=10.30 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Needle, colourless
$0.30 \times 0.20 \times 0.08 \mathrm{~mm}$

6211 measured reflections
1356 independent reflections
1213 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-9 \rightarrow 9$
$k=-5 \rightarrow 4$
$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.05$
1356 reflections
99 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0287 P)^{2}+0.4643 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.52$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. The distances of $\mathrm{N}-\mathrm{H}$ bonds were restrained to a target value of $0.89(0.01) \AA$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Br1	$0.57978(4)$	$0.36821(8)$	$0.225361(14)$	$0.03020(13)$
Br2	$-0.06304(4)$	$0.52607(9)$	$0.094219(15)$	$0.03690(14)$
N1	$0.2009(3)$	$0.2907(7)$	$0.19806(11)$	$0.0243(6)$
H1A	$0.260(3)$	$0.140(5)$	$0.2143(13)$	$0.020(9)^{*}$
H1B	$0.102(2)$	$0.223(8)$	$0.1841(14)$	$0.033(9)^{*}$
C1	$0.3975(4)$	$0.8813(7)$	$0.07282(13)$	$0.0216(7)$
C2	$0.4981(3)$	$0.7477(7)$	$0.12150(13)$	$0.0221(7)$
H2	0.6107	0.7920	0.1274	0.026^{*}
C3	$0.4334(3)$	$0.5501(7)$	$0.16131(13)$	$0.0203(7)$
C4	$0.2654(3)$	$0.4736(7)$	$0.15549(12)$	$0.0190(7)$
C5	$0.1679(3)$	$0.6141(7)$	$0.10623(13)$	$0.0210(7)$
C6	$0.2309(4)$	$0.8108(7)$	$0.06593(13)$	$0.0222(7)$
H6	0.1604	0.8969	0.0338	0.027^{*}
C7	$0.4705(4)$	$1.0862(8)$	$0.02740(14)$	$0.0279(7)$
H7A	0.5633	1.1936	0.0493	0.034^{*}
H7B	0.3875	1.2306	0.0113	0.034^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.02849(19)$	$0.0311(3)$	$0.02914(19)$	$0.00445(14)$	$-0.00444(13)$	$-0.00097(14)$
Br2	$0.02079(19)$	$0.0507(3)$	$0.0385(2)$	$-0.00335(15)$	$0.00032(14)$	$0.00005(17)$
N 1	$0.0284(14)$	$0.0220(17)$	$0.0237(13)$	$-0.0027(12)$	$0.0073(11)$	$0.0028(13)$
C1	$0.0308(16)$	$0.0158(18)$	$0.0196(14)$	$0.0001(13)$	$0.0095(12)$	$-0.0052(13)$
C2	$0.0205(14)$	$0.0208(18)$	$0.0264(15)$	$-0.0016(13)$	$0.0089(12)$	$-0.0068(15)$
C3	$0.0232(15)$	$0.0212(19)$	$0.0171(13)$	$0.0019(13)$	$0.0044(12)$	$-0.0044(13)$
C4	$0.0234(15)$	$0.0183(18)$	$0.0165(13)$	$-0.0006(13)$	$0.0070(12)$	$-0.0056(13)$
C5	$0.0198(14)$	$0.0220(19)$	$0.0218(14)$	$0.0003(12)$	$0.0051(11)$	$-0.0061(14)$
C6	$0.0311(16)$	$0.0189(19)$	$0.0172(13)$	$0.0041(13)$	$0.0050(12)$	$-0.0015(13)$
C7	$0.0422(19)$	$0.0171(19)$	$0.0273(16)$	$-0.0008(15)$	$0.0159(14)$	$-0.0017(14)$

Geometric parameters $\left(\stackrel{\AA}{A},{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 3$	$1.898(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{Br} 2-\mathrm{C} 5$	$1.905(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.398(4)$

N1-C4

N1—H1A
N1—H1B
C1-C6
C1-C2
C1-C7
C2-C3
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$
C6-C1-C2
C6-C1-C7
C2-C1-C7
C3-C2-C1
C3-C2-H2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$
C2-C3-C4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$
N1-C4-C5

C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
C7- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
N1-C4-C5-C6
1.380 (4)
0.877 (10)
0.879 (10)
1.381 (4)
1.388 (4)
1.514 (4)
1.381 (4)
119.6 (19)

113 (2)
108 (3)
117.7 (3)
121.5 (3)
120.7 (3)
120.9 (3)
119.5
119.5
122.8 (3)
118.5 (2)
118.8 (2)
122.0 (3)
123.2 (3)
0.4 (4)
-177.0 (3)
-0.2 (5)
178.3 (2)
-175.7 (3)
5.8 (4)
-0.2 (4)
-178.7 (2)
176.0 (3)
$\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{C} 5-\mathrm{C} 6$
$\mathrm{C} 6-\mathrm{H} 6$
$\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$

C3-C4-C5
C6-C5-C4
C6-C5-Br2
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 2$
C5-C6-C1
C5-C6-H6
C1-C6-H6
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$
C1-C7-H7A
C7- ${ }^{\mathrm{i}} 7-\mathrm{H} 7 \mathrm{~A}$
C1—C7-H7B
$\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$
H7A-C7-H7B

C3-C4-C5-C6
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 2$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 2$
C4-C5-C6-C1
Br2-C5-C6-C1
C2-C1-C6-C5
C7-C1-C6-C5
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$
1.398 (4)
1.378 (4)
0.9300
1.535 (6)
0.9700
0.9700
114.7 (3)
123.3 (3)
118.6 (2)
118.1 (2)
120.7 (3)
119.7
119.7
111.7 (4)
109.3
109.3
109.3
109.3
107.9
0.5 (4)
-4.4 (4)
$-179.9(2)$
-0.4 (5)
180.0 (2)
-0.1 (4)
177.3 (3)
-89.9 (4)
87.4 (4)

Symmetry code: (i) $-x+1,-y+2,-z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.88(2)$	$2.45(3)$	$3.206(4)$	$145(2)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots{ }^{\mathrm{Br}} 1^{\mathrm{ii}}$	$0.88(2)$	$3.03(3)$	$3.521(4)$	$117(2)$

Symmetry code: (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$.

