

Received 21 November 2014 Accepted 5 December 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; phosphites; 1,3,2dioxaphosphinan-2-oxy; naphthalene; C— $H \cdots \pi$ interactions

CCDC reference: 1037929 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of (*E*)-1-{2-[(5,5-dimethyl-1,3,2-dioxaphosphinan-2-yl)oxy]naphthalen-1-yl}-*N*-(4-fluorophenyl)methanimine

Musa A. Said,^a* Bayan L. Al Belewi^a and David L. Hughes^b*

^aChemistry Department, Taibah University, PO Box 30002, Code 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia, and ^bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England. *Correspondence e-mail: musa_said04@yahoo.co.uk, d.l.hughes@uea.ac.uk

In the title compound, $C_{22}H_{21}FNO_3P$, a 1,3,2-dioxaphosphinan-2-yloxy derivative, three O atoms are bonded in a trigonal-pyramidal manner to the P atom. The exocyclic P-O bond is significantly longer than the two endocyclic P-O bonds, *viz.* 1.6678 (12) Å compared to 1.6046 (13) and 1.6096 (12) Å. The sixmembered ring which includes the P atom has a chair conformation. The fluorophenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. In the crystal, molecules are linked *via* C-H··· π interactions, forming slabs lying parallel to (101).

1. Chemical context

Many phosphorus and/or nitrogen based ligands bind strongly to transition metals and they offer a wide range of properties and basicities due to the large variety of accessible substituents (Crabtree, 2005; Joslin et al., 2012; Kuehl, 2005; Tolman, 1977). The title compound is an example of a phosphorusnitrogen bidentate ligand. Complexation experiments with such ligands could result in the isolation of mono- or binuclear complexes (van den Beuken et al., 1997). Examples of bidentate ligands with phosphorus and nitrogen donor groups bonded to transition metals have been shown to be effective cross-coupling catalysts (Hayashi & Kumada, 1985). The present work is a continuation of the investigation into the synthesis and study of more bi- and tri-cyclic, penta- and hexa-coordinated phosphoranes to form anionic, neutral and zwitterionic compounds (Said et al. 1996; Timosheva et al. 2006; Kumara Swamy & Kumar, 2006).

2. Structural commentary

The molecular structure of the title compound, Fig. 1, shows that the three oxygen atoms about the phosphorus atom are

OPEN access

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

bonded in a trigonal pyramidal form. The O-P-O angles are in the range of 96.35 (6) to 102.37 (6)°. The P1-O2 bond length [1.6678 (12) Å] is significantly longer than the other

Table	1		
C−H·	$\cdot \cdot \pi$ interactions	; (Å.	°).

Cg1 and Cg2 are the centroids of rings C1–C4/C9/C10 and C121–C126, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots Cg1^{i}$	0.93	2.70	3.456 (2)	140
С55—П55ССg2	0.96	2.94	5.878 (2)	107

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

P-O bonds [1.6046 (13) and 1.6096 (12) Å]. The sixmembered ring which includes the phosphorus atom has a chair conformation. The fluorophenyl ring is inclined to the naphthalene ring system by 24.42 (7)°. The molecule has an *E* conformation about the C=N bond (Fig. 1).

3. Supramolecular features

In the crystal, molecules are linked via $C-H\cdots\pi$ interactions (Table 1), forming slabs lying parallel to (101), as shown in Fig. 2.

4. Synthesis and crystallization

To 1.02 g (6.05 mmol) of 2-chloro-5,5-dimethyl-1,2,3-dioxaphosphinane in 40 ml of dry dichloromethane was added 1.61 g (6.05 mmol) of (*E*)-1-[(4-fluorophenylimino)methyl]-

Figure 2

A view along the *b* axis of the crystal packing of the title compound showing the $H \cdots C$ contacts (dashed lines) of the $C - H \cdots \pi$ weak interactions (see Table 1 for details).

Table 2Experimental details.

. .

Crystal data	
Chemical formula	C ₂₂ H ₂₁ FNO ₃ P
$M_{ m r}$	397.37
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	140
a, b, c (Å)	18.3667 (8), 5.7898 (2), 19.7710 (7)
β (°)	110.870 (4)
$V(Å^3)$	1964.50 (13)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.17
Crystal size (mm)	$0.40\times0.11\times0.07$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur 3/
	Sapphire3 CCD
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010)
T_{\min}, T_{\max}	0.790, 1.000
No. of measured, independent and	32284, 4518, 3624
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.054
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.097, 1.05
No. of reflections	4518
No. of parameters	253
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.26, -0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97, SHELXL97 and SHELXL2014 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 2012).

naphthalene-2-ol in 10 ml of dry dichloromethane. The mixture was refluxed under a slow flow of nitrogen for 4 h. The solvent was reduced to 5 ml under vacuum and 3 ml of dry *n*-hexane were added to afford the title compound as a pale-yellow crystalline solid (yield 2.07 g, 86%; m.p. 401–405 K). ¹H NMR (CDCl₃, 450 MHz): δ 9.16 (*s*, 1H, CHN), 7.83–7.01 (*m*, 10H, Ar–H), 4.22 (*d*, 2H, CH₂), 3.40 (*t*, 2H, CH₂), 1.23 (*s*, 3H, CH₃), 0.65 (*s*, 3H, CH₃). ¹³C NMR (CDCl₃, 450 MHz): δ 162.46–115.62 (aromatic carbons), 69.86 (1C, CMe₂), 32.95

(2C, CH₂), 22.46 (2C, CH₃). ³¹P NMR (CDCl₃, 450 MHz): δ 116.31. ¹⁹F NMR (CDCl₃, 450 MHz): δ –116.10.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in idealized positions and treated as riding atoms: C-H = 0.93-0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

We gratefully acknowledge the King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia, for their financial support in the framework of an MSc program for BLAIB (grant 0043–12).

References

- Beuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). *Inorg. Chim. Acta*, **264**, 171–183.
- Crabtree, R. H. (2005). Organometallic chemistry of the transition metals, 4th ed., pp. 99–103. Hoboken, NJ: Wiley-Interscience.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hayashi, T. & Kumada, M. (1985). In Asymmetric Synthesis, Vol. 5, edited by J. D. Morrison, pp. 147–148. Orlando: Academic Press.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). *Inorg. Chem.* **51**, 4791–4801.
- Kuehl, O. (2005). Coord. Chem. Rev. 249, 693-704.
- Kumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324–333.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Said, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841–9849.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Timosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 3113–3123.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Acta Cryst. (2015). E71, 85-87 [https://doi.org/10.1107/S2056989014026838]

Crystal structure of (*E*)-1-{2-[(5,5-dimethyl-1,3,2-dioxaphosphinan-2-yl)oxy]naphthalen-1-yl}-*N*-(4-fluorophenyl)methanimine

Musa A. Said, Bayan L. Al Belewi and David L. Hughes

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *WinGX* (Farrugia, 2012).

(|)

Crystal data C₂₂H₂₁FNO₃P $M_r = 397.37$ Monoclinic, $P2_1/n$ a = 18.3667 (8) Å b = 5.7898 (2) Å c = 19.7710 (7) Å $\beta = 110.870$ (4)° V = 1964.50 (13) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur 3/Sapphire3 CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0050 pixels mm⁻¹ Thin–slice φ and ω scans Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) $T_{\min} = 0.790, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.097$ S = 1.054518 reflections 253 parameters 0 restraints F(000) = 832 $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5215 reflections $\theta = 3.1-32.5^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 140 KPrism, pale yellow $0.40 \times 0.11 \times 0.07 \text{ mm}$

32284 measured reflections 4518 independent reflections 3624 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -23 \rightarrow 23$ $k = -7 \rightarrow 7$ $l = -25 \rightarrow 25$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0347P)^{2} + 0.8268P] \qquad \Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by *SHELXL* according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.40211 (9)	0.4807 (3)	0.77326 (8)	0.0211 (3)	
C2	0.37237 (9)	0.3394 (3)	0.71306 (8)	0.0219 (3)	
C3	0.32866 (10)	0.1394 (3)	0.71261 (9)	0.0250 (4)	
H3	0.3085	0.0508	0.6708	0.030*	
C4	0.31611 (10)	0.0769 (3)	0.77383 (9)	0.0275 (4)	
H4	0.2892	-0.0588	0.7742	0.033*	
C5	0.32844 (12)	0.1500 (4)	0.89990 (10)	0.0382 (5)	
H5	0.3014	0.0142	0.8999	0.046*	
C6	0.35310 (13)	0.2835 (4)	0.96045 (11)	0.0494 (6)	
H6	0.3437	0.2381	1.0017	0.059*	
C7	0.39270 (13)	0.4898 (4)	0.96012 (11)	0.0480 (6)	
H7	0.4084	0.5826	1.0012	0.058*	
C8	0.40887 (11)	0.5581 (4)	0.90065 (9)	0.0349 (4)	
H8	0.4354	0.6958	0.9020	0.042*	
C9	0.38558 (9)	0.4212 (3)	0.83716 (9)	0.0240 (4)	
C10	0.34324 (10)	0.2143 (3)	0.83686 (9)	0.0262 (4)	
C11	0.45172 (9)	0.6736 (3)	0.76817 (8)	0.0221 (3)	
H11	0.4477	0.7220	0.7221	0.027*	
N12	0.49987 (8)	0.7800 (2)	0.82205 (7)	0.0240 (3)	
C121	0.54836 (9)	0.9486 (3)	0.80773 (9)	0.0228 (3)	
C122	0.56436 (10)	1.1496 (3)	0.84926 (9)	0.0269 (4)	
H122	0.5429	1.1695	0.8850	0.032*	
C123	0.61157 (10)	1.3197 (3)	0.83817 (10)	0.0304 (4)	
H123	0.6209	1.4555	0.8650	0.036*	
C124	0.64446 (10)	1.2835 (3)	0.78647 (10)	0.0300 (4)	
F124	0.69271 (6)	1.44882 (19)	0.77655 (7)	0.0435 (3)	
C125	0.63219 (10)	1.0855 (3)	0.74575 (10)	0.0301 (4)	
H125	0.6560	1.0644	0.7119	0.036*	
C126	0.58359 (10)	0.9183 (3)	0.75626 (9)	0.0260 (4)	
H126	0.5742	0.7839	0.7287	0.031*	
P1	0.41707 (3)	0.20397 (8)	0.60526 (2)	0.02624 (12)	
O2	0.38648 (7)	0.3996 (2)	0.65108 (6)	0.0262 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

03	0.33653 (7)	0.14447 (19)	0.54070 (6)	0.0269 (3)
O4	0.45712 (7)	0.3839 (2)	0.56752 (6)	0.0293 (3)
C31	0.29181 (10)	0.3271 (3)	0.49448 (9)	0.0270 (4)
H31A	0.2717	0.4289	0.5227	0.032*
H31B	0.2477	0.2601	0.4563	0.032*
C32	0.34018 (10)	0.4681 (3)	0.46065 (8)	0.0247 (4)
C33	0.41052 (10)	0.5660 (3)	0.52151 (9)	0.0272 (4)
H33A	0.4426	0.6532	0.5008	0.033*
H33B	0.3927	0.6710	0.5506	0.033*
C34	0.36634 (11)	0.3186 (3)	0.40960 (9)	0.0338 (4)
H34A	0.3974	0.1925	0.4362	0.051*
H34B	0.3966	0.4105	0.3889	0.051*
H34C	0.3214	0.2591	0.3717	0.051*
C35	0.29039 (12)	0.6694 (3)	0.41909 (10)	0.0378 (5)
H35A	0.3199	0.7601	0.3973	0.057*
H35B	0.2754	0.7641	0.4518	0.057*
H35C	0.2446	0.6105	0.3820	0.057*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0179 (8)	0.0223 (8)	0.0214 (8)	0.0023 (6)	0.0050 (6)	0.0006 (6)
C2	0.0218 (8)	0.0245 (9)	0.0197 (8)	0.0044 (6)	0.0078 (7)	0.0017 (6)
C3	0.0235 (9)	0.0243 (9)	0.0248 (8)	0.0000 (7)	0.0058 (7)	-0.0044 (7)
C4	0.0251 (9)	0.0240 (9)	0.0352 (9)	-0.0020 (7)	0.0131 (8)	0.0003 (7)
C5	0.0400 (11)	0.0440 (12)	0.0377 (10)	-0.0083 (9)	0.0223 (9)	0.0023 (9)
C6	0.0566 (14)	0.0693 (15)	0.0318 (10)	-0.0176 (12)	0.0274 (10)	-0.0035 (10)
C7	0.0543 (14)	0.0670 (15)	0.0287 (10)	-0.0202 (11)	0.0222 (10)	-0.0149 (10)
C8	0.0366 (10)	0.0438 (11)	0.0280 (9)	-0.0115 (9)	0.0159 (8)	-0.0094 (8)
C9	0.0196 (8)	0.0301 (9)	0.0223 (8)	0.0024 (7)	0.0074 (7)	-0.0004 (7)
C10	0.0226 (8)	0.0306 (9)	0.0271 (8)	0.0016 (7)	0.0107 (7)	0.0017 (7)
C11	0.0224 (8)	0.0232 (8)	0.0204 (8)	0.0037 (6)	0.0071 (7)	-0.0005 (6)
N12	0.0220 (7)	0.0263 (7)	0.0241 (7)	-0.0008(6)	0.0088 (6)	-0.0031 (6)
C121	0.0196 (8)	0.0233 (8)	0.0228 (8)	0.0026 (6)	0.0043 (7)	-0.0005 (7)
C122	0.0204 (8)	0.0308 (10)	0.0266 (9)	0.0023 (7)	0.0048 (7)	-0.0056 (7)
C123	0.0227 (9)	0.0238 (9)	0.0373 (10)	0.0027 (7)	0.0016 (8)	-0.0044 (8)
C124	0.0210 (9)	0.0243 (9)	0.0395 (10)	-0.0016 (7)	0.0042 (8)	0.0083 (8)
F124	0.0348 (6)	0.0318 (6)	0.0615 (8)	-0.0075 (5)	0.0142 (6)	0.0086 (5)
C125	0.0288 (9)	0.0329 (10)	0.0305 (9)	0.0018 (8)	0.0129 (8)	0.0040 (8)
C126	0.0280 (9)	0.0239 (9)	0.0255 (8)	0.0009 (7)	0.0089 (7)	-0.0023 (7)
P1	0.0281 (2)	0.0278 (2)	0.0229 (2)	0.00239 (19)	0.00914 (18)	-0.00166 (18)
O2	0.0367 (7)	0.0246 (6)	0.0189 (6)	-0.0019 (5)	0.0118 (5)	-0.0021 (5)
O3	0.0337 (7)	0.0223 (6)	0.0239 (6)	-0.0050 (5)	0.0092 (5)	-0.0029 (5)
O4	0.0225 (6)	0.0387 (7)	0.0270 (6)	-0.0026 (5)	0.0092 (5)	-0.0019 (5)
C31	0.0238 (9)	0.0315 (10)	0.0237 (8)	-0.0029 (7)	0.0059 (7)	-0.0029 (7)
C32	0.0289 (9)	0.0258 (9)	0.0202 (8)	-0.0040 (7)	0.0096 (7)	-0.0042 (7)
C33	0.0311 (9)	0.0284 (9)	0.0245 (8)	-0.0076 (7)	0.0127 (7)	-0.0031 (7)
C34	0.0400 (11)	0.0401 (11)	0.0238 (9)	-0.0042 (9)	0.0143 (8)	-0.0083 (8)

<u>C35</u>	0.0477 (12)	0.0330 (11)	0.0294 (9)	0.0014 (9)	0.0096 (9)	0.0016 (8)	
Geometr	ric parameters (Å,	, ?)					
C1—C2	,	1.386 (2	2)	C123—C124		1.376 (3)	
C1—C9	1	1.442 (2	2)	C123—H123		0.9300	
C1C1	1	1.467 (2	2)	C124—F124		1.365 (2)	
C2—O2		1.3843	(19)	C124—C125		1.372 (3)	
C2—C3		1.407 (2	2)	C125—C126		1.382 (2)	
C3—C4		1.359 (2	2)	C125—H125		0.9300	
С3—Н3		0.9300		C126—H126		0.9300	
C4—C1	0	1.411 (2	2)	P1—O4		1.6046 (13)	
C4—H4		0.9300	,	P1—O3		1.6096 (12)	
С5—С6		1.360 (3)	P1—O2		1.6678 (12)	
C5—C1	0	1.417 (2	2)	O3—C31		1.447 (2)	
С5—Н5	i	0.9300	,	O4—C33		1.455 (2)	
C6—C7		1.399 (3)	C31—C32		1.525 (2)	
С6—Н6		0.9300	,	C31—H31A		0.9700	
C7—C8		1.370 (3)	C31—H31B		0.9700	
С7—Н7	,	0.9300		C32—C33		1.527 (2)	
C8—C9		1.416 (2)	C32—C35		1.528 (2)	
С8—Н8		0.9300	,	C32—C34		1.531 (2)	
C9—C1	0	1.427 (2)	C33—H33A		0.9700	
C11—N	12	1.275 (2)	C33—H33B		0.9700	
С11—Н	11	0.9300	,	C34—H34A		0.9600	
N12—C	121	1.416 (2)	C34—H34B		0.9600	
C121—0	C122	1.394 (2)	C34—H34C		0.9600	
C121—0	C126	1.398 (2)	C35—H35A		0.9600	
C122—0	C123	1.380 (2)	C35—H35B		0.9600	
C122—I	H122	0.9300		C35—H35C		0.9600	
0122 1		0.0000					
C2C1-	—С9	118.02	(15)	F124—C124—C	123	118.63 (16)	
C2C1-	C11	117.04	(14)	С125—С124—С	123	122.63 (17)	
C9-C1	—C11	124.85	(14)	С124—С125—С	126	118.48 (17)	
O2—C2	—C1	118.08	(14)	С124—С125—Н	125	120.8	
O2—C2	—С3	119.20	(14)	С126—С125—Н	125	120.8	
C1-C2	—С3	122.71	(15)	С125—С126—С	121	120.85 (16)	
C4—C3	—C2	119.39	(16)	С125—С126—Н	126	119.6	
C4—C3	—Н3	120.3		С121—С126—Н	126	119.6	
C2—C3	—Н3	120.3		O4—P1—O3		102.37 (6)	
C3—C4	—C10	121.18	(16)	O4—P1—O2		96.35 (6)	
C3—C4	—H4	119.4		O3—P1—O2		100.59 (6)	
C10—C	4—H4	119.4		C2—O2—P1		121.02 (10)	
C6—C5	—C10	121.11	(18)	C31—O3—P1		119.93 (10)	
C6—C5	—Н5	119.4		C33—O4—P1		119.75 (10)	
С10—С	5—H5	119.4		O3—C31—C32		112.32 (13)	
С5—С6	—C7	119.46	(18)	O3—C31—H31A	Δ	109.1	
C5—C6	—Н6	120.3	-	С32—С31—Н31	А	109.1	

С7—С6—Н6	120.3	O3—C31—H31B	109.1
C8-C7-C6	121.49 (19)	C32—C31—H31B	109.1
C8—C7—H7	1193	$H_{31}A = C_{31} = H_{31}B$	107.9
C6-C7-H7	119.3	C_{31} C_{32} C_{33}	107.3 108.34(13)
C_{1}^{-}	120.68 (18)	$C_{31} = C_{32} = C_{35}$	108.37(13) 108.27(14)
C7 C8 H8	110.7	C_{33} C_{32} C_{35}	108.27(14) 108.46(14)
$C_{1} = C_{2} = H_{2}$	119.7	$C_{33} = C_{32} = C_{33}$	100.40(14) 110.82(14)
$C_{2} = C_{3} = C_{10}$	117.7	$C_{31} = C_{32} = C_{34}$	110.62(14)
$C_{8} = C_{9} = C_{10}$	117.73(13) 122.40(16)	$C_{33} = C_{32} = C_{34}$	110.09(14)
$C_0 = C_1$	123.49(10)	$C_{33} - C_{32} - C_{34}$	110.10(14)
	118.70 (15)	04 - 033 - 032	111.58 (15)
C4 - C10 - C3	120.70(17)	04 - 033 - H33A	109.3
C4—C10—C9	119.82 (15)	С32—С33—Н33А	109.3
C5-C10-C9	119.48 (16)	04—C33—H33B	109.3
N12—C11—C1	124.98 (15)	С32—С33—Н33В	109.3
N12—C11—H11	117.5	H33A—C33—H33B	108.0
C1—C11—H11	117.5	С32—С34—Н34А	109.5
C11—N12—C121	117.67 (14)	C32—C34—H34B	109.5
C122—C121—C126	118.57 (16)	H34A—C34—H34B	109.5
C122—C121—N12	118.25 (15)	С32—С34—Н34С	109.5
C126—C121—N12	123.11 (15)	H34A—C34—H34C	109.5
C123—C122—C121	120.98 (17)	H34B—C34—H34C	109.5
C123—C122—H122	119.5	С32—С35—Н35А	109.5
С121—С122—Н122	119.5	С32—С35—Н35В	109.5
C124—C123—C122	118.44 (16)	H35A—C35—H35B	109.5
C124—C123—H123	120.8	С32—С35—Н35С	109.5
C122—C123—H123	120.8	H35A—C35—H35C	109.5
F124—C124—C125	118.72 (17)	H35B—C35—H35C	109.5
C9—C1—C2—O2	178.35 (14)	C11—N12—C121—C126	-41.1(2)
C11—C1—C2—O2	-4.8 (2)	C126—C121—C122—C123	2.4 (2)
C9—C1—C2—C3	-1.5(2)	N12—C121—C122—C123	179.62 (15)
$C_{11} - C_{1} - C_{2} - C_{3}$	175 39 (14)	$C_{121} - C_{122} - C_{123} - C_{124}$	-1.9(2)
02-C2-C3-C4	178 58 (15)	C122 - C123 - C124 - F124	-17844(15)
C1 - C2 - C3 - C4	-16(2)	$C_{122} = C_{123} = C_{124} = C_{125}$	0.0(3)
$C_{2} - C_{3} - C_{4} - C_{10}$	28(3)	F_{124} C_{124} C_{125} C_{126}	179.69(15)
C_{10} C_{5} C_{6} C_{7}	10(3)	C_{123} C_{124} C_{125} C_{126}	1,7,0,0,(10)
$C_{10} = C_{20} = C_{10} = C_{10}$	-1.5(4)	C124 - C125 - C126 - C121	-0.7(3)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	1.3(4)	$C_{124} = C_{123} = C_{120} = C_{121}$	-1.1(2)
$C_{7} = C_{8} = C_{9}$	1.6(3)	N12 C121 C126 C125	-1.1(2) -178 18 (15)
$C_{7} = C_{8} = C_{9} = C_{10}$	-178.70(10)	$C_1 = C_2 = C_1 = C_1 = C_1 = C_2 = C_1 = C_2 = C_1 = C_2 = C_1 = C_1 = C_2 = C_1 $	170.10(13)
$C^{-}_{-}C^{-}_{0}C^{-}_{0}C^{0}_{-}C^{0}_{1}$	-176.70(19)	$C_1 = C_2 = O_2 = P_1$	155.52(15)
$C_2 - C_1 - C_9 - C_8$	-1/0.40(10)	$C_{3} = C_{2} = 0_{2} = F_{1}$	-40.84(19)
C11 - C1 - C9 - C8	7.0 (3)	04-P1-02-C2	-136.24(12)
$C_2 - C_1 - C_9 - C_{10}$	3.3 (<i>2</i>)	03 - P1 - 02 - 02	99.87 (12)
CII - CI - C9 - C10	-1/3.29(13)	04 - P1 - 03 - 031	-42.49 (13)
C_{3} C_{4} C_{10} C_{5}	1/8.69 (17)	02-P1-03-C31	56.49 (12)
C3—C4—C10—C9	-0.9 (3)	03—P1—04—C33	43.33 (12)
C6—C5—C10—C4	-178.77 (19)	O2—P1—O4—C33	-59.01 (12)
C6—C5—C10—C9	0.8 (3)	P1	54.06 (17)

C8—C9—C10—C4	177.50 (16)	O3—C31—C32—C33	-57.15 (18)
C1—C9—C10—C4	-2.2 (2)	O3—C31—C32—C35	-174.59 (13)
C8—C9—C10—C5	-2.1 (2)	O3—C31—C32—C34	64.47 (18)
C1—C9—C10—C5	178.22 (16)	P1-04-C33-C32	-55.56 (16)
C2-C1-C11-N12	-160.05 (16)	C31—C32—C33—O4	57.62 (18)
C9—C1—C11—N12	16.6 (3)	C35—C32—C33—O4	174.93 (14)
C1-C11-N12-C121	174.38 (14)	C34—C32—C33—O4	-64.08 (18)
C11—N12—C121—C122	141.88 (16)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1-C4/C9/C10 and C121-C126, respectively.

HA	D—H	H…A	D····A	D—H…A
$\overline{C4-H4\cdots Cg1^{i}}$	0.93	2.70	3.456 (2)	140
C35—H35C···Cg2 ⁱⁱ	0.96	2.94	3.878 (2)	167

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) x-1/2, -y+3/2, z-1/2.