data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of (*Z*)-1-phenyl-3styrylundeca-2-en-4,10-diyn-1-ol

Rakesh Ganguly,^a* Sally^b and Philip Wai Hong Chan^b

^aDivision of Chemistry & Biological Chemistry, SPMS-CBC-01-18D, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, and ^bDivision of Chemistry & Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore. *Correspondence e-mail: rganguly@ntu.edu.sg

Received 6 December 2014; accepted 16 December 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The molecule of the title compound, $C_{25}H_{24}O$, obtained by acid-catalysed 1,3-migration of an alcohol group, is T-shaped. The planes of the two phenyl rings are inclined to one another by 81.9 (2)°. In the crystal, molecules are linked by $O-H\cdots O$ hydrogen bonds, forming chains along [001].

Keywords: crystal structure; 1,3-migration; alcohol group; catalytic cyclization; styrylundecanene..

CCDC reference: 1009363

1. Related literature

For the 1,3-migration of an alcoholic group adjacent to a vinyl group in the presence of a Lewis acid, see: Piotti & Alper (1997); Poloukhtine & Popik (2005). For catalytic cyclization of alcohols containing a number of unsaturated groups, see: Teo *et al.* (2014).

ОН

2. Experimental

OPEN a ACCESS

2.1. Crystal data

C₂₅H₂₄O $M_r = 340.44$ Trigonal, P3₂ a = 17.867 (2) Å c = 5.3290 (6) Å V = 1473.3 (4) Å³

2.2. Data collection

```
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
T_{\rm min} = 0.74, T_{\rm max} = 1.00
```

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.129$ S = 0.984846 reflections 235 parameters

D-

01

Z = 3Mo K α radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 103 K $0.34 \times 0.04 \times 0.04 \text{ mm}$

14182 measured reflections 4846 independent reflections 2945 reflections with $I > 2\sigma(I)$ $R_{int} = 0.078$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.39 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.24 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$-H1A\cdotsO1^{i}$	0.84	1.83	2.652 (3)	166

Symmetry code: (i) -y + 1, x - y + 1, $z - \frac{1}{3}$.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014*, *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5038).

References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Piotti, M. E. & Alper, H. (1997). J. Org. Chem. 62, 8484–8489.
- Poloukhtine, A. & Popik, V. (2005). J. Org. Chem. 70, 1297-1305.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Teo, W. T., Rao, W., Ng, C. J. H., Koh, S. W. Y. & Chan, P. W. H. (2014). Org. Lett. 16, 1248–1251.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o64 [https://doi.org/10.1107/S205698901402742X]

Crystal structure of (Z)-1-phenyl-3-styrylundeca-2-en-4,10-diyn-1-ol

Rakesh Ganguly, Sally and Philip Wai Hong Chan

S1. Comment

1,3-migration of an alcoholic group adjacent to a vinyl group in the presence of a Lewis-acid is widely known (Piotti & Alper, 1997). One such example was demonstrated recently in the preparation of 4-(α-hydroxybenzyl)-1-*tert*-butyl-dimethylsilyloxy-4-cyclodecene-2,6-diyne (Poloukhtine & Popik, 2005). In addition, alcohols containing many unsaturated groups provide an access to a myriad of types of functionalization such as catalytic cyclization (Teo *et al.*, 2014). Herein, we report on the synthesis and crystal structure of the title compound, obtained by the acid-catalyzed 1,3-migration of an alcoholic group.

The molecular structure of the title compound is illustrated in Fig. 1. The molecule is T-shaped with the two phenyl ring inclined to one another by $81.9(2)^{\circ}$.

In the crystal, molecules are linked by O—H···O hydrogen bonds forming chains along the c axis direction (Table 1 and Fig. 2).

S2. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 3. (*Z*)-1-phenyl-3-styrylundeca-1-en-4,10-diyn-3-ol (1mmol, 340.5 mg) was dissolved in 10 ml of CH₂Cl₂. DMAP [4-(dimethylamino)pyridine; 0.1 mmol, 12 mg], triethylamine (5 mmol, 0.70 ml) and acetic anhydride (5 mmol, 0.47 ml) were added sequentially and the reaction mixture was stirred overnight. It was then washed with saturated sodium bicarbonate and extracted twice with CH₂Cl₂. The organic layers were combined, dried with MgSO₄ and the solvent was removed under reduced pressure. The resulting oil was purified by column chromatography with hexane/ethylacetate as eluent. The product was recrystallized with ethylacetate to give a colourless compound in 80% yield. Slow evaporation of a solution in ethylacetate gave needle-like crystals. ¹H NMR (400 MHz, CDCl₃) 1.71–1.83 (m, 4H), 1.97 (t, 1H), 2.20 (s, 1H), 2.26–2.30 (m, 2H), 2.55 (t, 2), 5.90 (d, 1H), 6.09 (d, 1H), 6.68 (d, 1H), 6.99 (d, 1H), 7.21–7.47 (m, 10H) 13 C NMR (100 MHz, CDCl₃) 18.0, 19.2, 27.7, 27.7, 68.8, 72.5, 75.3, 84.0, 97.9, 124.1, 125.9, 126.8, 127.7, 127.9, 128.6, 128.6, 132.4, 136.8, 140.4, 142.7

S3. Refinement

The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.84 Å, C-H = 0.95 - 1.00 Å with $U_{iso}(H) = 1.5U_{eq}(O)$ for the OH H atom and $= 1.2U_{eq}(C)$ for other H atoms.

Figure 1

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Figure 3 Reaction scheme.

(Z)-1-Phenyl-3-styrylundeca-2-en-4,10-diyn-1-ol

Crystal data

 $C_{25}H_{24}O$ $M_r = 340.44$ Trigonal, $P3_2$ a = 17.867 (2) Å c = 5.3290 (6) Å V = 1473.3 (4) Å³ Z = 3F(000) = 546

 $D_x = 1.151 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1285 reflections $\theta = 2.3-20.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 103 KNeedle, colourless $0.34 \times 0.04 \times 0.04 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD	14182 measured reflections
diffractometer	4846 independent reflections
Radiation source: fine-focus sealed tube	2945 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.078$
ω and φ scan	$\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 14$
(<i>SADABS</i> ; Bruker, 2013)	$k = -22 \rightarrow 23$
$T_{\min} = 0.74, T_{\max} = 1.00$	$l = -7 \rightarrow 7$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
S = 0.98	H-atom parameters constrained
4846 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.39$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.24$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.30859 (17)	0.59437 (17)	0.3483 (5)	0.0251 (7)
H1A	0.3463	0.6311	0.2521	0.038*
C1	0.3069 (3)	0.5136 (2)	0.3226 (7)	0.0199 (9)
H1	0.3048	0.4898	0.4940	0.024*
C2	0.2281 (2)	0.4484 (3)	0.1774 (7)	0.0197 (9)
C3	0.1897 (3)	0.3614 (3)	0.2407 (8)	0.0281 (10)
H3	0.2105	0.3441	0.3801	0.034*
C4	0.1209 (3)	0.2999 (3)	0.1007 (9)	0.0341 (12)
H4	0.0948	0.2407	0.1461	0.041*
C5	0.0899 (3)	0.3235 (3)	-0.1032 (9)	0.0333 (11)
Н5	0.0434	0.2809	-0.1998	0.040*
C6	0.1275 (3)	0.4099 (3)	-0.1651 (8)	0.0305 (11)
H6	0.1060	0.4269	-0.3038	0.037*
C7	0.1962 (3)	0.4721 (3)	-0.0270 (8)	0.0272 (10)
H7	0.2216	0.5313	-0.0722	0.033*
C8	0.3878 (2)	0.5282 (2)	0.1948 (7)	0.0196 (9)
H8	0.4050	0.5639	0.0497	0.024*
C9	0.4386 (2)	0.4964 (2)	0.2634 (7)	0.0160 (8)
C10	0.5143 (2)	0.5153 (2)	0.1121 (7)	0.0171 (8)
H10	0.5253	0.5510	-0.0311	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.5691 (2)	0.4869 (2)	0.1575 (7)	0.0171 (8)
H11	0.5608	0.4552	0.3082	0.021*
C12	0.6413 (2)	0.5000 (2)	-0.0039 (7)	0.0173 (9)
C13	0.6850 (2)	0.4550 (2)	0.0458 (7)	0.0184 (9)
H13	0.6692	0.4182	0.1882	0.022*
C14	0.7511 (3)	0.4630 (3)	-0.1091 (8)	0.0220 (9)
H14	0.7805	0.4324	-0.0718	0.026*
C15	0.7739 (3)	0.5160 (3)	-0.3182 (7)	0.0245 (10)
H15	0.8184	0.5209	-0.4264	0.029*
C16	0.7321 (2)	0.5620 (3)	-0.3704 (7)	0.0231 (9)
H16	0.7482	0.5985	-0.5134	0.028*
C17	0.6665 (3)	0.5545 (3)	-0.2137 (7)	0.0204 (9)
H17	0.6385	0.5867	-0.2492	0.024*
C18	0.4152 (2)	0.4385 (3)	0.4758 (8)	0.0184 (8)
C19	0.3892 (2)	0.3880 (2)	0.6457 (7)	0.0201 (9)
C20	0.3519 (3)	0.3267 (3)	0.8553 (8)	0.0275 (10)
H20A	0.3052	0.3336	0.9313	0.033*
H20B	0.3973	0.3426	0.9844	0.033*
C21	0.3157 (3)	0.2328 (3)	0.7913 (8)	0.0310 (11)
H21A	0.2888	0.1977	0.9434	0.037*
H21B	0.3637	0.2235	0.7405	0.037*
C22	0.2484 (3)	0.2009 (3)	0.5807 (8)	0.0317 (11)
H22A	0.2021	0.2137	0.6248	0.038*
H22B	0.2760	0.2322	0.4237	0.038*
C23	0.2091 (3)	0.1044 (3)	0.5383 (9)	0.0467 (14)
H23A	0.1740	0.0881	0.3830	0.056*
H23B	0.2562	0.0913	0.5127	0.056*
C24	0.1549 (3)	0.0521 (3)	0.7450 (9)	0.0326 (11)
C25	0.1097 (3)	0.0105 (3)	0.9069 (10)	0.0431 (13)
H25	0.0727	-0.0235	1.0394	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0252 (16)	0.0188 (15)	0.0341 (17)	0.0130 (13)	0.0087 (14)	0.0019 (13)
C1	0.024 (2)	0.021 (2)	0.021 (2)	0.0159 (19)	0.0076 (18)	0.0067 (18)
C2	0.019 (2)	0.021 (2)	0.024 (2)	0.0129 (18)	0.0084 (18)	0.0036 (18)
C3	0.022 (2)	0.025 (2)	0.036 (3)	0.010(2)	0.002 (2)	0.008 (2)
C4	0.026 (2)	0.026 (3)	0.047 (3)	0.010(2)	0.003 (2)	0.005 (2)
C5	0.024 (2)	0.034 (3)	0.038 (3)	0.011 (2)	-0.001 (2)	-0.006(2)
C6	0.031 (3)	0.035 (3)	0.030 (3)	0.020 (2)	-0.005 (2)	-0.002 (2)
C7	0.028 (2)	0.027 (2)	0.029 (2)	0.016 (2)	0.003 (2)	0.005 (2)
C8	0.020 (2)	0.018 (2)	0.021 (2)	0.0093 (18)	0.0026 (17)	0.0022 (17)
C9	0.016 (2)	0.0124 (19)	0.019 (2)	0.0071 (17)	-0.0012 (17)	-0.0009 (16)
C10	0.018 (2)	0.0110 (19)	0.019 (2)	0.0051 (17)	0.0007 (17)	0.0011 (16)
C11	0.019 (2)	0.015 (2)	0.017 (2)	0.0078 (18)	0.0010 (17)	0.0004 (16)
C12	0.014 (2)	0.017 (2)	0.020(2)	0.0066 (17)	-0.0008 (17)	-0.0034 (17)
C13	0.018 (2)	0.019 (2)	0.018 (2)	0.0087 (18)	0.0014 (17)	0.0001 (17)

supporting information

C14	0.021 (2)	0.025 (2)	0.024 (2)	0.0145 (19)	-0.0020 (18)	-0.0037 (19)
C15	0.019 (2)	0.031 (2)	0.023 (2)	0.012 (2)	0.0035 (18)	-0.0035 (19)
C16	0.021 (2)	0.025 (2)	0.022 (2)	0.0096 (19)	0.0035 (18)	0.0020 (19)
C17	0.017 (2)	0.021 (2)	0.025 (2)	0.0119 (18)	-0.0006 (18)	0.0014 (18)
C18	0.015 (2)	0.020 (2)	0.021 (2)	0.0094 (17)	-0.0002 (17)	-0.0042 (18)
C19	0.017 (2)	0.020 (2)	0.021 (2)	0.0073 (18)	0.0002 (18)	0.0011 (18)
C20	0.031 (3)	0.024 (2)	0.020 (2)	0.008 (2)	-0.001 (2)	0.0045 (19)
C21	0.033 (3)	0.026 (2)	0.027 (2)	0.010 (2)	0.002 (2)	0.002 (2)
C22	0.032 (3)	0.024 (2)	0.029 (3)	0.006 (2)	0.003 (2)	0.003 (2)
C23	0.055 (3)	0.028 (3)	0.039 (3)	0.007 (2)	0.006 (3)	-0.002 (2)
C24	0.033 (3)	0.019 (2)	0.043 (3)	0.010 (2)	-0.004 (2)	-0.003 (2)
C25	0.037 (3)	0.029 (3)	0.054 (4)	0.009 (2)	0.001 (3)	0.006 (3)

Geometric parameters (Å, °)

01—C1	1.435 (4)	C13—C14	1.388 (5)
O1—H1A	0.8400	C13—H13	0.9500
C1—C8	1.498 (5)	C14—C15	1.385 (6)
C1—C2	1.516 (6)	C14—H14	0.9500
C1—H1	1.0000	C15—C16	1.388 (6)
C2—C3	1.390 (5)	C15—H15	0.9500
C2—C7	1.390 (5)	C16—C17	1.390 (5)
C3—C4	1.387 (6)	C16—H16	0.9500
С3—Н3	0.9500	C17—H17	0.9500
C4—C5	1.378 (6)	C18—C19	1.197 (5)
C4—H4	0.9500	C19—C20	1.470 (5)
C5—C6	1.381 (6)	C20—C21	1.504 (6)
С5—Н5	0.9500	C20—H20A	0.9900
С6—С7	1.385 (6)	C20—H20B	0.9900
С6—Н6	0.9500	C21—C22	1.531 (6)
С7—Н7	0.9500	C21—H21A	0.9900
С8—С9	1.341 (5)	C21—H21B	0.9900
С8—Н8	0.9500	C22—C23	1.519 (6)
C9—C18	1.446 (5)	C22—H22A	0.9900
C9—C10	1.461 (5)	C22—H22B	0.9900
C10—C11	1.332 (5)	C23—C24	1.456 (7)
С10—Н10	0.9500	C23—H23A	0.9900
C11—C12	1.467 (5)	C23—H23B	0.9900
C11—H11	0.9500	C24—C25	1.161 (6)
C12—C13	1.399 (5)	С25—Н25	0.9500
C12—C17	1.401 (5)		
C1—O1—H1A	109.5	C12—C13—H13	119.4
O1—C1—C8	109.5 (3)	C15—C14—C13	119.5 (4)
01—C1—C2	111.5 (3)	C15—C14—H14	120.2
C8—C1—C2	110.3 (3)	C13—C14—H14	120.2
01—C1—H1	108.5	C14—C15—C16	120.3 (4)
C8—C1—H1	108.5	C14—C15—H15	119.9

C2—C1—H1	108.5	C16—C15—H15	119.9
C3—C2—C7	118.8 (4)	C15—C16—C17	120.1 (4)
C3—C2—C1	119.0 (4)	C15—C16—H16	120.0
C7—C2—C1	122.0 (4)	C17—C16—H16	120.0
C2-C3-C4	120.2 (4)	C16—C17—C12	120.6 (4)
С2—С3—Н3	119.9	C16—C17—H17	119.7
C4-C3-H3	119.9	C12-C17-H17	119.7
$C_{5} - C_{4} - C_{3}$	120.9 (4)	C19-C18-C9	174 8 (4)
C5-C4-H4	119.5	C_{18} C_{19} C_{20} C_{20}	1760(4)
C3-C4-H4	119.5	C19 - C20 - C21	1162(4)
C4-C5-C6	119.0 (4)	C19 - C20 - H20A	108.2 (1)
C4 - C5 - H5	120.5	C_{21} C_{20} H_{20A}	108.2
С4 С5 Н5	120.5	C_{19} C_{20} H_{20R}	108.2
C_{5}	120.3	C_{21} C_{20} H_{20B}	108.2
$C_5 = C_6 = H_6$	110.6	$H_{20A} = C_{20} = H_{20B}$	107.4
C7 C6 H6	119.0	1120A - C20 - 1120B	107.4 113.6 (4)
$C_{1} = C_{1} = C_{1}$	119.0 120.4(4)	$C_{20} = C_{21} = C_{22}$	108.8
C6 C7 H7	120.4 (4)	C_{20} C_{21} H_{21A}	108.8
$C_0 - C_7 - H_7$	119.8	C_{22} C_{21} H_{21} H	108.8
$C_2 = C_1 = C_1$	119.0	C_{20} C_{21} H_{21B}	108.8
C_{9}	120.9 (5)	$\begin{array}{c} C_{22} \\ \hline \\ C_{21} \\ \hline $	108.8
$C_{9} = C_{8} = H_{8}$	110.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7
$C^{\circ} = C^{\circ} = C^{\circ}$	110.3 120 1 (2)	$C_{23} = C_{22} = C_{21}$	111.5 (4)
C_{8} C_{9} C_{10}	120.1(3)	C_{23} C_{22} C_{23} C	109.4
$C_{0} = C_{0} = C_{10}$	119.7(3)	C_{21} C_{22} H_{22R}	109.4
C18 - C9 - C10	120.0(3)	C23—C22—H22B	109.4
	125.7 (4)	C21—C22—H22B	109.4
CII = CI0 = HI0	117.1	H22A—C22—H22B	108.0
C9—C10—H10	11/.1	$C_{24} = C_{23} = C_{22}$	113.4 (4)
C10-C11-C12	125.9 (4)	C24—C23—H23A	108.9
Cl0—Cl1—Hll	117.0	С22—С23—Н23А	108.9
С12—С11—Н11	117.0	С24—С23—Н23В	108.9
C13—C12—C17	118.2 (3)	С22—С23—Н23В	108.9
C13—C12—C11	119.7 (4)	H23A—C23—H23B	107.7
C17—C12—C11	122.1 (3)	C25—C24—C23	178.0 (5)
C14—C13—C12	121.3 (4)	C24—C25—H25	180.0
C14—C13—H13	119.4		
O1—C1—C2—C3	-145.9 (3)	C8—C9—C10—C11	-179.1 (4)
C8—C1—C2—C3	92.2 (4)	C18—C9—C10—C11	-3.5 (6)
O1—C1—C2—C7	38.1 (5)	C9-C10-C11-C12	175.0 (3)
C8—C1—C2—C7	-83.8 (4)	C10-C11-C12-C13	-169.7 (4)
C7—C2—C3—C4	0.2 (6)	C10-C11-C12-C17	8.1 (6)
C1—C2—C3—C4	-175.9 (4)	C17—C12—C13—C14	-0.6 (5)
C2—C3—C4—C5	0.4 (6)	C11—C12—C13—C14	177.2 (3)
C3—C4—C5—C6	-1.0 (7)	C12—C13—C14—C15	-0.6 (6)
C4—C5—C6—C7	1.0 (7)	C13—C14—C15—C16	1.1 (6)
С5—С6—С7—С2	-0.3 (7)	C14—C15—C16—C17	-0.5 (6)
C3—C2—C7—C6	-0.2 (6)	C15—C16—C17—C12	-0.8 (6)

supporting information

C1—C2—C7—C6	175.8 (4)	C13—C12—C17—C16	1.3 (5)
O1—C1—C8—C9	133.8 (4)	C11—C12—C17—C16	-176.5 (4)
C2—C1—C8—C9	-103.1 (4)	C19—C20—C21—C22	-54.5 (5)
C1—C8—C9—C18	2.6 (6)	C20-C21-C22-C23	-175.6 (4)
C1—C8—C9—C10	178.2 (3)	C21—C22—C23—C24	68.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1—H1A···O1 ⁱ	0.84	1.83	2.652 (3)	166

Symmetry code: (i) -*y*+1, *x*-*y*+1, *z*-1/3.