research communications

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 10 October 2014 Accepted 26 November 2014

Edited by M. Weil, Vienna University of Technology, Austria

+ Currently unaffiliated to UANL.

This work forms part of the PhD thesis of María de los Angeles Mendoza (Guanajuato, Mexico, 2010).

Keywords: crystal structure; coordination compounds; bis[2-(3,5-dimethylpyrazol-1yl)ethyl]amine (pza) ligand; bis(pyrazol-1yl)amine; palladium(II)

CCDC references: 1036262; 1036261; 1036260; 1036259; 1036258 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Coordination of bis(pyrazol-1-yl)amine to palladium(II): influence of the co-ligands and counter-ions on the molecular and crystal structures

CrossMark

María de los Angeles Mendoza,^a Sylvain Bernès^b*‡ and Guillermo Mendoza-Díaz^a

^aDepartamento de Ingenierías Química Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, Mexico, and ^bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico. *Correspondence e-mail: sylvain_bernes@Hotmail.com

The structures of a series of complexes with general formula n[Pd(pza)X]Y. *m*H₂O (*n* = 1, 2; *X* = Cl, Br, I, N₃, NCS; *Y* = NO₃, I, N₃, [Pd(SCN)₄]; *m* = 0, 0.5, 1) have been determined, where pza is the tridentate ligand bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine, C₁₄H₂₃N₅. In all complexes, {bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }chloridopalladium nitrate. [Pd(pza)Cl]NO₃. $bis[2-(3,5-dimethylpyrazol-1-yl-\kappa N^2)ethyl]amine-\kappa N$ bromidopalladium (1), $[Pd(pza)Br]NO_3$, (2), {bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]nitrate, amine- κN iodidopalladium iodide hemihydrate, [Pd(pza)I]I·0.5H₂O, (3), azido-{bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }palladium azide monohydrate, [Pd(pza)N₃]N₃·H₂O, (4), and bis[{bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }(thiocyanato- κN)palladium] tetrakis(thiocyanato- κS)palladate, $[Pd(pza)NCS]_2[Pd(SCN)_4]$, (5), the $[Pd(pza)X]^+$ complex cation displays a square-planar coordination geometry, and the pza ligand is twisted, approximating twofold rotation symmetry. Although the pza ligand is found with the same conformation along the series, the dihedral angle between pyrazole rings depends on the co-ligand X. This angle span the range 79.0 (3)-88.6 (1)° for the studied complexes. In (3), two complex cations, two I⁻ anions and one water molecule of crystallization are present in the asymmetric unit. In (5), the central amine group of pza is disordered over two positions [occupancy ratio 0.770 (18):0.230 (18)]. The complex $[Pd(SCN)_4]^{2-}$ anion of this compound exhibits inversion symmetry and shows the Pd²⁺ transition metal cation likewise in a square-planar coordination environment. Compound (5) is also a rare occurrence of a non-polymeric compound in which the pseudohalide ligand NCS⁻ behaves both as thiocyanate and isothiocyanate, *i.e.* is coordinating either through the N atom (in the cation) or the S atom (in the anion).

1. Chemical context

The coordination chemistry of transition metals having a d^8 shell is clearly dominated by the square-planar geometry, which gives strong crystal field stabilization, because filled orbitals d_{z2} and degenerated orbitals $(d_{xz} d_{yz})$ do not interact directly with orbitals of the ligands. This holds true for group 10 metal complexes, for which the tetrahedral geometry is considered as an oddity (Alvarez *et al.*, 2005).

We synthesized a series of such square-planar complexes, with general formula $n[Pd(pza)X]Y \cdot mH_2O$, in which pza is the

Figure 1

View of the molecular structure of complex (1), corresponding to $X = Cl^$ and $Y = NO_3^-$, with displacement ellipsoids for non-H atoms drawn at the 30% probability level. The inset is an overlay (*Mercury*; Macrae *et al.*, 2008) of the cations in (1) and (2), in which $X = Br^-$.

tridentate ligand bis-[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine, and X, Y are halide, pseudohalide, nitrate, or a complex anion. This series was first considered within a larger project related to a systematic study of modifications of *cis*-platin, obtained through the substitution of NH₃ ligands by N-heterocyclic systems, like imidazole- and pyrazole-based ligands. The Pd^{II} synthetic chemistry may be easily transferred to Pt^{II}, with the advantage that Pd^{II} starting materials are somewhat cheaper than their Pt^{II} analogues. On the other hand, regarding the chemical crystallography, Pd^{II} complexes are almost always isostructural to their Pt^{II} analogues. Finally, any new Pd^{II} complex is also of potential interest for studies about the fundamental aspects of the catalysis of the Heck reaction type.

We thus focused our efforts on the crystallographic characterization of the Pd^{II} complexes obtained as single crystals, with the hope of rationalizing the effect of the co-ligand X and counter-ion Y on the molecular and crystal structures of the complex $[Pd(pza)X]^+$ cations. An earlier report of the crystal structure of the starting material, $[Pd(pza)Cl]Cl·2H_2O$ has been given (Mendoza *et al.*, 2006), and we now report on the characterization of $[Pd(pza)Cl]NO_3$ (1), $[Pd(pza)Br]NO_3$ (2), $[Pd(pza)I]I·0.5(H_2O)$ (3), $[Pd(pza)N_3]N_3·H_2O$ (4), and $2[Pd(pza)NCS][Pd(SCN)_4]$ (5).

2. Structural commentary: molecular and crystal structures

Complex (1) is a result of the substitution of the counter-ion $Y = Cl^-$ in the starting material, *i.e.* in the dihydrate [Pd(pza)Cl]Cl·2H₂O by a nitrate, but crystallizes as an anhydrous species, [Pd(pza)Cl]NO₃ (Fig. 1). As expected, the square-planar coordination of the metal cation is retained, and the conformation of the pza ligand is not affected by the counter-ion substitution. The cation conformation may be characterized by the dihedral angle between the pyrazole mean planes, 85.1 (3)° *versus* 87.62 (11)° in the chloride salt (Mendoza *et al.*, 2006). A least-squares fit between the [Pd(pza)Cl]⁺ cations in the chloride and nitrate salts gives an r.m.s. deviation of 0.124 Å. However, the crystal structures are

Table 1	
Hydrogen-bond geometry (Å, °) for (1).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots N20^{i}$	0.93	2.66	3.510 (10)	153
$C7-H7C\cdots Cl1$	0.96	2.81	3.410 (10)	121
$C8-H8A\cdots O3^{ii}$	0.97	2.28	3.222 (10)	163
N10−H10···N20	0.90	2.57	3.453 (10)	167
N10−H10···O1	0.90	1.98	2.857 (9)	164
$N10-H10\cdots O2$	0.90	2.45	3.186 (10)	140
$C14-H14A\cdots Cl1^{iii}$	0.93	2.82	3.629 (9)	146
$C16-H16A\cdotsO1^{iv}$	0.96	2.64	3.572 (12)	164
$C17 - H17A \cdots O3^{ii}$	0.96	2.53	3.491 (12)	175
$C17 - H17C \cdot \cdot \cdot Cl1$	0.96	2.79	3.367 (10)	119
C18-H18A···O2	0.97	2.51	3.364 (11)	146
$C18-H18B\cdots O1^{iv}$	0.97	2.61	3.428 (11)	142
$C19-H19A\cdots O3^{iv}$	0.97	2.47	3.112 (11)	124

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2},$ (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2},$ (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$

 Table 2

 Hydrogen-bond geometry (Å, $^{\circ}$) for (2).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots N20^{i}$	0.93	2.66	3.540 (7)	159
$C7-H7C\cdots Br1$	0.96	3.06	3.500 (8)	110
$C8-H8A\cdots O3^{ii}$	0.97	2.30	3.219 (9)	157
$N10-H10\cdots N20$	0.90	2.54	3.427 (6)	169
N10−H10···O1	0.90	1.98	2.857 (7)	166
N10−H10···O2	0.90	2.43	3.181 (8)	142
$C14-H14A\cdots Br1^{iii}$	0.93	2.88	3.687 (6)	146
$C16-H16A\cdotsO1^{iv}$	0.96	2.65	3.511 (10)	150
$C17 - H17A \cdots O3^{ii}$	0.96	2.55	3.485 (10)	164
$C17 - H17C \cdot \cdot \cdot Br1$	0.96	2.98	3.459 (8)	112
C18-H18A···O2	0.97	2.52	3.358 (9)	144
$C18-H18B\cdots O1^{iv}$	0.97	2.65	3.468 (8)	142
$C19-H19B\cdots O3^{iv}$	0.97	2.47	3.099 (9)	122

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2},$ (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2},$ (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2},$ (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2},$

different because the water molecules in the chloride dihydrate are determinant for the supramolecular arrangement through hydrogen-bonding and intermolecular contacts. In (1), the nitrate ion interacts with the central amine group of the pza ligand, with a N10-H10···O1 separation of 1.98 Å. Other inter-ion contacts beyond the asymmetric unit are unexceptional, and the observed crystal structure is basically a consequence of Coulombic interactions rather than hydrogen bonds (Table 1).

Complex (2), with $X = Br^-$ and $Y = NO_3^-$ is isostructural with the $X = Cl^-$ analogue (1). However, a slight relaxation of the folded pza ligand is observed, with a dihedral angle between pyrazole rings of 83.6 (2)°. An overlay between cations in (1) and (2) gives a small deviation of 0.049 Å (Fig. 1, inset). The nitrate anion interacts with the complex cation in (2) with a distance N10-H10···O1 = 1.98 Å (Table 2). Thus, the nature of the halogen co-ligand X in [Pd(pza)X]NO₃ seems to be unimportant for the resulting crystal structure.

Complex (3), built up with X = Y = iodide, crystallized as a hemihydrate, with two cation complexes and two free iodide ions in the asymmetric unit (Fig. 2). The square-planar geometry of Pd^{II} is retained, as well as the pza conformation. However, the relaxation of folding, observed with $X = \text{Br}^-$ in

Figure 2

View of the molecular structure of complex (3), corresponding to $X = Y = I^-$, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

compound (2), is amplified with $X = I^-$: the angle between the pyrazole rings is now 79.0 (3) and 83.3 (3)°, for the Pd1 and Pd2 cations, respectively. There seems to be a regular trend for $[Pd(pza)X]^+$ cations: the smaller the ionic radius of the coligand X, the closer the angle between the pyrazole rings is to 90°. A possible rationalization of this observation is that methyl groups substituting pyrazole rings at position 3 interact with the co-ligand X. This destabilizing steric interaction favors the twisting of pza, which in general adopts a non-crystallographic twofold rotation symmetry. However, the large iodide anion forces the separation between methyl groups, compared to the small chloride ion. In order to keep the coordination geometry around Pd^{II} as planar as possible, the heterocycles in pza then make a slight rotation motion,

Figure 3

View of the molecular structure of complex (4), corresponding to $X = Y = N_3^-$, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Table 3					
Hydrogen-bond geometry	(Å.	°)) for	(3).	

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1-H1···I3	0.85	2.68	3.497 (7)	161
$O1-H2\cdots I4$	0.85	2.66	3.443 (10)	155
$N10-H10A\cdots I3^{i}$	0.90	2.94	3.653 (6)	137
$N30-H30A\cdotsO1^{ii}$	0.90	2.22	3.011 (9)	146
$N30-H30A\cdots I4^{ii}$	0.90	3.30	3.853 (6)	122

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for (4).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N10−H10···N32	0.90	1.95	2.838 (11)	171
N10−H10···N31	0.90	2.66	3.460 (13)	148
$O1-H11\cdots N32^i$	0.84	2.67	3.295 (19)	132
$O1-H12\cdots N30$	0.85	2.38	3.08 (2)	140

Symmetry code: (i) x + 1, y, z.

which is reflected in the deviation from orthogonality of these terminal rings. In other words, the combined twisting and folding motions of the pza ligand lead to as planar as possible a coordination environment for Pd^{II}. Counter-ions *Y* and lattice water molecules have only slight influences, if any, on the cation conformation. In the case of (3), the water molecule behaves both as a donor and acceptor group for hydrogen bonding. $O-H\cdots$ I bonds are formed with the non-coordinating iodide anions, and the central amine group of pza forms a N-H···O bond with the same water molecule (Table 3). However, as for previous complexes (1) and (2), no extended supramolecular structures are formed in the crystal.

Figure 4

View of the molecular structure of complex (5), corresponding to $X = NCS^-$ and $Y = [Pd(SCN)_4]^{2-}$, with displacement ellipsoids for non-H atoms at the 30% probability level. Only one position for the disordered amine group in the cation has been retained (N10*A*). In the anion, unlabelled atoms are generated by symmetry code (-x + 1, -y + 2, -z + 2).

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for (5).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N10A - H10A \cdots N24^{i} \\ N10B - H10B \cdots S1^{ii} \end{array}$	0.90	2.01	2.889 (9)	166
	0.90	2.71	3.52 (2)	151

Symmetry codes: (i) x, y, z - 1; (ii) x - 1, y, z.

Using the pseudohalide X = Y = azide, compound (4) was crystallized as an hydrate, $[Pd(pza)N_3]N_3 \cdot H_2O$ (Fig. 3). The nitrogen atoms in the coordinating N_3^- ligand are not sterically demanding as the iodide ion in (3) and, as a consequence, the pyrazole rings come back in a more orthogonal arrangement, identical to that observed in $[Pd(pza)Cl]^+$. The dihedral angle between pyrazole rings is 87.3 (1)° in (4). The strongest hydrogen bond is found between the amine group of pza and the free azide ion, the N10-H10···N32 separation being 1.95 Å and the angle for the contact 171° (Table 4).

Finally, in the fifth compound (5), the counter-ion Y is a complex anion, namely $[Pd(SCN)_4]^{2-}$. The formula for (5) is 2[Pd(pza)NCS][Pd(SCN)₄], and the anion is located about an inversion centre, while the cation is in a general position (Fig. 4). The pza ligand in [Pd(pza)NCS]⁺, in contrast to previous compounds, has the amine group N10 disordered over two positions, N10A and N10B, with occupancies 0.770 (18) and 0.230 (18), respectively. The same type of disorder was previously reported for an Au^{III} complex (Segapelo et al., 2011). In spite of this disorder, the general conformation of pza is identical to that observed in compounds (1)-(4), approximating the non-crystallographic twofold rotation symmetry. The co-ligand $X = NCS^{-1}$ coordinates through its N atom, and the local environment of the metal is very similar to that resulting from azide coordination in complex (4). The dihedral angle between pyrazole rings should thus be close to 90° . The actual value is 88.6 (1) $^{\circ}$. The anion $[Pd(SCN)_4]^{2-}$ is also square-planar, but with the ligands coordinating in a κ S-fashion, while in the cation, the NCS ligand is bound in a κN -fashion to the metal cation. If complexes with bridging thiocyanate ligands are not considered, very few structures are known in which the ambidentate ligand NCS⁻ is bonded in two modes (κ S- and κ N-) to the same transition metal. In the case of Pd^{II}, classified as a soft acid in the Pearson's HSAB concept, the soft base SCN⁻ should have a preference for the κS -coordination. Apparently, only a few non-polymeric crystal structures have been reported including both coordination modes of SCN⁻ to this metal (e.g. Paviglianiti et al., 1989; Chang et al., 2005). In the crystal structure, weak hydrogen bonds between the disordered amino group and the NCS groups of neighbouring cations and anions are observed (Table 5).

3. Database survey

The ligand pza has been widely used in coordination chemistry. The current release of the CSD (Version 5.35 with all updates; Groom & Allen, 2014) affords 39 entries distributed over 18 articles. With Pd^{II}, two structures are reported to date, which are pseudopolymorphs with $X = Y = Cl^{-}$ (Mendoza *et* al., 2006: Guzei et al., 2010). Other transition metals have been coordinated by pza and structures are available for Co^{II} (van Berkel et al., 1994; Massoud et al., 2012a, 2013), Ni^{II} (Ajellal et al., 2006; Massoud et al., 2012a, 2013), Cu^{II} (van Berkel et al., 1994; Martens et al., 1995; Kim et al., 2000; Monzani et al., 2000; Riklin et al., 2001; Massoud et al., 2012a,b, 2013), Zn^{II} (Burth & Vahrenkamp, 1998; Lian et al., 2007a; Lee et al., 2007; Massoud et al., 2013), Cd^{II} (Griffith et al., 1987; Massoud et al., 2013), Re^I (Alves et al., 2002) and Au^{III} (Segapelo et al., 2011). The pza ligand generally behaves as a tridentate ligand, with exceptions for some Zn^{II} compounds, in which one pyrazole ring is not coordinating to the metal (Burth & Vahrenkamp, 1998; Lian et al., 2007a; Lee et al., 2007). Few complexes have also been prepared with s- and p-metals, viz. Li^I (Lian et al., 2007a), Mg^{II} (Lian et al., 2007b), and Al^{III} (Lian et al., 2007a).

The conformation observed for pza is determined by the coordination number of the metal centre. For example, hexacoordinated transition metals like Ni^{II} or Cd^{II} favor the facial coordination of pza, which is then found in a folded conformation, while coordination numbers 5 and 4 promote some defolding. The ligand pza with the dihedral angle between pyrazole rings very close to 0° has been observed in Co^{II} complexes (Massoud *et al.*, 2012*a*, 2013). A conformation for pza close to that observed in (1)–(5) has been reported with Mg^{II} (Lian *et al.*, 2007*b*) and Au^{III} (Segapelo *et al.*, 2011).

4. Synthesis and crystallization

Complexes (1)–(5) were synthesized starting from $[Pd(pza)Cl]Cl\cdot 2H_2O$ (Mendoza *et al.*, 2006), by substitution of co-ligands and counter-ions, as depicted in Fig. 5.

Synthesis of (1). $[Pd(pza)Cl]Cl·2H_2O$ (1 mmol) was dissolved in CH₃CN, and a solution of AgNO₃ (1 mmol in CH₃CN) was added slowly. The mixture was stirred for 1 h at room temperature. After elimination by filtration of the white precipitate of AgCl, the mixture was further stirred for 1 h. Evaporation of the solvent afforded complex (1) as a brown-yellow solid, in 82% yield, and crystals were obtained by recrystallization from CH₃CN.

Synthesis of (2). $[Pd(pza)Cl]Cl·2H_2O$ (1 mmol) was dissolved in CH₃CN, and a solution of AgNO₃ (2 mmol in CH₃CN) was added slowly. The mixture was stirred for 2 h at room temperature, and the precipitated AgCl was removed by filtration. An aqueous solution of NaBr (1 mmol) was then added, and NaNO₃ precipitates, which was removed by filtration. The solution was further stirred for 5 h. Evaporation of the solvent afforded complex (2) as a yellow solid, in 76% yield, and crystals were obtained by recrystallization from CH₃CN.

Synthesis of (3). $[Pd(pza)Cl]Cl\cdot 2H_2O$ (1 mmol) was dissolved in CH_3CN (5 ml) and a solution of 2 mmol of $NaBF_4$ in CH_3CN was added slowly. After elimination of NaCl by filtration, a solution of 2 mmol of NEt_4I in CH_3CN was added slowly, and the mixture, which turned red, was stirred for 6 h at room temperature. Evaporation of the solvent afforded complex (3) as a red solid, in 82% yield, and crystals were

General synthetic scheme for complexes (1)–(5).

obtained by recrystallization from CH₃CN. Alternatively, complex (3) may be obtained in 89% yield by reacting an aqueous solution of $[Pd(pza)Cl]Cl\cdot 2H_2O$ (1 mmol) and NaI (2 mmol) for 6 h at room temperature.

Synthesis of (4). $[Pd(pza)Cl]Cl·2H_2O$ (1 mmol) was dissolved in CH₃CN. A solution of NaN₃ (2 mmol, CH₃CN/ H₂O mixture 4:1, ν/ν) was added slowly. The formed precipitate of NaCl was eliminated by filtration, and the mixture was further stirred at room temperature for 10 h. Evaporation of the solvent afforded complex (4) as a yellow solid, in 61% yield, and crystals were obtained by recrystallization from CH₃CN.

Synthesis of (5). $[Pd(pza)Cl]Cl·2H_2O$ (1 mmol) was dissolved in H₂O, and an aqueous solution of 2 mmol of KNCS was added slowly. The mixture was stirred for 10 h at room temperature. The formed pink solid, (5), was separated by filtration and dried in reduced pressure at 313 K. Yield: 48%. Crystals were obtained by recrystallization from a mixture of CH₃CN and CH₂Cl₂ (2:1, ν/ν).

5. Refinement

Crystal data, data collection and structure refinement details for (1)–(5) are summarized in Table 6. Data collection and refinement are routine works, except for a positional disorder found in (5) for sites N10A/N10B, for which the s.o.f. converged to 0.770 (18) and 0.230 (18), respectively. All H atoms bonded to C and N atoms were placed in calculated positions and refined as riding atoms, with fixed bond lengths of 0.93, 0.96, 0.97, and 0.90 Å for aromatic, methyl, methylene, and amine groups, respectively. In (3) and (4), H atoms for water molecules were found in difference maps, and first refined with free coordinates and restrained distances O-H = 0.85 (2) and $H \cdot \cdot \cdot H = 1.34$ (4) Å. In the final cycles, water H atoms were fixed and refined as riding atoms. Isotropic displacement parameters for all H atoms were calculated as $U_{iso}(H) = xU_{eq}(\text{carrier atom})$, with x = 1.2 (methylene, aromatic, and amine groups) or x = 1.5 (methyl and water).

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the financial support of MAM during her postgraduate studies with grant No. 179804/194677.

References

- Ajellal, N., Kuhn, M. C. A., Boff, A. D. G., Hörner, M., Thomas, C. M., Carpentier, J.-F. & Casagrande, O. L. Jr (2006). *Organometallics*, 25, 1213–1216.
- Alvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693–1708.
- Alves, S., Paulo, A., Correia, J. D. G., Domingos, Â. & Santos, I. (2002). J. Chem. Soc. Dalton Trans. pp. 4714–4719.
- Berkel, P. M. van, Driessen, W. L., Hämäläinen, R., Reedijk, J. & Turpeinen, U. (1994). *Inorg. Chem.* 33, 5920–5926.
- Burth, R. & Vahrenkamp, H. (1998). Inorg. Chim. Acta, 282, 193-199.
- Chang, X., Lee, K.-E., Jeon, S. I., Kim, Y.-J., Lee, H.-K. & Lee, S. W. (2005). *Dalton Trans.* pp. 3722–3731.
- Griffith, E. A. H., Charles, N. G., Lewinski, K., Amma, E. L. & Rodesiler, P. F. (1987). *Inorg. Chem.* 26, 3983–3989.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Guzei, I. A., Spencer, L. C., Miti, N. & Darkwa, J. (2010). Acta Cryst. E66, m1243.

Table 6Experimental details.

	(1)	(2)	(3)	(4)	(5)
Crystal data					
Chemical formula	[PdCl(C ₁₄ H ₂₃ N ₅)]- NO ₃	[PdBr(C ₁₄ H ₂₃ N ₅)]- NO ₃	$[PdI(C_{14}H_2N_5)]I - 0.5H_2O$	$[Pd(N_3)(C_{14}H_{23}N_5)] - N_3 \cdot H_2O$	$[Pd(NCS)(C_{14}H_{23}N_5)]_2$ - $[Pd(NCS)_4]$
M _r	465.23	509.69	630.58	469.85	1190.43
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$	Triclinic, P1
Temperature (K)	298	298	299	296	298
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.046 (2), 12.2941 (15), 14.0978 (16)	10.934 (6), 12.443 (4), 14.112 (6)	12.013 (4), 12.089 (4), 15.162 (5)	8.132 (3), 22.851 (5), 11.372 (3)	9.0286 (17), 10.532 (2), 13.066 (3)
α, β, γ (°)	90, 94.740 (16), 90	90, 94.76 (4), 90	106.17 (2), 97.34 (3), 106.79 (3)	90, 109.03 (2), 90	94.838 (14), 100.947 (12), 103.989 (13)
$V(Å^3)$	1907.9 (5)	1913.4 (14)	1972.0 (11)	1997.8 (10)	1172.5 (4)
Z	4	4	4	4	1
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	1.14	3.08	4.08	0.96	1.45
Crystal size (mm)	$0.40 \times 0.12 \times 0.10$	$0.60 \times 0.40 \times 0.18$	$0.20 \times 0.15 \times 0.04$	$0.50 \times 0.40 \times 0.40$	$0.40 \times 0.40 \times 0.12$
Data collection					
Diffractometer	Siemens P4	Siemens P4	Siemens P4	Siemens P4	Siemens P4
Absorption correction	ψ scan (<i>XSCANS</i> ; Siemens, 1996)	ψ scan (XSCANS; Siemens, 1996)	ψ scan (XSCANS; Siemens, 1996)	ψ scan (<i>XSCANS</i> ; Siemens, 1996)	ψ scan (XSCANS; Siemens, 1996)
T_{\min}, T_{\max}	0.469, 0.517	0.206, 0.352	0.446, 0.523	0.266, 0.366	0.256, 0.378
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4513, 3372, 2110	12224, 4962, 3329	8975, 6835, 4559	8431, 4032, 3528	8889, 5367, 4874
R _{int}	0.044	0.080	0.043	0.056	0.038
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.596	0.677	0.595	0.623	0.650
Refinement					
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.060, 0.158, 1.05	0.051, 0.148, 1.05	0.040, 0.101, 1.03	0.036, 0.097, 1.08	0.039, 0.107, 1.06
No. of reflections	3372	4962	6835	4032	5367
No. of parameters	230	231	414	248	282
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.45, -1.11	1.10, -1.01	0.85, -1.04	0.55, -1.04	0.83, -1.06

Computer programs: XSCANS (Siemens, 1996), SHELXS2014, SHELXL2014 and SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Kim, J. H., Roh, S.-G. & Jeong, J. H. (2000). Acta Cryst. C56, e543e544.

- Lee, R. E., Park, Y. D. & Jeong, J. H. (2007). Acta Cryst. E63, m2679.
- Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Roisnel, T. & Carpentier, J.-F. (2007*a*). *Inorg. Chem.* **46**, 328–340.
- Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Roisnel, T. & Carpentier, J.-F. (2007b). Polyhedron, 26, 3817–3824.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.
- Martens, C. F., Schenning, A. P. H. J., Feiters, M. C., Berens, H. W., van der Linden, J. G. M., Admiraal, G., Beurskens, P. T., Kooijman, H., Spek, A. L. & Nolte, R. J. M. (1995). *Inorg. Chem.* 34, 4735–4744.
- Massoud, S. S., Le Quan, L., Gatterer, K., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2012*a*). *Polyhedron*, **31**, 601–606.
- Massoud, S. S., Louka, F. R., Obaid, Y. K., Vicente, R., Ribas, J., Fischer, R. C. & Mautner, F. A. (2013). *Dalton Trans.* **42**, 3968– 3978.

- Massoud, S. S., Vicente, R., Fontenot, P. R., Gallo, A. A., Mikuriya, M., Albering, J. H. & Mautner, F. A. (2012b). Polyhedron, 46, 66– 73.
- Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934–m2936.
- Monzani, E., Koolhaas, G. J. A. A., Spandre, A., Leggieri, E., Casella, L., Gullotti, M., Nardin, G., Randaccio, L., Fontani, M., Zanello, P. & Reedijk, J. (2000). J. Biol. Inorg. Chem. 5, 251–261.
- Paviglianiti, A. J., Minn, D. J., Fultz, W. C. & Burmeister, J. L. (1989). *Inorg. Chim. Acta*, **159**, 65–82.
- Riklin, M., Tran, D., Bu, X., Laverman, L. E. & Ford, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 1813–1819.
- Segapelo, T. V., Guzei, I. A., Spencer, L. C. & Darkwa, J. (2011). Inorg. Chem. Commun. 14, 1706–1710.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2015). E71, 22-27 [https://doi.org/10.1107/S205698901402595X]

Coordination of bis(pyrazol-1-yl)amine to palladium(II): influence of the coligands and counter-ions on the molecular and crystal structures

María de los Angeles Mendoza, Sylvain Bernès and Guillermo Mendoza-Díaz

Computing details

For all compounds, data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS* (Siemens, 1996); data reduction: *XSCANS* (Siemens, 1996); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008). Molecular graphics: *SHELXTL* (Sheldrick, 2008) for (1), (3), (4), (5); *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008) for (2). For all compounds, software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(1) {Bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }chloridopalladium nitrate

Crystal data

[PdCl(C₁₄H₂₃N₅)]NO₃ $M_r = 465.23$ Monoclinic, $P2_1/n$ a = 11.046 (2) Å b = 12.2941 (15) Å c = 14.0978 (16) Å $\beta = 94.740$ (16)° V = 1907.9 (5) Å³ Z = 4

Data collection

Siemens P4 diffractometer Radiation source: fine-focus sealed tube, FN4 Graphite monochromator ω scans Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{\min} = 0.469, T_{\max} = 0.517$ 4513 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.158$ S = 1.053372 reflections 230 parameters F(000) = 944 $D_x = 1.620 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{Å} Cell parameters from 51 reflections $\theta = 4.2-11.4^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$ T = 298 KIrregular, yellow $0.40 \times 0.12 \times 0.10 \text{ mm}$

3372 independent reflections 2110 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -13 \rightarrow 2$ $k = -14 \rightarrow 1$ $l = -16 \rightarrow 16$ 2 standard reflections every 98 reflections intensity decay: 2.5%

0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0649P)^2 + 4.1623P] \\ & \text{where } P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.001 \\ \Delta\rho_{\text{max}} = 1.45 \text{ e } \text{\AA}{}^{-3} \\ \Delta\rho_{\text{min}} = -1.11 \text{ e } \text{\AA}{}^{-3} \end{split}$$

Fractional atomic coordinates and iso	otropic or equivalent	isotropic displacement	parameters (Å ²)
---------------------------------------	-----------------------	------------------------	------------------------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pd1	0.72319 (6)	0.71729 (4)	0.48704 (4)	0.0531 (2)	
Cl1	0.8178 (2)	0.79157 (19)	0.36252 (16)	0.0787 (7)	
N1	0.6837 (6)	0.8628 (5)	0.5434 (4)	0.0526 (15)	
N2	0.5729 (6)	0.8737 (5)	0.5775 (4)	0.0590 (17)	
C3	0.5644 (8)	0.9712 (7)	0.6217 (6)	0.063 (2)	
C4	0.6727 (8)	1.0222 (7)	0.6145 (6)	0.062 (2)	
H4A	0.6935	1.0913	0.6372	0.074*	
C5	0.7454 (8)	0.9534 (6)	0.5679 (6)	0.057 (2)	
C6	0.4531 (9)	1.0055 (9)	0.6675 (8)	0.094 (3)	
H6A	0.3833	0.9982	0.6227	0.141*	
H6B	0.4614	1.0800	0.6874	0.141*	
H6C	0.4433	0.9603	0.7219	0.141*	
C7	0.8714 (9)	0.9703 (8)	0.5461 (8)	0.087 (3)	
H7A	0.9208	0.9113	0.5717	0.131*	
H7B	0.9010	1.0375	0.5740	0.131*	
H7C	0.8752	0.9734	0.4784	0.131*	
C8	0.4865 (8)	0.7861 (7)	0.5628 (6)	0.071 (2)	
H8A	0.4758	0.7689	0.4955	0.086*	
H8B	0.4086	0.8094	0.5827	0.086*	
C9	0.5280 (9)	0.6844 (8)	0.6183 (7)	0.085 (3)	
H9A	0.5163	0.6950	0.6851	0.102*	
H9B	0.4782	0.6232	0.5956	0.102*	
N10	0.6567 (6)	0.6590 (5)	0.6082 (4)	0.0592 (17)	
H10	0.6972	0.6969	0.6553	0.071*	
N11	0.7516 (6)	0.5655 (5)	0.4398 (4)	0.0592 (17)	
N12	0.8073 (7)	0.4924 (5)	0.5011 (4)	0.0668 (19)	
C13	0.8283 (8)	0.3993 (7)	0.4553 (6)	0.066 (2)	
C14	0.7855 (8)	0.4148 (6)	0.3638 (6)	0.065 (2)	
H14A	0.7896	0.3645	0.3148	0.078*	
C15	0.7349 (7)	0.5173 (6)	0.3546 (5)	0.0550 (19)	
C16	0.8887 (11)	0.3031 (8)	0.5040 (7)	0.096 (3)	
H16A	0.8463	0.2837	0.5583	0.145*	
H16B	0.9714	0.3210	0.5244	0.145*	
H16C	0.8872	0.2429	0.4605	0.145*	
C17	0.6704 (9)	0.5709 (8)	0.2707 (6)	0.081 (3)	
H17A	0.5987	0.6063	0.2896	0.121*	
H17B	0.6478	0.5173	0.2230	0.121*	
H17C	0.7229	0.6238	0.2453	0.121*	
C18	0.8104 (10)	0.5127 (7)	0.6030 (5)	0.078 (3)	
H18A	0.8676	0.5707	0.6201	0.094*	

H18B	0.8380	0.4477	0.6373	0.094*	
C19	0.6873 (11)	0.5438 (7)	0.6310 (6)	0.080 (3)	
H19A	0.6268	0.4969	0.5982	0.096*	
H19B	0.6845	0.5323	0.6989	0.096*	
N20	0.8548 (9)	0.7786 (5)	0.7798 (5)	0.069 (2)	
01	0.7422 (7)	0.7795 (6)	0.7736 (5)	0.0859 (19)	
O2	0.9057 (8)	0.7441 (7)	0.7123 (6)	0.105 (2)	
03	0.9127 (7)	0.8085 (5)	0.8529 (5)	0.097 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Pd1	0.0779 (5)	0.0434 (3)	0.0381 (3)	0.0043 (3)	0.0053 (3)	0.0013 (3)
C11	0.0987 (17)	0.0776 (15)	0.0621 (13)	0.0096 (13)	0.0200 (12)	0.0223 (11)
N1	0.056 (4)	0.045 (4)	0.057 (4)	0.001 (3)	0.009 (3)	-0.004 (3)
N2	0.065 (5)	0.060 (4)	0.052 (4)	-0.002 (4)	0.004 (3)	-0.003 (3)
C3	0.072 (6)	0.063 (5)	0.053 (5)	0.019 (5)	-0.003 (4)	-0.006 (4)
C4	0.068 (6)	0.047 (4)	0.070 (5)	0.006 (4)	0.005 (4)	-0.012 (4)
C5	0.065 (6)	0.046 (4)	0.061 (5)	-0.002 (4)	0.006 (4)	0.010 (4)
C6	0.082 (7)	0.102 (8)	0.100 (8)	0.024 (6)	0.010 (6)	-0.029 (6)
C7	0.095 (8)	0.063 (6)	0.105 (8)	-0.015 (5)	0.021 (6)	-0.005 (5)
C8	0.070 (6)	0.083 (6)	0.060 (5)	-0.007 (5)	-0.004 (4)	-0.010 (5)
C9	0.095 (8)	0.088 (7)	0.071 (6)	-0.030 (6)	0.011 (5)	-0.007 (5)
N10	0.083 (5)	0.053 (4)	0.042 (3)	-0.014 (4)	0.006 (3)	-0.003 (3)
N11	0.097 (5)	0.044 (3)	0.036 (3)	0.015 (4)	0.004 (3)	0.000 (3)
N12	0.098 (6)	0.050 (4)	0.050 (4)	0.013 (4)	-0.010 (4)	0.003 (3)
C13	0.081 (6)	0.050 (5)	0.069 (6)	0.010 (4)	0.015 (5)	0.003 (4)
C14	0.080 (6)	0.052 (5)	0.064 (5)	0.009 (5)	0.014 (5)	-0.007 (4)
C15	0.063 (5)	0.061 (5)	0.041 (4)	0.006 (4)	0.002 (4)	-0.008 (4)
C16	0.131 (9)	0.073 (7)	0.089 (7)	0.039 (6)	0.028 (7)	0.012 (5)
C17	0.100 (7)	0.096 (7)	0.045 (5)	0.023 (6)	-0.003 (5)	-0.010 (5)
C18	0.137 (9)	0.047 (5)	0.046 (5)	0.008 (6)	-0.017 (5)	0.004 (4)
C19	0.147 (9)	0.057 (5)	0.037 (4)	-0.013 (6)	0.007 (5)	0.005 (4)
N20	0.102 (7)	0.045 (4)	0.058 (5)	-0.003 (5)	-0.004(5)	0.003 (4)
01	0.086 (5)	0.094 (5)	0.077 (4)	-0.004 (4)	0.003 (4)	-0.018 (4)
O2	0.115 (6)	0.110 (6)	0.091 (5)	-0.002 (4)	0.005 (5)	-0.024 (4)
O3	0.136 (6)	0.073 (4)	0.075 (4)	-0.005 (4)	-0.039 (4)	-0.004 (3)

Pd1—N11	2.015 (6)	N10—C19	1.485 (10)
Pd1—N1	2.019 (6)	N10—H10	0.9000
Pd1—N10	2.045 (6)	N11—C15	1.339 (9)
Pd1—Cl1	2.305 (2)	N11—N12	1.357 (8)
N1-C5	1.337 (9)	N12—C13	1.344 (10)
N1—N2	1.358 (9)	N12—C18	1.455 (10)
N2-C3	1.358 (10)	C13—C14	1.351 (11)
N2	1.442 (10)	C13—C16	1.496 (12)

C3—C4	1.362 (11)	C14—C15	1.380 (11)
C3—C6	1.495 (12)	C14—H14A	0.9300
C4—C5	1.372 (11)	C15—C17	1.484 (11)
C4—H4A	0.9300	C16—H16A	0.9600
C5—C7	1.465 (12)	C16—H16B	0.9600
С6—Н6А	0.9600	C16—H16C	0.9600
С6—Н6В	0.9600	С17—Н17А	0.9600
С6—Н6С	0.9600	С17—Н17В	0.9600
C7—H7A	0.9600	C17—H17C	0.9600
C7—H7B	0.9600	C18—C19	1.497 (13)
C7—H7C	0.9600	C18—H18A	0.9700
C8—C9	1 525 (13)	C18—H18B	0.9700
C8—H8A	0.9700	C19—H19A	0.9700
C8—H8B	0.9700	C19—H19B	0.9700
C9-N10	1 473 (11)	N20-02	1 219 (10)
C9—H9A	0.9700	N20-03	1.213(10) 1.223(9)
C_{0} HOR	0.9700	N20 01	1.223(9)
C9—119B	0.9700	1120-01	1.239 (9)
N11—Pd1—N1	174 3 (3)	C19—N10—Pd1	115 1 (5)
N11—Pd1—N10	91 6 (3)	C9-N10-H10	104.1
N1 - Pd1 - N10	83.0 (3)	C19 - N10 - H10	104.1
N11—Pd1—C11	91 30 (19)	Pd1N10H10	104.1
N1—Pd1—Cl1	94 30 (19)	C15 - N11 - N12	107.5 (6)
N10—Pd1—Cl1	172 9 (2)	C15 $N11$ $Pd1$	133.8(5)
C_{5} N1 N2	106.4 (6)	N12— $N11$ — $Pd1$	133.0(3) 118 5 (4)
C_5 —N1—Pd1	135.9 (6)	C13 - N12 - N11	110.3(+) 110.2(6)
$N_2 N_1 P_d I$	117.2(5)	C13 - N12 - C18	110.2(0) 1289(7)
$N_2 = N_1 = 1$ d1 $C_3 = N_2 = N_1$	117.2(3) 110.4(7)	N11_N12_C18	120.9(7) 110.2(6)
$C_3 = N_2 = C_8$	130.9(8)	N12 C13 C14	119.2(0) 106.1(7)
$N_1 = N_2 = C_0^{-1}$	130.9(0) 118.7(7)	N12 - C13 - C14 N12 - C13 - C16	100.1(7) 122.8(8)
$N_1 = N_2 = C_0$ $N_2 = C_3 = C_4$	116.7(7) 106.1(7)	C_{14} C_{13} C_{16}	122.0(0) 131.1(8)
$N_2 = C_3 = C_4$	100.1(7) 122.5(0)	$C_{14} = C_{13} = C_{10}$	100.0(7)
$N_2 = C_3 = C_0$	122.3(9) 131.3(8)	$C_{13} = C_{14} = C_{13}$	109.0 (7)
$C_{4} = C_{5} = C_{6}$	131.3(0) 107.7(7)	C_{15} C_{14} H_{14A}	125.5
$C_3 = C_4 = C_3$	107.7 (7)	N11 C15 C14	123.3 107.2(7)
$C_{5} = C_{4} = H_{4}$	120.1	N11 - C15 - C17	107.2(7)
$C_3 - C_4 - n_4 A$	120.1	C14 $C15$ $C17$	122.7(7)
N1_C5_C7	109.3(7) 122.6(8)	$C_{14} = C_{15} = C_{17}$	130.1 (7)
11 - 03 - 07	122.0(8) 128.1(8)	C13 C16 H16P	109.5
$C_4 = C_5 = C_7$	128.1 (8)	H16A C16 H16P	109.5
C_{2} C_{6} H_{6} H_{6}	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	109.5		109.5
$H_0A = C_0 = H_0B$	109.5	H16A - C16 - H16C	109.5
	109.5	H10B - C10 - H10C	109.5
	109.3	C15 - C17 - U17D	109.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3	$U_{13} - U_{1} - H_{1} B$	109.5
$C_{5} = C_{7} = U_{7}$	109.3	$\Pi I / A \longrightarrow U / - \Pi I / B$	109.3
	109.5		109.5
H/A - U/- H/B	109.5	HI/A - CI/-HI/C	109.5

С5—С7—Н7С	109.5	H17B—C17—H17C	109.5
H7A—C7—H7C	109.5	N12-C18-C19	110.9 (7)
H7B—C7—H7C	109.5	N12—C18—H18A	109.5
N2—C8—C9	111.8 (7)	C19—C18—H18A	109.5
N2—C8—H8A	109.3	N12—C18—H18B	109.5
С9—С8—Н8А	109.3	C19—C18—H18B	109.5
N2—C8—H8B	109.3	H18A—C18—H18B	108.1
С9—С8—Н8В	109.3	N10-C19-C18	112.5 (7)
H8A—C8—H8B	107.9	N10-C19-H19A	109.1
N10—C9—C8	112.1 (7)	C18—C19—H19A	109.1
N10—C9—H9A	109.2	N10-C19-H19B	109.1
С8—С9—Н9А	109.2	C18—C19—H19B	109.1
N10—C9—H9B	109.2	H19A—C19—H19B	107.8
С8—С9—Н9В	109.2	O2—N20—O3	121.2 (10)
H9A—C9—H9B	107.9	O2—N20—O1	118.2 (8)
C9—N10—C19	112.7 (7)	O3—N20—O1	120.5 (9)
C9—N10—Pd1	115.0 (5)		
C5—N1—N2—C3	1.1 (8)	C15—N11—N12—C13	1.2 (10)
Pd1—N1—N2—C3	173.7 (5)	Pd1-N11-N12-C13	-174.5 (6)
C5—N1—N2—C8	-179.0 (7)	C15—N11—N12—C18	-165.2 (8)
Pd1—N1—N2—C8	-6.4 (8)	Pd1-N11-N12-C18	19.0 (10)
N1—N2—C3—C4	0.1 (9)	N11—N12—C13—C14	0.4 (10)
C8—N2—C3—C4	-179.8 (8)	C18—N12—C13—C14	165.2 (9)
N1—N2—C3—C6	-179.2 (8)	N11—N12—C13—C16	180.0 (9)
C8—N2—C3—C6	0.9 (13)	C18—N12—C13—C16	-15.3 (15)
N2—C3—C4—C5	-1.2 (9)	N12-C13-C14-C15	-1.8 (10)
C6—C3—C4—C5	178.0 (9)	C16—C13—C14—C15	178.6 (10)
N2—N1—C5—C4	-1.8 (8)	N12—N11—C15—C14	-2.3 (9)
Pd1—N1—C5—C4	-172.4 (6)	Pd1-N11-C15-C14	172.5 (6)
N2—N1—C5—C7	177.9 (7)	N12—N11—C15—C17	176.7 (8)
Pd1—N1—C5—C7	7.3 (12)	Pd1—N11—C15—C17	-8.5 (13)
C3—C4—C5—N1	2.0 (9)	C13—C14—C15—N11	2.6 (10)
C3—C4—C5—C7	-177.8 (8)	C13—C14—C15—C17	-176.4 (9)
C3—N2—C8—C9	-113.1 (9)	C13—N12—C18—C19	-115.9 (10)
N1—N2—C8—C9	67.0 (9)	N11—N12—C18—C19	47.7 (10)
N2-C8-C9-N10	-45.8 (10)	C9—N10—C19—C18	168.9 (7)
C8—C9—N10—C19	-159.6 (7)	Pd1-N10-C19-C18	34.4 (8)
C8—C9—N10—Pd1	-25.0 (9)	N12-C18-C19-N10	-78.4 (9)

Hydrogen-bond geometry (Å, °)

D—H…A	D—H	H <i>A</i>	$D \cdots A$	<i>D</i> —H… <i>A</i>
	0.02	2.((2 510 (10)	1/2
C4—H4 A ····N20 ⁴	0.93	2.66	3.510 (10)	153
C7—H7 <i>C</i> ···Cl1	0.96	2.81	3.410 (10)	121
C8—H8A····O3 ⁱⁱ	0.97	2.28	3.222 (10)	163
N10—H10…N20	0.90	2.57	3.453 (10)	167
N10—H10…O1	0.90	1.98	2.857 (9)	164

N10—H10…O2	0.90	2.45	3.186 (10)	140	
C14—H14A····Cl1 ⁱⁱⁱ	0.93	2.82	3.629 (9)	146	
C16—H16A····O1 ^{iv}	0.96	2.64	3.572 (12)	164	
C17—H17A····O3 ⁱⁱ	0.96	2.53	3.491 (12)	175	
C17—H17C…Cl1	0.96	2.79	3.367 (10)	119	
C18—H18A····O2	0.97	2.51	3.364 (11)	146	
C18—H18 <i>B</i> ····O1 ^{iv}	0.97	2.61	3.428 (11)	142	
C19—H19A····O3 ^{iv}	0.97	2.47	3.112 (11)	124	

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) x-1/2, -y+3/2, z-1/2; (iii) -x+3/2, y-1/2, -z+1/2; (iv) -x+3/2, y-1/2, -z+3/2.

(2) {Bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }bromidopalladium nitrate

Crystal data

 $[PdBr(C_{14}H_{23}N_5)]NO_3$ $M_r = 509.69$ Monoclinic, $P2_1/n$ a = 10.934 (6) Å b = 12.443 (4) Å c = 14.112 (6) Å $\beta = 94.76$ (4)° V = 1913.4 (14) Å³ Z = 4

Data collection

Siemens P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{\min} = 0.206, T_{\max} = 0.352$ 12224 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.148$ S = 1.054962 reflections 231 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 1016 $D_x = 1.769 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 70 reflections $\theta = 5.0-12.5^{\circ}$ $\mu = 3.08 \text{ mm}^{-1}$ T = 298 KPrism, yellow $0.60 \times 0.40 \times 0.18 \text{ mm}$

4962 independent reflections 3329 reflections with $I > 2\sigma(I)$ $R_{int} = 0.080$ $\theta_{max} = 28.8^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$ 3 standard reflections every 97 reflections intensity decay: 2.5%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 3.056P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.10$ e Å⁻³ $\Delta\rho_{min} = -1.01$ e Å⁻³ Extinction correction: SHELXL2014, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0042 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pd1	0.72527 (4)	0.72194 (3)	0.49024 (3)	0.04869 (16)

		/ ->	/	
Brl	0.82828 (6)	0.79805 (6)	0.36061 (5)	0.0713 (2)
N1	0.6855 (4)	0.8654 (4)	0.5458 (3)	0.0527 (10)
N2	0.5720 (4)	0.8754 (4)	0.5774 (3)	0.0559 (11)
C3	0.5614 (6)	0.9701 (5)	0.6223 (4)	0.0653 (15)
C4	0.6697 (6)	1.0215 (5)	0.6178 (5)	0.0683 (16)
H4A	0.6890	1.0898	0.6412	0.082*
C5	0.7463 (6)	0.9545 (4)	0.5723 (4)	0.0590 (14)
C6	0.4475 (7)	1.0010(7)	0.6655 (6)	0.095 (3)
H6A	0.3795	0.9988	0.6179	0.143*
H6B	0.4561	1.0724	0.6908	0.143*
H6C	0.4330	0.9517	0.7157	0.143*
C7	0.8768 (6)	0.9714 (6)	0.5555 (6)	0.089 (2)
H7A	0.9217	0.9060	0.5686	0.134*
H7B	0.9105	1.0273	0.5966	0.134*
H7C	0.8827	0.9917	0.4904	0.134*
C8	0.4863(6)	0.7883(5)	0.5612 (5)	0.0694 (17)
H8A	0 4791	0 7704	0 4940	0.083*
H8B	0.4062	0.8114	0.5781	0.083*
C9	0.5245 (6)	0.6902 (6)	0.6176 (5)	0.003
НОЛ	0.5219 (0)	0.7022	0.6838	0.089*
HOR	0.3100	0.7022	0.5949	0.089*
N10	0.4740	0.6231(4)	0.5747 0.6103 (3)	0.055
H10	0.0550 (4)	0.0034 (4)	0.6103 (3)	0.0500 (11)
N11	0.0950	0.7007 0.5725 (4)	0.0379 0.4428(2)	0.000
N11	0.7313(3)	0.3723(4)	0.4438(3)	0.0390(12)
N12 C12	0.8088 (5)	0.5000(4)	0.5054(3)	0.0607(12)
C13	0.8290 (6)	0.4082 (4)	0.4598 (4)	0.0596 (14)
U14	0.7837 (6)	0.4222 (5)	0.36/5 (4)	0.0617 (14)
HI4A	0.7853	0.3720	0.3188	0.074*
C15	0.7353 (5)	0.5240 (5)	0.3597 (4)	0.0577(13)
C16	0.8890 (8)	0.3118 (6)	0.50/6 (6)	0.091 (2)
H16A	0.8366	0.2833	0.5529	0.137*
H16B	0.9662	0.3325	0.5398	0.137*
H16C	0.9024	0.2581	0.4608	0.137*
C17	0.6657 (7)	0.5744 (6)	0.2765 (4)	0.081 (2)
H17A	0.6015	0.6186	0.2979	0.121*
H17B	0.6305	0.5194	0.2351	0.121*
H17C	0.7201	0.6179	0.2427	0.121*
C18	0.8102 (7)	0.5208 (5)	0.6062 (4)	0.0715 (18)
H18A	0.8671	0.5787	0.6233	0.086*
H18B	0.8384	0.4571	0.6412	0.086*
C19	0.6851 (7)	0.5506 (5)	0.6330 (4)	0.0704 (18)
H19A	0.6811	0.5390	0.7006	0.084*
H19B	0.6246	0.5045	0.5994	0.084*
N20	0.8449 (4)	0.7830 (3)	0.7852 (3)	0.0351 (8)
O1	0.7422 (7)	0.7835 (4)	0.7749 (4)	0.1053 (19)
O2	0.9013 (7)	0.7448 (6)	0.7245 (6)	0.125 (2)
O3	0.9009 (7)	0.8139 (5)	0.8568 (5)	0.113 (2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0552 (3)	0.0486 (2)	0.0429 (2)	0.00212 (18)	0.00814 (16)	0.00166 (16)
Br1	0.0761 (4)	0.0797 (4)	0.0608 (4)	0.0144 (3)	0.0225 (3)	0.0231 (3)
N1	0.048 (2)	0.057 (3)	0.054 (2)	0.002 (2)	0.012 (2)	-0.002 (2)
N2	0.048 (2)	0.069 (3)	0.051 (2)	0.006 (2)	0.008 (2)	-0.004 (2)
C3	0.070 (4)	0.067 (4)	0.058 (3)	0.018 (3)	0.002 (3)	-0.011 (3)
C4	0.082 (4)	0.057 (3)	0.065 (4)	0.005 (3)	0.005 (3)	-0.012 (3)
C5	0.068 (3)	0.048 (3)	0.061 (3)	-0.004 (3)	0.004 (3)	0.003 (3)
C6	0.078 (5)	0.120 (6)	0.089 (5)	0.034 (5)	0.013 (4)	-0.034 (5)
C7	0.071 (4)	0.079 (4)	0.120 (6)	-0.021 (4)	0.022 (4)	-0.013 (5)
C8	0.050 (3)	0.088 (5)	0.072 (4)	-0.002 (3)	0.014 (3)	-0.007 (3)
C9	0.069 (4)	0.081 (4)	0.075 (4)	-0.024 (4)	0.024 (3)	-0.009 (4)
N10	0.066 (3)	0.061 (3)	0.044 (2)	-0.011 (2)	0.010 (2)	-0.003 (2)
N11	0.077 (3)	0.055 (2)	0.045 (2)	0.011 (2)	0.005 (2)	0.002 (2)
N12	0.080 (3)	0.049 (2)	0.052 (3)	0.008 (2)	-0.003 (2)	0.001 (2)
C13	0.064 (3)	0.049 (3)	0.066 (3)	0.009 (3)	0.010 (3)	0.002 (3)
C14	0.069 (3)	0.058 (3)	0.059 (3)	0.010 (3)	0.008 (3)	-0.010 (3)
C15	0.057 (3)	0.062 (3)	0.054 (3)	0.009 (3)	0.004 (3)	-0.008 (3)
C16	0.110 (6)	0.067 (4)	0.096 (5)	0.032 (4)	0.010 (5)	0.008 (4)
C17	0.095 (5)	0.093 (5)	0.052 (3)	0.032 (4)	-0.009 (3)	-0.009 (3)
C18	0.107 (5)	0.050 (3)	0.055 (3)	0.006 (4)	-0.011 (3)	0.007 (3)
C19	0.109 (5)	0.057 (3)	0.046 (3)	-0.011 (4)	0.017 (3)	0.007 (3)
N20	0.051 (2)	0.0202 (15)	0.0322 (17)	-0.0047 (17)	-0.0085 (16)	-0.0046 (13)
01	0.145 (6)	0.093 (4)	0.079 (4)	-0.003 (4)	0.014 (4)	-0.016 (3)
O2	0.115 (5)	0.117 (5)	0.139 (6)	-0.022 (4)	-0.021 (5)	-0.010 (5)
03	0.140 (5)	0.090 (4)	0.103 (4)	-0.014 (4)	-0.027 (4)	0.006 (3)

Atomic displacement parameters $(Å^2)$

Pd1—N11	2.000 (5)	N10—C19	1.470 (8)	
Pd1—N1	2.012 (4)	N10—H10	0.9000	
Pd1—N10	2.048 (4)	N11—C15	1.330 (7)	
Pd1—Br1	2.4194 (11)	N11—N12	1.368 (6)	
N1C5	1.330 (7)	N12—C13	1.339 (7)	
N1—N2	1.359 (6)	N12—C18	1.444 (7)	
N2—C3	1.347 (7)	C13—C14	1.366 (8)	
N2—C8	1.438 (7)	C13—C16	1.500 (8)	
C3—C4	1.352 (9)	C14—C15	1.373 (8)	
С3—С6	1.482 (9)	C14—H14A	0.9300	
C4—C5	1.378 (8)	C15—C17	1.484 (8)	
C4—H4A	0.9300	C16—H16A	0.9600	
С5—С7	1.480 (9)	C16—H16B	0.9600	
С6—Н6А	0.9600	C16—H16C	0.9600	
С6—Н6В	0.9600	C17—H17A	0.9600	
С6—Н6С	0.9600	C17—H17B	0.9600	
C7—H7A	0.9600	C17—H17C	0.9600	

C7—H7B	0.9600	C18—C19	1.496 (10)
C/—H/C	0.9600	CI8—HI8A	0.9700
C8—C9	1.498 (9)	C18—H18B	0.9700
C8—H8A	0.9700	С19—Н19А	0.9700
С8—Н8В	0.9700	С19—Н19В	0.9700
C9—N10	1.484 (8)	N20—O2	1.195 (8)
С9—Н9А	0.9700	N20—O3	1.200 (7)
С9—Н9В	0.9700	N20—O1	1.121 (8)
N11—Pd1—N1	173.81 (19)	C19—N10—Pd1	115.5 (4)
N11—Pd1—N10	90.80 (19)	C9—N10—H10	104.1
N1—Pd1—N10	83.45 (19)	C19—N10—H10	104.1
N11—Pd1—Br1	91.58 (14)	Pd1-N10-H10	104.1
N1—Pd1—Br1	94.40 (13)	C15—N11—N12	106.7 (4)
N10—Pd1—Br1	173.21 (14)	C15—N11—Pd1	134.7 (4)
C5—N1—N2	106.3 (5)	N12—N11—Pd1	118.4 (3)
C5—N1—Pd1	136.9 (4)	C13—N12—N11	110.0 (4)
N2—N1—Pd1	116.2 (4)	C13—N12—C18	129.6 (5)
N1—N2—C3	110.5 (5)	N11—N12—C18	118.4 (5)
N1—N2—C8	118.7 (5)	C14—C13—N12	106.8 (5)
C3—N2—C8	130.8 (5)	C14—C13—C16	129.9 (6)
C4—C3—N2	106.4 (5)	N12—C13—C16	123.3 (6)
C4—C3—C6	131.8 (6)	C13—C14—C15	107.5 (5)
N2—C3—C6	121.9 (6)	C13—C14—H14A	126.2
C3—C4—C5	107.7 (5)	C15—C14—H14A	126.2
C3—C4—H4A	126.1	N11—C15—C14	109.0 (5)
C5—C4—H4A	126.1	N11—C15—C17	122.3 (5)
N1—C5—C4	109.0 (6)	C14—C15—C17	128.5 (5)
N1—C5—C7	122.6 (6)	C13—C16—H16A	109.5
C4—C5—C7	128.3 (6)	C13—C16—H16B	109.5
С3—С6—Н6А	109.5	H16A—C16—H16B	109.5
С3—С6—Н6В	109.5	C13—C16—H16C	109.5
H6A—C6—H6B	109.5	H16A—C16—H16C	109.5
С3—С6—Н6С	109.5	H16B—C16—H16C	109.5
H6A—C6—H6C	109.5	C15—C17—H17A	109.5
H6B—C6—H6C	109.5	C15—C17—H17B	109.5
С5—С7—Н7А	109.5	H17A—C17—H17B	109.5
С5—С7—Н7В	109.5	C15—C17—H17C	109.5
H7A—C7—H7B	109.5	H17A—C17—H17C	109.5
С5—С7—Н7С	109.5	H17B—C17—H17C	109.5
H7A—C7—H7C	109.5	N12—C18—C19	111.0 (5)
H7B—C7—H7C	109.5	N12—C18—H18A	109.4
N2—C8—C9	112.3 (5)	C19—C18—H18A	109.4
N2—C8—H8A	109.1	N12—C18—H18B	109.4
С9—С8—Н8А	109.1	C19—C18—H18B	109.4
N2—C8—H8B	109.1	H18A—C18—H18B	108.0
C9—C8—H8B	109.1	C18—C19—N10	111.8 (5)
H8A—C8—H8B	107.9	C18—C19—H19A	109.3

N10—C9—C8	112.0 (5)	N10—C19—H19A	109.3
N10—C9—H9A	109.2	C18—C19—H19B	109.3
С8—С9—Н9А	109.2	N10-C19-H19B	109.3
N10—C9—H9B	109.2	H19A—C19—H19B	107.9
С8—С9—Н9В	109.2	O2—N20—O3	118.3 (6)
Н9А—С9—Н9В	107.9	O2—N20—O1	118.7 (5)
C9—N10—C19	113.3 (5)	O3—N20—O1	122.9 (6)
C9—N10—Pd1	113.9 (4)		
	/ -		/->
C5—N1—N2—C3	0.7 (6)	C15—N11—N12—C13	0.7 (7)
Pd1—N1—N2—C3	173.2 (4)	Pd1—N11—N12—C13	-174.0 (4)
C5—N1—N2—C8	-178.2 (5)	C15—N11—N12—C18	-164.6 (6)
Pd1—N1—N2—C8	-5.6 (6)	Pd1—N11—N12—C18	20.7 (7)
N1—N2—C3—C4	0.8 (7)	N11—N12—C13—C14	-0.1 (7)
C8—N2—C3—C4	179.5 (6)	C18—N12—C13—C14	163.1 (7)
N1—N2—C3—C6	-178.8 (6)	N11—N12—C13—C16	-179.2 (6)
C8—N2—C3—C6	-0.2 (10)	C18—N12—C13—C16	-16.0 (11)
N2-C3-C4-C5	-1.9 (7)	N12-C13-C14-C15	-0.5 (7)
C6—C3—C4—C5	177.6 (7)	C16—C13—C14—C15	178.5 (7)
N2—N1—C5—C4	-1.9 (6)	N12—N11—C15—C14	-1.0 (7)
Pd1—N1—C5—C4	-172.0 (4)	Pd1-N11-C15-C14	172.4 (5)
N2—N1—C5—C7	176.5 (6)	N12—N11—C15—C17	174.4 (6)
Pd1—N1—C5—C7	6.3 (10)	Pd1—N11—C15—C17	-12.1 (10)
C3-C4-C5-N1	2.4 (7)	C13—C14—C15—N11	0.9 (7)
C3—C4—C5—C7	-175.8 (7)	C13—C14—C15—C17	-174.1 (7)
N1—N2—C8—C9	68.0 (7)	C13—N12—C18—C19	-114.3 (7)
C3—N2—C8—C9	-110.6 (7)	N11—N12—C18—C19	47.7 (7)
N2-C8-C9-N10	-47.3 (7)	N12-C18-C19-N10	-79.3 (6)
C8—C9—N10—C19	-158.6 (5)	C9—N10—C19—C18	168.4 (5)
C8—C9—N10—Pd1	-23.9 (7)	Pd1-N10-C19-C18	34.5 (6)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.93	2.66	3.540 (7)	159
0.96	3.06	3.500 (8)	110
0.97	2.30	3.219 (9)	157
0.90	2.54	3.427 (6)	169
0.90	1.98	2.857 (7)	166
0.90	2.43	3.181 (8)	142
0.93	2.88	3.687 (6)	146
0.96	2.65	3.511 (10)	150
0.96	2.55	3.485 (10)	164
0.96	2.98	3.459 (8)	112
0.97	2.52	3.358 (9)	144
	<i>D</i> —H 0.93 0.96 0.97 0.90 0.90 0.90 0.90 0.93 0.96 0.96 0.96 0.97	D—H H…A 0.93 2.66 0.96 3.06 0.97 2.30 0.90 2.54 0.90 1.98 0.90 2.43 0.93 2.88 0.96 2.65 0.96 2.55 0.96 2.98 0.97 2.52	D—HH···A D ···A0.932.663.540 (7)0.963.063.500 (8)0.972.303.219 (9)0.902.543.427 (6)0.901.982.857 (7)0.902.433.181 (8)0.932.883.687 (6)0.962.653.511 (10)0.962.983.459 (8)0.972.523.358 (9)

C18—H18 <i>B</i> ····O1 ^{iv}	0.97	2.65	3.468 (8)	142
C19—H19 <i>B</i> ···O3 ^{iv}	0.97	2.47	3.099 (9)	122

Z = 4

F(000) = 1196

 $\theta = 4.2 - 12.0^{\circ}$

 $\mu = 4.08 \text{ mm}^{-1}$

Plate, orange

 $0.20\times0.15\times0.04~mm$

T = 299 K

 $D_{\rm x} = 2.124 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 68 reflections

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) x-1/2, -y+3/2, z-1/2; (iii) -x+3/2, y-1/2, -z+1/2; (iv) -x+3/2, y-1/2, -z+3/2.

(3) {Bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }iodidopalladium iodide hemihydrate

Crystal data

 $[PdI(C_{14}H_2N_5)]I \cdot 0.5H_2O$ $M_r = 630.58$ Triclinic, $P\overline{1}$ a = 12.013 (4) Å b = 12.089 (4) Å c = 15.162 (5) Å a = 106.17 (2)° $\beta = 97.34$ (3)° $\gamma = 106.79$ (3)° V = 1972.0 (11) Å³

Data collection

Siemens P4	6835 independent reflections
diffractometer	4559 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.043$
Graphite monochromator	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.8^\circ$
ω scans	$h = -14 \rightarrow 3$
Absorption correction: ψ scan	$k = -13 \rightarrow 13$
(XSCANS; Siemens, 1996)	$l = -18 \rightarrow 18$
$T_{\min} = 0.446, \ T_{\max} = 0.523$	3 standard reflections every 97 reflections
8975 measured reflections	intensity decay: 1.5%

Refinement

Refinement on F^2 Least-squares matrix: full	Primary atom site location: structure-invariant direct methods
$R[F^2 > 2\sigma(F^2)] = 0.040$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.101$	map
<i>S</i> = 1.03	Hydrogen site location: mixed
6835 reflections	H-atom parameters constrained
414 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 6.3989P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 0.85$ e Å ⁻³
	$\Delta ho_{ m min} = -1.04$ e Å ⁻³

Special details

Refinement. Geometry of the water molecule first regularized with soft restraints: *DFIX* 0.85 0.02 O1 H1 O1 H2 DANG 1.34 0.04 H1 H2 then fixed in last l.s. cycles.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pd1	0.64608 (5)	0.84173 (5)	0.70510 (4)	0.03566 (15)	
I1	0.75703 (5)	0.76282 (6)	0.57898 (4)	0.05531 (17)	
N1	0.6227 (5)	0.7009 (6)	0.7556 (4)	0.0393 (15)	
N2	0.6504 (5)	0.7285 (6)	0.8519 (4)	0.0405 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C3	0.6317 (7)	0.6248 (8)	0.8731 (6)	0.045 (2)
C4	0.5940 (7)	0.5293 (8)	0.7912 (6)	0.047 (2)
H4A	0.5768	0.4468	0.7844	0.057*
C5	0.5864 (7)	0.5794 (7)	0.7195 (6)	0.045 (2)
C6	0.6539 (9)	0.6222 (10)	0.9712 (6)	0.067 (3)
H6A	0.7355	0.6698	1.0025	0.101*
H6B	0.6382	0.5391	0.9697	0.101*
H6C	0.6022	0.6560	1.0047	0.101*
C7	0.5422 (8)	0.5142 (8)	0.6166 (6)	0.062 (3)
H7A	0.5253	0.5693	0.5863	0.093*
H7B	0.4707	0.4460	0.6052	0.093*
H7C	0.6019	0.4852	0.5917	0.093*
C8	0.6637 (7)	0.8494 (7)	0.9118 (5)	0.046 (2)
H8A	0.7347	0.9082	0.9063	0.055*
H8B	0.6738	0.8519	0.9769	0.055*
C9	0.5567 (7)	0.8842 (8)	0.8854 (6)	0.049 (2)
H9A	0.4845	0.8156	0.8749	0.058*
H9B	0.5558	0.9523	0.9371	0.058*
N10	0.5581 (5)	0.9190 (6)	0.7995 (4)	0.0389 (15)
H10A	0.6005	0.9996	0.8206	0.047*
N11	0.6523 (5)	0.9860 (5)	0.6634 (4)	0.0355 (14)
N12	0.5449 (5)	1.0022 (6)	0.6428 (4)	0.0417 (15)
C13	0.5610(7)	1.1056 (7)	0.6222 (5)	0.0433 (19)
C14	0.6808 (7)	1.1565 (8)	0.6286 (6)	0.051 (2)
H14A	0.7183	1.2276	0.6161	0.061*
C15	0.7350(7)	1.0819(7)	0.6569 (5)	0.0405 (18)
C16	0.4620 (8)	1.1495 (8)	0.5978 (7)	0.059 (2)
H16A	0.3928	1.0808	0.5603	0.089*
H16B	0.4854	1.2038	0.5626	0.089*
H16C	0.4438	1.1922	0.6545	0.089*
C17	0.8642 (7)	1.0992 (9)	0.6824 (6)	0.057(2)
H17A	0.8845	1.0992	0.7457	0.085*
H17B	0.9107	1.1760	0.6780	0.085*
H17C	0.8806	1.0337	0.6398	0.085*
C18	0.4389 (6)	0.9129 (7)	0.6494 (6)	0.047 (2)
H18A	0.4311	0.8324	0.6081	0.056*
H18B	0.3694	0.9319	0.6276	0.056*
C19	0.4409(7)	0.9094(7)	0.7490 (6)	0.047(2)
H19A	0.4181	0.9763	0.7843	0.057*
H19B	0.3821	0.8334	0.7461	0.057*
Pd2	0.89057(5)	0.31577 (5)	0.31013 (4)	0.03801 (16)
I2	0.78206 (5)	0.41030 (5)	0.43265 (4)	0.06044 (19)
N21	0.8807 (5)	0.1716 (6)	0.3554 (4)	0.0408 (15)
N22	0.8361 (5)	0.0562 (6)	0.2895 (4)	0.0413 (15)
C23	0.8361 (7)	-0.0288(8)	0.3313 (6)	0.0441 (19)
C24	0.8777(7)	0.0336 (8)	0.4249 (6)	0.053 (2)
H24A	0.8851	-0.0005	0.4723	0.064*
C25	0.9072 (6)	0.1582 (8)	0.4373(5)	0.0428 (19)

C26	0.7980 (8)	-0.1613 (8)	0.2781 (7)	0.061 (2)
H26A	0.7264	-0.1845	0.2309	0.091*
H26B	0.7830	-0.2070	0.3205	0.091*
H26C	0.8598	-0.1783	0.2482	0.091*
C27	0.9661 (8)	0.2630 (8)	0.5245 (6)	0.059 (2)
H27A	1.0039	0.3345	0.5090	0.089*
H27B	1.0251	0.2453	0.5618	0.089*
H27C	0.9078	0.2777	0.5597	0.089*
C28	0.8342 (7)	0.0419 (7)	0.1900 (5)	0.045 (2)
H28A	0.7730	0.0697	0.1648	0.055*
H28B	0.8152	-0.0439	0.1541	0.055*
C29	0.9540 (7)	0.1153 (7)	0.1807 (5)	0.0435 (19)
H29A	1.0163	0.1051	0.2217	0.052*
H29B	0.9618	0.0845	0.1163	0.052*
N30	0.9695 (5)	0.2441 (5)	0.2048 (4)	0.0380 (15)
H30A	0.9298	0.2498	0.1527	0.046*
N31	0.9132 (5)	0.4530 (6)	0.2548 (5)	0.0436 (16)
N32	1.0221 (5)	0.4929 (6)	0.2337 (5)	0.0437 (16)
C33	1.0186 (7)	0.5512 (8)	0.1718 (6)	0.051 (2)
C34	0.9048 (8)	0.5537 (8)	0.1536 (7)	0.061 (2)
H34A	0.8753	0.5902	0.1139	0.073*
C35	0.8427 (7)	0.4922 (8)	0.2053 (7)	0.054 (2)
C36	1.1245 (8)	0.5984 (9)	0.1333 (7)	0.070 (3)
H36A	1.1892	0.6565	0.1841	0.104*
H36B	1.1040	0.6375	0.0897	0.104*
H36C	1.1482	0.5314	0.1014	0.104*
C37	0.7122 (8)	0.4641 (10)	0.2050 (8)	0.079 (3)
H37A	0.6921	0.4198	0.2476	0.118*
H37B	0.6656	0.4153	0.1425	0.118*
H37C	0.6957	0.5392	0.2245	0.118*
C38	1.1151 (6)	0.4525 (7)	0.2691 (5)	0.044 (2)
H38A	1.1185	0.4627	0.3352	0.053*
H38B	1.1914	0.5033	0.2641	0.053*
C39	1.0946 (6)	0.3211 (7)	0.2160 (6)	0.0430 (19)
H39A	1.1120	0.3141	0.1544	0.052*
H39B	1.1481	0.2923	0.2497	0.052*
I3	0.44634 (6)	0.76946 (6)	0.10827 (4)	0.06206 (19)
I4	-0.00003 (8)	0.83190 (7)	0.05319 (5)	0.0843 (2)
01	0.2414 (8)	0.8235 (8)	-0.0455 (6)	0.112 (3)
H1	0.3020	0.8127	-0.0184	0.168*
H2	0.1967	0.8227	-0.0063	0.168*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0346 (3)	0.0398 (3)	0.0366 (3)	0.0169 (3)	0.0098 (3)	0.0139 (3)
I1	0.0580 (4)	0.0757 (4)	0.0464 (3)	0.0390 (3)	0.0199 (3)	0.0212 (3)
N1	0.046 (4)	0.040 (4)	0.036 (4)	0.021 (3)	0.004 (3)	0.015 (3)

N2	0.041 (4)	0.041 (4)	0.039 (4)	0.014 (3)	0.008 (3)	0.013 (3)
C3	0.039 (4)	0.056 (5)	0.060 (5)	0.024 (4)	0.026 (4)	0.035 (5)
C4	0.051 (5)	0.041 (5)	0.059 (6)	0.023 (4)	0.018 (4)	0.022 (4)
C5	0.041 (4)	0.041 (5)	0.058 (5)	0.017 (4)	0.014 (4)	0.020 (4)
C6	0.078 (7)	0.090 (8)	0.058 (6)	0.040 (6)	0.027 (5)	0.045 (6)
C7	0.065 (6)	0.044 (5)	0.057 (6)	0.017 (5)	-0.004 (5)	-0.002 (4)
C8	0.054 (5)	0.050 (5)	0.030 (4)	0.015 (4)	0.009 (4)	0.013 (4)
C9	0.062 (6)	0.050 (5)	0.045 (5)	0.028 (4)	0.028 (4)	0.017 (4)
N10	0.035 (3)	0.033 (3)	0.048 (4)	0.011 (3)	0.013 (3)	0.012 (3)
N11	0.031 (3)	0.039 (4)	0.040 (4)	0.015 (3)	0.009 (3)	0.015 (3)
N12	0.035 (4)	0.044 (4)	0.051 (4)	0.018 (3)	0.009 (3)	0.017 (3)
C13	0.047 (5)	0.043 (5)	0.042 (5)	0.019 (4)	0.012 (4)	0.013 (4)
C14	0.048 (5)	0.049 (5)	0.053 (5)	0.007 (4)	0.009 (4)	0.025 (4)
C15	0.040 (4)	0.042 (5)	0.038 (4)	0.006 (4)	0.008 (3)	0.017 (4)
C16	0.065 (6)	0.059 (6)	0.071 (6)	0.038 (5)	0.013 (5)	0.030 (5)
C17	0.032 (4)	0.071 (6)	0.061 (6)	0.006 (4)	0.010 (4)	0.027 (5)
C18	0.029 (4)	0.042 (5)	0.065 (6)	0.011 (4)	0.003 (4)	0.018 (4)
C19	0.038 (4)	0.037 (5)	0.066 (6)	0.011 (4)	0.020 (4)	0.015 (4)
Pd2	0.0361 (3)	0.0380 (3)	0.0417 (3)	0.0144 (3)	0.0132 (3)	0.0122 (3)
I2	0.0549 (4)	0.0480 (3)	0.0688 (4)	0.0130 (3)	0.0295 (3)	0.0026 (3)
N21	0.042 (4)	0.040 (4)	0.038 (4)	0.014 (3)	0.009 (3)	0.009 (3)
N22	0.039 (4)	0.046 (4)	0.039 (4)	0.014 (3)	0.010 (3)	0.015 (3)
C23	0.034 (4)	0.054 (5)	0.051 (5)	0.018 (4)	0.013 (4)	0.023 (4)
C24	0.043 (5)	0.060 (6)	0.055 (6)	0.011 (4)	0.007 (4)	0.027 (5)
C25	0.030 (4)	0.060 (6)	0.036 (4)	0.006 (4)	0.009 (3)	0.022 (4)
C26	0.062 (6)	0.042 (5)	0.084 (7)	0.016 (4)	0.018 (5)	0.029 (5)
C27	0.063 (6)	0.063 (6)	0.043 (5)	0.006 (5)	0.013 (4)	0.019 (5)
C28	0.048 (5)	0.045 (5)	0.040 (5)	0.018 (4)	0.006 (4)	0.008 (4)
C29	0.052 (5)	0.050 (5)	0.038 (4)	0.028 (4)	0.012 (4)	0.017 (4)
N30	0.040 (4)	0.041 (4)	0.037 (3)	0.020 (3)	0.009 (3)	0.014 (3)
N31	0.036 (4)	0.038 (4)	0.062 (4)	0.015 (3)	0.018 (3)	0.019 (3)
N32	0.034 (4)	0.045 (4)	0.056 (4)	0.014 (3)	0.012 (3)	0.020 (3)
C33	0.052 (5)	0.047 (5)	0.067 (6)	0.020 (4)	0.019 (4)	0.032 (5)
C34	0.063 (6)	0.058 (6)	0.088 (7)	0.036 (5)	0.023 (5)	0.044 (5)
C35	0.041 (5)	0.042 (5)	0.085 (7)	0.018 (4)	0.010 (5)	0.026 (5)
C36	0.062 (6)	0.080 (7)	0.091 (7)	0.028 (5)	0.034 (6)	0.053 (6)
C37	0.048 (6)	0.082 (8)	0.124 (9)	0.031 (5)	0.019 (6)	0.052 (7)
C38	0.027 (4)	0.060 (6)	0.046 (5)	0.013 (4)	0.009 (3)	0.020 (4)
C39	0.034 (4)	0.054 (5)	0.052 (5)	0.023 (4)	0.013 (4)	0.025 (4)
I3	0.0659 (4)	0.0564 (4)	0.0662 (4)	0.0252 (3)	0.0144 (3)	0.0195 (3)
I4	0.1379 (7)	0.0760 (5)	0.0587 (4)	0.0551 (5)	0.0243 (4)	0.0319 (4)
01	0.123 (7)	0.129 (7)	0.089 (6)	0.055 (6)	-0.014 (5)	0.047 (5)

Pd1—N11	1.999 (6)	Pd2—N31	2.026 (6)
Pd1—N1	2.018 (6)	Pd2—N30	2.071 (6)
Pd1—N10	2.061 (6)	Pd2—I2	2.5987 (11)

Pd1—I1	2.5910 (11)	N21—C25	1.307 (9)
N1—C5	1.330 (10)	N21—N22	1.374 (8)
N1—N2	1.376 (8)	N22—C23	1.349 (10)
N2—C3	1.343 (10)	N22—C28	1.467 (9)
N2—C8	1.440 (10)	C23—C24	1.355 (11)
C3—C4	1.356 (11)	C23—C26	1.480 (12)
C3—C6	1.487 (11)	C24—C25	1.395 (12)
C4—C5	1.389 (11)	C24—H24A	0.9300
C4—H4A	0.9300	C25—C27	1.472 (11)
C5—C7	1.483 (11)	C26—H26A	0.9600
C6—H6A	0.9600	C26—H26B	0.9600
C6—H6B	0.9600	C26—H26C	0.9600
C6—H6C	0.9600	C27—H27A	0.9600
C7—H7A	0.9600	C27—H27B	0.9600
C7—H7B	0.9600	C_{27} H27C	0.9600
C7—H7C	0.9600	C_{28} C_{29}	1.504(11)
C8-C9	1 505 (11)	C28—H28A	0.9700
	0.0700	C28 H28B	0.9700
	0.9700	$C_{20} = N_{20}$	1 446 (9)
$C_0 = N_1 O$	1.477(10)	C_{29} H_{20}	1.440(9)
C_{0} H0A	0.0700	C20 H20P	0.9700
	0.9700	N20 C20	1 481 (0)
C9—II9B	1.471(10)	N20 H20A	1.461 (9)
	1.4/1 (10)	N30—n30A	0.9000
NI0—HI0A	0.9000	N31-C35	1.331 (10)
N11—C15	1.329 (9)	N31—N32	1.370 (8)
	1.3/1 (8)	N32-C33	1.326 (10)
N12—C13	1.337 (10)	N32—C38	1.442 (9)
N12—C18	1.448 (10)	C33—C34	1.371 (12)
C13—C14	1.371 (11)	C33—C36	1.496 (12)
C13—C16	1.481 (11)	C34—C35	1.370 (12)
C14—C15	1.381 (11)	C34—H34A	0.9300
C14—H14A	0.9300	C35—C37	1.503 (12)
C15—C17	1.488 (11)	C36—H36A	0.9600
C16—H16A	0.9600	С36—Н36В	0.9600
C16—H16B	0.9600	C36—H36C	0.9600
C16—H16C	0.9600	С37—Н37А	0.9600
C17—H17A	0.9600	С37—Н37В	0.9600
C17—H17B	0.9600	С37—Н37С	0.9600
C17—H17C	0.9600	C38—C39	1.497 (11)
C18—C19	1.519 (11)	C38—H38A	0.9700
C18—H18A	0.9700	C38—H38B	0.9700
C18—H18B	0.9700	С39—Н39А	0.9700
C19—H19A	0.9700	С39—Н39В	0.9700
C19—H19B	0.9700	O1—H1	0.8507
Pd2—N21	2.023 (6)	O1—H2	0.8502
N11—Pd1—N1	172.4 (2)	N21—Pd2—N30	89.6 (2)
N11—Pd1—N10	82.6 (2)	N31—Pd2—N30	83.6 (2)

N1—Pd1—N10	90.1 (2)	N21—Pd2—I2	93.85 (17)
N11—Pd1—I1	91.33 (17)	N31—Pd2—I2	93.00 (18)
N1—Pd1—I1	95.91 (17)	N30—Pd2—I2	175.52 (17)
N10—Pd1—I1	173.96 (17)	C25—N21—N22	106.8 (6)
C5—N1—N2	105.8 (6)	C25—N21—Pd2	135.2 (6)
C5—N1—Pd1	136.5 (5)	N22—N21—Pd2	118.0 (5)
N2-N1-Pd1	117.6 (5)	C23—N22—N21	110.3 (6)
C3—N2—N1	109.8 (6)	C_{23} N22 C_{28}	126.8(7)
$C_3 - N_2 - C_8$	129.0 (7)	$N_{21} - N_{22} - C_{28}$	119.3 (6)
N1—N2—C8	119.1 (6)	N22-C23-C24	1061(7)
N2-C3-C4	108.0(7)	N22 - C23 - C26	123.0(7)
$N_2 = C_3 = C_6$	123.6 (8)	C_{24} C_{23} C_{26}	123.0(7) 131.0(8)
C4-C3-C6	128.3 (8)	C_{23} C_{24} C_{25} C_{25}	107.6 (8)
$C_{3} - C_{4} - C_{5}$	1061(7)	C_{23} C_{24} C_{23} C_{24} C_{23} C_{24} C_{23} C_{24} C_{23} C_{23} C_{24} C_{23} C_{23} C_{24} C_{23} C_{23} C_{24} C_{23} C_{23} C_{23} C_{24} C_{23} C_{23} C_{23} C_{24} C_{23} C_{23} C_{23} C	126.2
$C_3 - C_4 - H_4 \Delta$	126.9	$C_{25} = C_{24} = H_{24A}$	126.2
C_{5} C_{4} H_{4A}	126.9	$N_{21} - C_{25} - C_{24}$	120.2
$N_1 C_5 C_4$	110.1 (7)	N21 C25 C27	109.1(7) 122.5(8)
N1_C5_C7	110.1(7)	$C_{24} = C_{25} = C_{27}$	122.3(8)
$NI = C_3 = C_7$	121.7(7) 128.2(8)	$C_{24} = C_{25} = C_{27}$	120.5 (0)
$C_4 = C_5 = C_7$	120.2 (0)	C_{23} C_{20} H_{20} H_{20}	109.5
C_{3} C_{6} H_{6} H_{6}	109.5	C_{23} C_{20} C	109.5
	109.5	$H_{20}A - C_{20} - H_{20}B$	109.5
$H_0A = C_0 = H_0B$	109.5	125 - 120 - 1200	109.5
	109.5	$H_{20}A - C_{20} - H_{20}C$	109.5
HbA - Cb - HbC	109.5	$H_{26B} = C_{26} = H_{26}C$	109.5
H6B-C6-H6C	109.5	$C_{25} = C_{27} = H_{27} A$	109.5
C_{2} H/A	109.5	C25—C27—H27B	109.5
С5—С/—Н/В	109.5	H2/A—C2/—H2/B	109.5
H/A—C/—H/B	109.5	С25—С27—Н27С	109.5
C5—C7—H7C	109.5	H27A—C27—H27C	109.5
H7A—C7—H7C	109.5	H27B—C27—H27C	109.5
H7B—C7—H7C	109.5	N22—C28—C29	109.8 (6)
N2—C8—C9	111.2 (6)	N22—C28—H28A	109.7
N2—C8—H8A	109.4	C29—C28—H28A	109.7
С9—С8—Н8А	109.4	N22—C28—H28B	109.7
N2—C8—H8B	109.4	C29—C28—H28B	109.7
С9—С8—Н8В	109.4	H28A—C28—H28B	108.2
H8A—C8—H8B	108.0	N30-C29-C28	111.9 (6)
N10—C9—C8	111.5 (6)	N30—C29—H29A	109.2
N10—C9—H9A	109.3	С28—С29—Н29А	109.2
С8—С9—Н9А	109.3	N30—C29—H29B	109.2
N10—C9—H9B	109.3	C28—C29—H29B	109.2
С8—С9—Н9В	109.3	H29A—C29—H29B	107.9
Н9А—С9—Н9В	108.0	C29—N30—C39	112.6 (6)
C19—N10—C9	114.8 (6)	C29—N30—Pd2	117.1 (5)
C19—N10—Pd1	109.8 (5)	C39—N30—Pd2	113.2 (5)
C9—N10—Pd1	116.8 (4)	C29—N30—H30A	104.0
C19—N10—H10A	104.6	C39—N30—H30A	104.0
C9—N10—H10A	104.6	Pd2—N30—H30A	104.0

Pd1—N10—H10A	104.6	C35—N31—N32	104.9 (6)
C15—N11—N12	106.5 (6)	C35—N31—Pd2	136.2 (6)
C15—N11—Pd1	137.8 (5)	N32—N31—Pd2	114.9 (5)
N12—N11—Pd1	115.4 (4)	C33—N32—N31	111.6 (6)
C13—N12—N11	110.1 (6)	C33—N32—C38	129.8 (7)
C13—N12—C18	131.7 (6)	N31—N32—C38	117.9 (6)
N11—N12—C18	118.1 (6)	N32—C33—C34	106.4 (7)
N12—C13—C14	107.1 (7)	N32—C33—C36	122.2 (8)
N12—C13—C16	123.2 (7)	C34—C33—C36	131.4 (8)
C14—C13—C16	129.7 (8)	C35—C34—C33	106.8 (8)
C13—C14—C15	106.8 (7)	С35—С34—Н34А	126.6
C13—C14—H14A	126.6	C33—C34—H34A	126.6
C15—C14—H14A	126.6	N31—C35—C34	110.4 (7)
N11-C15-C14	109.4 (7)	N31—C35—C37	122.7(8)
N11-C15-C17	1210(7)	$C_{34} C_{35} C_{37}$	126.9 (8)
C14-C15-C17	129.5 (7)	C33—C36—H36A	109.5
C13—C16—H16A	109 5	C33—C36—H36B	109.5
C13—C16—H16B	109.5	H36A—C36—H36B	109.5
H_{16A} C_{16} H_{16B}	109.5	C33—C36—H36C	109.5
C13 - C16 - H16C	109.5	$H_{364} - C_{36} - H_{36C}$	109.5
H_{16A} $-C_{16}$ H_{16C}	109.5	H36B-C36-H36C	109.5
H_{16B} C_{16} H_{16C}	109.5	C35_C37_H37A	109.5
C_{15} C_{17} H_{17A}	109.5	C35—C37—H37R	109.5
C15-C17-H17B	109.5	H374_C37_H37B	109.5
H17A C17 H17B	109.5	1137A - C37 - 1137B	109.5
$\frac{1117}{A} = \frac{117}{B}$	109.5	$H_{27A} = C_{27} = H_{27C}$	109.5
	109.5	$H_{27P} = C_{27} = H_{27C}$	109.5
H17A - C17 - H17C	109.5	$M_{22} = C_{23} = C_{20}$	109.5
H1/B - C1/-H1/C	109.5	$N_{22} = C_{20} = U_{20}$	111.9 (0)
N12 - C18 - C19	112.9 (6)	$N_{32} = C_{38} = H_{38A}$	109.2
N12-C10-H18A	109.0	С39—С36—П38А N22—С28—Ц28Р	109.2
C19—C18—H18A	109.0	N32-C38-H38B	109.2
N12-C18-H18B	109.0	C39—C38—H38B	109.2
C19-C18-H18B	109.0	H38A-C38-H38B	107.9
H18A-C18-H18B	107.8	N30-C39-C38	110.8 (6)
N10-C19-C18	113.5 (6)	N30-C39-H39A	109.5
N10—C19—H19A	108.9	С38—С39—Н39А	109.5
С18—С19—Н19А	108.9	N30—C39—H39B	109.5
N10—C19—H19B	108.9	С38—С39—Н39В	109.5
С18—С19—Н19В	108.9	Н39А—С39—Н39В	108.1
H19A—C19—H19B	107.7	H1—O1—H2	103.6
N21—Pd2—N31	173.1 (2)		
C5—N1—N2—C3	0.4 (8)	C25—N21—N22—C23	-0.5(8)
Pd1—N1—N2—C3	-178.9 (5)	Pd2—N21—N22—C23	179.8 (5)
C5—N1—N2—C8	-164.4 (6)	C25—N21—N22—C28	-160.6 (6)
Pd1—N1—N2—C8	16.2 (8)	Pd2—N21—N22—C28	19.8 (8)
N1—N2—C3—C4	1.1 (8)	N21—N22—C23—C24	1.9 (8)
C8 - N2 - C3 - C4	164.1 (7)	$C_{28} = N_{22} = C_{23} = C_{24}$	160.1 (7)

N1—N2—C3—C6	179.5 (7)	N21—N22—C23—C26	-177.3 (7)
C8—N2—C3—C6	-17.5 (12)	C28—N22—C23—C26	-19.1 (12)
N2—C3—C4—C5	-2.2 (9)	N22—C23—C24—C25	-2.5 (9)
C6—C3—C4—C5	179.5 (8)	C26—C23—C24—C25	176.6 (8)
N2—N1—C5—C4	-1.8 (8)	N22—N21—C25—C24	-1.1 (8)
Pd1—N1—C5—C4	177.4 (6)	Pd2—N21—C25—C24	178.5 (6)
N2—N1—C5—C7	176.5 (7)	N22—N21—C25—C27	175.3 (7)
Pd1—N1—C5—C7	-4.2 (12)	Pd2—N21—C25—C27	-5.1 (12)
C3—C4—C5—N1	2.6 (9)	C23—C24—C25—N21	2.3 (9)
C3—C4—C5—C7	-175.7 (8)	C23—C24—C25—C27	-173.8 (8)
C3—N2—C8—C9	-109.2 (8)	C23—N22—C28—C29	-108.1 (8)
N1—N2—C8—C9	52.5 (9)	N21—N22—C28—C29	48.3 (9)
N2-C8-C9-N10	-76.7 (8)	N22-C28-C29-N30	-78.6 (8)
C8—C9—N10—C19	158.1 (7)	C28—C29—N30—C39	167.7 (6)
C8—C9—N10—Pd1	27.4 (8)	C28—C29—N30—Pd2	33.9 (8)
C15—N11—N12—C13	1.1 (8)	C35—N31—N32—C33	-1.7 (9)
Pd1-N11-N12-C13	175.7 (5)	Pd2—N31—N32—C33	159.5 (6)
C15—N11—N12—C18	-177.0 (6)	C35—N31—N32—C38	-173.3 (7)
Pd1-N11-N12-C18	-2.3 (8)	Pd2—N31—N32—C38	-12.0 (8)
N11—N12—C13—C14	0.7 (9)	N31—N32—C33—C34	2.0 (10)
C18—N12—C13—C14	178.4 (8)	C38—N32—C33—C34	172.3 (8)
N11—N12—C13—C16	-179.4 (7)	N31—N32—C33—C36	-176.9 (8)
C18—N12—C13—C16	-1.7 (13)	C38—N32—C33—C36	-6.6 (14)
N12-C13-C14-C15	-2.1 (9)	N32—C33—C34—C35	-1.5 (11)
C16—C13—C14—C15	177.9 (8)	C36—C33—C34—C35	177.3 (10)
N12—N11—C15—C14	-2.4 (8)	N32—N31—C35—C34	0.7 (10)
Pd1—N11—C15—C14	-175.2 (6)	Pd2—N31—C35—C34	-154.4 (7)
N12—N11—C15—C17	175.1 (7)	N32—N31—C35—C37	177.6 (9)
Pd1—N11—C15—C17	2.3 (12)	Pd2—N31—C35—C37	22.5 (14)
C13—C14—C15—N11	2.9 (9)	C33—C34—C35—N31	0.5 (11)
C13—C14—C15—C17	-174.4 (8)	C33—C34—C35—C37	-176.3 (10)
C13—N12—C18—C19	-113.8 (9)	C33—N32—C38—C39	-95.7 (10)
N11—N12—C18—C19	63.7 (9)	N31—N32—C38—C39	74.1 (8)
C9—N10—C19—C18	-164.8 (6)	C29—N30—C39—C38	-162.3 (6)
Pd1-N10-C19-C18	-30.8 (7)	Pd2-N30-C39-C38	-26.7 (7)
N12-C18-C19-N10	-41.1 (9)	N32—C38—C39—N30	-46.9 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H··· A	
O1—H1…I3	0.85	2.68	3.497 (7)	161	
O1—H2…I4	0.85	2.66	3.443 (10)	155	
N10—H10A…I3 ⁱ	0.90	2.94	3.653 (6)	137	
N30—H30A…O1 ⁱⁱ	0.90	2.22	3.011 (9)	146	
N30—H30A…I4 ⁱⁱ	0.90	3.30	3.853 (6)	122	

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.

(4) Azido{bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }palladium azide monohydrate

Crystal data

 $[Pd(N_3)(C_{14}H_{23}N_5)]N_3 \cdot H_2O$ $M_r = 469.85$ Monoclinic, $P2_1/c$ a = 8.132 (3) Å b = 22.851(5) Å c = 11.372 (3) Å $\beta = 109.03 \ (2)^{\circ}$ $V = 1997.8 (10) \text{ Å}^3$ Z = 4

Data collection

Siemens P4
diffractometer
Radiation source: fine-focus sealed tube, FN4
Graphite monochromator
$2\theta/\omega$ scans
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
$T_{\min} = 0.266, \ T_{\max} = 0.366$
8431 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.097$ map S = 1.08Hydrogen site location: mixed 4032 reflections H-atom parameters constrained 248 parameters 0 restraints where $P = (F_0^2 + 2F_c^2)/3$ 0 constraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Geometry of the water molecule first regularized with soft restraints: DFLX 0.85 0.02 O1 H1 O1 H2 DANG 1.34 0.04 H1 H2 then fixed in last l.s. cycles.

Fractional atomic coordinates an	d isotropic or	• equivalent	isotropic	displacement	parameters	(A^2))
----------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pd1	0.35885 (3)	0.66267 (2)	0.24025 (2)	0.04508 (11)	
N1	0.1428 (3)	0.62778 (11)	0.1211 (2)	0.0464 (6)	
N2	-0.0024 (3)	0.62721 (12)	0.1552 (3)	0.0517 (6)	
C3	-0.1283 (4)	0.59569 (14)	0.0740 (3)	0.0537 (8)	
C4	-0.0629 (4)	0.57587 (15)	-0.0140 (3)	0.0565 (8)	
H4A	-0.1212	0.5534	-0.0832	0.068*	
C5	0.1059 (4)	0.59528 (13)	0.0184 (3)	0.0464 (7)	
C6	-0.3035 (5)	0.5885 (2)	0.0869 (5)	0.0792 (12)	
H6A	-0.2931	0.5670	0.1616	0.119*	

F(000) = 960 $D_{\rm x} = 1.562 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 65 reflections $\theta = 4.7 - 12.6^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 296 KPrism, yellow $0.5 \times 0.4 \times 0.4$ mm

4032 independent reflections 3528 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.056$ $\theta_{\text{max}} = 26.3^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ $h = -10 \rightarrow 10$ $k = -28 \rightarrow 1$ $l = -13 \rightarrow 14$ 3 standard reflections every 97 reflections intensity decay: 1%

Primary atom site location: structure-invariant Secondary atom site location: difference Fourier $w = 1/[\sigma^2(F_o^2) + (0.0346P)^2 + 1.7119P]$ $\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$

H6B	-0.3777	0.5675	0.0164	0.119*
H6C	-0.3526	0.6263	0.0913	0.119*
C7	0.2369 (5)	0.58174 (18)	-0.0428 (4)	0.0643 (9)
H7A	0.1815	0.5620	-0.1201	0.096*
H7B	0.3256	0.5570	0.0105	0.096*
H7C	0.2885	0.6174	-0.0584	0.096*
C8	0.0001 (6)	0.65831 (19)	0.2670 (4)	0.0703 (11)
H8A	-0.1165	0.6594	0.2723	0.084*
H8B	0.0375	0.6983	0.2626	0.084*
C9	0.1213 (7)	0.6293 (3)	0.3823 (4)	0.0890 (15)
H9A	0.1389	0.6553	0.4528	0.107*
H9B	0.0675	0.5938	0.3988	0.107*
N10	0.2933 (5)	0.61468 (16)	0.3697 (3)	0.0689 (9)
H10	0.2793	0.5781	0.3385	0.083*
N11	0.5755 (4)	0.69476 (13)	0.3678 (2)	0.0563 (7)
N12	0.6733 (4)	0.65951 (14)	0.4606 (3)	0.0622 (8)
C13	0.8151 (5)	0.6887 (2)	0.5324 (3)	0.0683 (10)
C14	0.8074 (5)	0.7426 (2)	0.4839 (4)	0.0738 (12)
H14A	0.8889	0.7722	0.5131	0.089*
C15	0.6568 (5)	0.74619 (17)	0.3827 (3)	0.0597 (9)
C16	0.9454 (7)	0.6607 (3)	0.6430 (4)	0.0970 (17)
H16A	1.0466	0.6852	0.6721	0.146*
H16B	0.9778	0.6231	0.6199	0.146*
H16C	0.8952	0.6560	0.7080	0.146*
C17	0.5864 (7)	0.79739 (18)	0.3015 (5)	0.0816 (13)
H17A	0.6404	0.8325	0.3426	0.122*
H17B	0.4630	0.7997	0.2847	0.122*
H17C	0.6103	0.7931	0.2247	0.122*
C18	0.6068 (7)	0.6028 (2)	0.4785 (4)	0.0870 (15)
H18A	0.6858	0.5846	0.5524	0.104*
H18B	0.5994	0.5779	0.4078	0.104*
C19	0.4296 (7)	0.6086 (3)	0.4921 (4)	0.0988 (18)
H19A	0.4058	0.5744	0.5343	0.119*
H19B	0.4278	0.6427	0.5427	0.119*
N20	0.4246 (4)	0.70475 (14)	0.1065 (3)	0.0600(7)
N21	0.3172 (4)	0.71867 (13)	0.0122 (3)	0.0589 (7)
N22	0.2246 (6)	0.7317 (2)	-0.0830 (4)	0.1040 (15)
N30	0.542 (2)	0.4721 (5)	0.2466 (9)	0.203 (6)
N31	0.416 (2)	0.4860 (4)	0.2612 (6)	0.157 (6)
N32	0.2861 (19)	0.4965 (4)	0.2913 (8)	0.183 (6)
01	0.9351 (15)	0.4889 (3)	0.3750 (6)	0.244 (5)
H11	0.9691	0.4949	0.3136	0.366*
H12	0.8315	0.5015	0.3571	0.366*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Pd1	0.04258 (15)	0.05370 (16)	0.03330 (14)	-0.01038 (9)	0.00459 (10)	0.00120 (9)

N1	0.0367 (12)	0.0553 (15)	0.0446 (13)	-0.0056 (11)	0.0099 (11)	-0.0003 (11)
N2	0.0407 (14)	0.0581 (16)	0.0564 (16)	-0.0047 (11)	0.0159 (12)	-0.0024 (12)
C3	0.0363 (15)	0.0486 (17)	0.071 (2)	-0.0015 (13)	0.0100 (15)	0.0008 (15)
C4	0.0394 (16)	0.0531 (18)	0.065 (2)	-0.0003 (13)	0.0004 (15)	-0.0092 (15)
C5	0.0367 (14)	0.0488 (16)	0.0464 (16)	0.0012 (12)	0.0033 (12)	-0.0028 (13)
C6	0.0398 (19)	0.083 (3)	0.116 (4)	-0.0074 (18)	0.027 (2)	-0.006 (3)
C7	0.0514 (19)	0.073 (2)	0.065 (2)	-0.0005 (17)	0.0144 (17)	-0.0200 (18)
C8	0.063 (2)	0.088 (3)	0.071 (3)	-0.0140 (19)	0.036 (2)	-0.013 (2)
C9	0.084 (3)	0.127 (4)	0.062 (2)	-0.029 (3)	0.031 (2)	0.009 (3)
N10	0.072 (2)	0.082 (2)	0.0445 (15)	-0.0231 (17)	0.0080 (15)	0.0131 (15)
N11	0.0532 (16)	0.0667 (17)	0.0399 (14)	-0.0133 (13)	0.0028 (12)	-0.0016 (12)
N12	0.0562 (18)	0.078 (2)	0.0396 (15)	-0.0063 (14)	-0.0024 (13)	-0.0018 (13)
C13	0.050 (2)	0.100 (3)	0.0449 (18)	-0.001 (2)	0.0018 (15)	-0.022 (2)
C14	0.056 (2)	0.091 (3)	0.064 (2)	-0.021 (2)	0.0061 (18)	-0.028 (2)
C15	0.0526 (19)	0.068 (2)	0.0548 (19)	-0.0141 (16)	0.0129 (16)	-0.0172 (16)
C16	0.068 (3)	0.147 (5)	0.053 (2)	0.012 (3)	-0.012 (2)	-0.014 (3)
C17	0.090 (3)	0.060 (2)	0.084 (3)	-0.021 (2)	0.014 (3)	-0.003 (2)
C18	0.091 (3)	0.085 (3)	0.057 (2)	-0.012 (2)	-0.014 (2)	0.023 (2)
C19	0.098 (4)	0.135 (4)	0.047 (2)	-0.042 (3)	0.001 (2)	0.033 (2)
N20	0.0526 (16)	0.078 (2)	0.0443 (15)	-0.0160 (14)	0.0094 (14)	0.0058 (14)
N21	0.0582 (17)	0.0623 (17)	0.0562 (18)	0.0005 (14)	0.0188 (15)	0.0111 (14)
N22	0.093 (3)	0.124 (4)	0.077 (3)	0.006 (3)	0.004 (2)	0.048 (3)
N30	0.361 (17)	0.170 (8)	0.121 (6)	-0.016 (10)	0.140 (9)	0.001 (5)
N31	0.296 (17)	0.101 (5)	0.044 (3)	-0.072 (9)	0.014 (6)	-0.004 (3)
N32	0.293 (15)	0.094 (5)	0.087 (6)	-0.068 (7)	-0.041 (6)	0.019 (4)
01	0.406 (14)	0.215 (7)	0.160 (6)	-0.041 (8)	0.159 (8)	-0.020 (5)

Pd1—N1	2.002 (3)	N11—C15	1.332 (5)
Pd1—N20	2.014 (3)	N11—N12	1.360 (4)
Pd1—N11	2.020 (3)	N12—C13	1.351 (5)
Pd1—N10	2.041 (3)	N12—C18	1.443 (5)
N1C5	1.334 (4)	C13—C14	1.342 (6)
N1—N2	1.358 (4)	C13—C16	1.498 (6)
N2-C3	1.343 (4)	C14—C15	1.383 (5)
N2	1.451 (5)	C14—H14A	0.9300
C3—C4	1.355 (5)	C15—C17	1.485 (6)
C3—C6	1.488 (5)	C16—H16A	0.9600
C4—C5	1.373 (5)	C16—H16B	0.9600
C4—H4A	0.9300	C16—H16C	0.9600
С5—С7	1.483 (5)	C17—H17A	0.9600
С6—Н6А	0.9600	C17—H17B	0.9600
С6—Н6В	0.9600	C17—H17C	0.9600
С6—Н6С	0.9600	C18—C19	1.504 (8)
C7—H7A	0.9600	C18—H18A	0.9700
С7—Н7В	0.9600	C18—H18B	0.9700
С7—Н7С	0.9600	C19—H19A	0.9700

C8—C9	1.512 (7)	C19—H19B	0.9700
C8—H8A	0.9700	N20—N21	1.184 (4)
C8—H8B	0.9700	N21—N22	1.139 (5)
C9—N10	1,490 (6)	N30—N31	1.129 (16)
C9—H9A	0.9700	N31N32	1.239(17)
	0.9700	01 111	0.8421
С9—п9В	0.9700		0.6421
N10—C19	1.4//(5)	01—H12	0.8503
N10—H10	0.9000		
N1Pd1N20	93 98 (11)	C9N10Pd1	115.0(3)
N1 D41 N11	176 78 (11)	C_{10} N10 H10	104.1
N20 D41 N11	170.76(11)	$C_{1} = N_{10} = H_{10}$	104.1
N20—Pu1—N11	89.13 (12)		104.1
NI—PdI—NI0	84.03 (12)	Pd1—N10—H10	104.1
N20—Pd1—N10	175.99 (14)	C15—N11—N12	106.5 (3)
N11—Pd1—N10	92.80 (12)	C15—N11—Pd1	133.8 (3)
C5—N1—N2	106.1 (2)	N12—N11—Pd1	119.7 (2)
C5—N1—Pd1	135.4 (2)	C13—N12—N11	110.2 (3)
N2—N1—Pd1	117.6 (2)	C13—N12—C18	130.0 (4)
C3—N2—N1	110.3 (3)	N11—N12—C18	119.3 (3)
C3—N2—C8	1310(3)	C14—C13—N12	106.7(4)
N1_N2_C8	1187(3)	C14-C13-C16	1314(4)
$N_2 C_2 C_4$	107.0(3)	N12 C13 C16	131.4(+)
$N_2 = C_3 = C_4$	107.0(3)	N12 - C13 - C10	121.8(3)
N2-C3-C6	122.1 (4)		107.9 (4)
C4—C3—C6	130.9 (3)	C13—C14—H14A	126.1
C3—C4—C5	107.1 (3)	C15—C14—H14A	126.1
C3—C4—H4A	126.5	N11—C15—C14	108.7 (4)
C5—C4—H4A	126.5	N11—C15—C17	122.8 (3)
N1-C5-C4	109.5 (3)	C14—C15—C17	128.5 (4)
N1—C5—C7	122.4 (3)	C13—C16—H16A	109.5
C4—C5—C7	128.0 (3)	C13—C16—H16B	109.5
C3—C6—H6A	109.5	H16A—C16—H16B	109 5
C3—C6—H6B	109.5	C_{13} C_{16} H_{16}	109.5
HEA CE HEB	109.5		109.5
C_{2} C_{6} $H_{6}C$	109.5		109.5
	109.5		109.5
H0A - C0 - H0C	109.5		109.5
Н6В—С6—Н6С	109.5	С15—С17—Н17В	109.5
С5—С7—Н7А	109.5	H17A—C17—H17B	109.5
С5—С7—Н7В	109.5	C15—C17—H17C	109.5
H7A—C7—H7B	109.5	H17A—C17—H17C	109.5
С5—С7—Н7С	109.5	H17B—C17—H17C	109.5
H7A—C7—H7C	109.5	N12—C18—C19	110.5 (4)
H7B—C7—H7C	109.5	N12—C18—H18A	109.5
N2—C8—C9	111.4 (4)	C19—C18—H18A	109.5
N2-C8-H8A	109.4	N12—C18—H18B	109.5
C9-C8-H8A	109.4	C19-C18-H18B	109.5
N2_C8_H8B	109.4	H18A - C18 - H18B	109.5
	100.4	$\mathbf{N}_{10} \mathbf{C}_{10} \mathbf{C}_{10}^{10}$	111 1 (1)
	107.4	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10}$	100.4
пол—Со—пор	108.0	NIU-UI9-HI9A	109.4

N10—C9—C8	112.5 (3)	C18—C19—H19A	109.4
N10—C9—H9A	109.1	N10-C19-H19B	109.4
С8—С9—Н9А	109.1	C18—C19—H19B	109.4
N10—C9—H9B	109.1	H19A—C19—H19B	108.0
С8—С9—Н9В	109.1	N21—N20—Pd1	120.9 (2)
H9A—C9—H9B	107.8	N22—N21—N20	174.2 (4)
C19—N10—C9	111.7 (4)	N30—N31—N32	171.4 (11)
C19—N10—Pd1	116.0 (3)	H11—O1—H12	108.2
C5—N1—N2—C3	-1.0 (4)	C15—N11—N12—C13	-0.4 (4)
Pd1—N1—N2—C3	-171.8 (2)	Pd1—N11—N12—C13	177.6 (3)
C5—N1—N2—C8	178.7 (3)	C15—N11—N12—C18	172.2 (4)
Pd1—N1—N2—C8	7.9 (4)	Pd1—N11—N12—C18	-9.9 (5)
N1—N2—C3—C4	-0.2 (4)	N11—N12—C13—C14	-0.5 (5)
C8—N2—C3—C4	-179.8 (4)	C18—N12—C13—C14	-172.0 (5)
N1—N2—C3—C6	-178.9 (3)	N11—N12—C13—C16	179.2 (4)
C8—N2—C3—C6	1.5 (6)	C18—N12—C13—C16	7.7 (7)
N2—C3—C4—C5	1.3 (4)	N12-C13-C14-C15	1.2 (5)
C6—C3—C4—C5	179.8 (4)	C16—C13—C14—C15	-178.5 (5)
N2—N1—C5—C4	1.8 (4)	N12—N11—C15—C14	1.1 (4)
Pd1—N1—C5—C4	170.1 (2)	Pd1—N11—C15—C14	-176.5 (3)
N2—N1—C5—C7	-175.5 (3)	N12—N11—C15—C17	-177.7 (4)
Pd1—N1—C5—C7	-7.2 (5)	Pd1—N11—C15—C17	4.7 (6)
C3—C4—C5—N1	-1.9 (4)	C13—C14—C15—N11	-1.4 (5)
C3—C4—C5—C7	175.2 (3)	C13—C14—C15—C17	177.3 (4)
C3—N2—C8—C9	111.5 (5)	C13—N12—C18—C19	117.0 (5)
N1—N2—C8—C9	-68.1 (4)	N11—N12—C18—C19	-53.8 (5)
N2-C8-C9-N10	46.9 (5)	C9—N10—C19—C18	-171.5 (4)
C8—C9—N10—C19	157.6 (4)	Pd1-N10-C19-C18	-37.1 (6)
C8—C9—N10—Pd1	22.7 (5)	N12-C18-C19-N10	80.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N10—H10…N32	0.90	1.95	2.838 (11)	171
N10—H10…N31	0.90	2.66	3.460 (13)	148
O1—H11…N32 ⁱ	0.84	2.67	3.295 (19)	132
O1—H12···N30	0.85	2.38	3.08 (2)	140

Symmetry code: (i) x+1, y, z.

(5) Bis[{bis[2-(3,5-dimethylpyrazol-1-yl- κN^2)ethyl]amine- κN }(thiocyanato- κN)palladium] tetrakis(thiocyanato- κS)palladate

Crystal data	
$[Pd(NCS)(C_{14}H_{23}N_5)]_2[Pd(NCS)_4]$ $M_r = 1190.43$	b = 10.532 (2) Å c = 13.066 (3) Å
a = 9.0286 (17) Å	$\alpha = 94.838 (14)^{\circ}$ $\beta = 100.947 (12)^{\circ}$

 $\gamma = 103.989 (13)^{\circ}$ $V = 1172.5 (4) \text{ Å}^3$ Z = 1 F(000) = 596 $D_x = 1.686 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Siemens P4 diffractometer Radiation source: fine-focus sealed tube, FN4 Graphite monochromator $2\theta/\omega$ scans Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{\min} = 0.256, T_{\max} = 0.378$ 8889 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.107$ S = 1.065367 reflections 282 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Cell parameters from 75 reflections $\theta = 4.7-12.4^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 298 KIrregular_Plate, pink $0.40 \times 0.40 \times 0.12 \text{ mm}$

5367 independent reflections 4874 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 6$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$ 3 standard reflections every 97 reflections intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 1.1014P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.83$ e Å⁻³ $\Delta\rho_{min} = -1.06$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.36057 (3)	0.61306 (2)	0.33358 (2)	0.03862 (9)	
S 1	0.88007 (13)	0.60961 (16)	0.47191 (8)	0.0735 (4)	
N1	0.3690 (3)	0.4656 (3)	0.2291 (2)	0.0420 (6)	
N2	0.2424 (3)	0.3584 (3)	0.2003 (2)	0.0453 (6)	
C3	0.2603 (4)	0.2765 (4)	0.1225 (3)	0.0526 (8)	
C4	0.4009 (5)	0.3330 (4)	0.0994 (3)	0.0545 (9)	
H4A	0.4443	0.2987	0.0479	0.065*	
C5	0.4667 (4)	0.4500 (4)	0.1663 (2)	0.0448 (7)	
C6	0.1425 (6)	0.1487 (5)	0.0757 (4)	0.0814 (15)	
H6A	0.0469	0.1661	0.0415	0.122*	
H6B	0.1228	0.0957	0.1304	0.122*	
H6C	0.1822	0.1024	0.0253	0.122*	
C7	0.6181 (5)	0.5472 (5)	0.1716 (3)	0.0610 (9)	
H7A	0.6078	0.6349	0.1879	0.091*	
H7B	0.6475	0.5390	0.1050	0.091*	
H7C	0.6969	0.5308	0.2254	0.091*	
C8	0.1152 (4)	0.3501 (4)	0.2545 (3)	0.0531 (8)	
H8A	0.1555	0.3552	0.3295	0.064*	

H8B	0.0391	0.2653	0.2308	0.064*	
C9	0.0363 (4)	0.4580 (4)	0.2354 (3)	0.0564 (9)	
H9A	-0.0338	0.4356	0.1666	0.068*	0.770 (18)
H9B	-0.0264	0.4637	0.2874	0.068*	0.770 (18)
H9C	0.0179	0.4648	0.1608	0.068*	0.230 (18)
H9D	-0.0650	0.4328	0.2538	0.068*	0.230 (18)
N10A	0.1465 (5)	0.5881 (4)	0.2405 (5)	0.0423 (14)	0.770 (18)
H10A	0.1658	0.5870	0.1754	0.051*	0.770 (18)
N10B	0.1157 (15)	0.5806 (14)	0.2894 (18)	0.041 (4)	0.230 (18)
H10B	0.0858	0.5793	0.3513	0.049*	0.230 (18)
N11	0.3365 (3)	0.7611 (3)	0.4311 (2)	0.0450 (6)	
N12	0.2638 (3)	0.8493 (3)	0.3896 (2)	0.0490 (6)	
C13	0.2571 (5)	0.9392 (4)	0.4656 (4)	0.0641 (11)	
C14	0.3268 (6)	0.9078 (5)	0.5585 (4)	0.0698 (12)	
H14A	0.3399	0.9534	0.6251	0.084*	
C15	0.3743 (5)	0.7964 (4)	0.5356 (3)	0.0571 (9)	
C16	0.1801 (7)	1.0477 (6)	0.4450 (6)	0.0965 (19)	
H16A	0.2306	1.1016	0.3993	0.145*	
H16B	0.1883	1.1009	0.5102	0.145*	
H16C	0.0717	1.0105	0.4120	0.145*	
C17	0.4503 (7)	0.7208 (6)	0.6096 (3)	0.0769 (13)	
H17A	0.5170	0.6803	0.5766	0.115*	
H17B	0.3717	0.6535	0.6288	0.115*	
H17C	0.5115	0.7793	0.6716	0.115*	
C18	0.1923 (5)	0.8273 (4)	0.2784 (3)	0.0552 (9)	
H18A	0.2722	0.8288	0.2380	0.066*	
H18B	0.1442	0.8981	0.2613	0.066*	
C19	0.0713 (4)	0.6981 (4)	0.2488 (3)	0.0517 (8)	
H19A	0.0083	0.6857	0.3014	0.062*	0.770 (18)
H19B	0.0028	0.6979	0.1818	0.062*	0.770 (18)
H19C	0.0421	0.6799	0.1726	0.062*	0.230 (18)
H19D	-0.0209	0.7072	0.2734	0.062*	0.230 (18)
N20	0.5799 (4)	0.6337 (3)	0.4077 (3)	0.0558 (8)	
C21	0.7053 (4)	0.6233 (4)	0.4336 (3)	0.0517 (8)	
Pd2	0.5000	1.0000	1.0000	0.03984 (10)	
S22	0.27722 (13)	0.83780 (12)	0.91759 (10)	0.0736 (3)	
C23	0.2457 (4)	0.7188 (5)	0.9922 (3)	0.0567 (9)	
N24	0.2159 (6)	0.6323 (5)	1.0375 (3)	0.0849 (13)	
S25	0.45759 (12)	1.11365 (12)	0.85705 (8)	0.0604 (3)	
C26	0.2664 (5)	1.0806 (5)	0.8121 (3)	0.0617 (10)	
N27	0.1366 (6)	1.0626 (6)	0.7789 (4)	0.1036 (18)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.03258 (13)	0.04589 (15)	0.03637 (13)	0.01607 (10)	0.00092 (9)	-0.00186 (9)
S1	0.0489 (5)	0.1354 (11)	0.0481 (5)	0.0505 (6)	0.0069 (4)	0.0103 (6)
N1	0.0391 (13)	0.0488 (15)	0.0379 (12)	0.0161 (11)	0.0053 (10)	-0.0014 (11)

N2	0.0382 (13)	0.0543 (16)	0.0404 (13)	0.0122 (12)	0.0071 (11)	-0.0062 (11)
C3	0.0485 (18)	0.060 (2)	0.0478 (17)	0.0214 (16)	0.0059 (14)	-0.0103 (15)
C4	0.051 (2)	0.069 (2)	0.0476 (18)	0.0254 (18)	0.0139 (15)	-0.0029 (16)
C5	0.0432 (16)	0.0583 (19)	0.0394 (15)	0.0249 (15)	0.0095 (12)	0.0067 (13)
C6	0.069 (3)	0.077 (3)	0.085 (3)	0.005 (2)	0.021 (2)	-0.031 (3)
C7	0.053 (2)	0.071 (3)	0.066 (2)	0.0196 (19)	0.0231 (18)	0.0106 (19)
C8	0.0507 (19)	0.058 (2)	0.0485 (18)	0.0084 (16)	0.0190 (15)	-0.0036 (15)
C9	0.0334 (16)	0.070 (2)	0.062 (2)	0.0129 (15)	0.0098 (15)	-0.0085 (18)
N10A	0.0321 (19)	0.059 (2)	0.038 (3)	0.0197 (16)	0.0053 (18)	0.0015 (17)
N10B	0.025 (5)	0.064 (8)	0.037 (9)	0.017 (5)	0.010 (5)	0.000 (6)
N11	0.0449 (14)	0.0451 (15)	0.0455 (14)	0.0178 (12)	0.0061 (11)	-0.0001 (11)
N12	0.0422 (14)	0.0464 (15)	0.0599 (17)	0.0171 (12)	0.0089 (12)	0.0043 (13)
C13	0.051 (2)	0.046 (2)	0.091 (3)	0.0135 (16)	0.012 (2)	-0.0113 (19)
C14	0.071 (3)	0.066 (3)	0.065 (2)	0.017 (2)	0.012 (2)	-0.021 (2)
C15	0.062 (2)	0.055 (2)	0.0474 (18)	0.0104 (17)	0.0080 (16)	-0.0063 (15)
C16	0.085 (4)	0.062 (3)	0.142 (5)	0.037 (3)	0.014 (4)	-0.015 (3)
C17	0.093 (4)	0.085 (3)	0.045 (2)	0.022 (3)	0.001 (2)	0.005 (2)
C18	0.0502 (19)	0.065 (2)	0.062 (2)	0.0296 (17)	0.0175 (16)	0.0199 (18)
C19	0.0364 (16)	0.075 (2)	0.0500 (18)	0.0282 (16)	0.0056 (13)	0.0091 (16)
N20	0.0388 (15)	0.0595 (19)	0.0648 (19)	0.0215 (13)	-0.0024 (13)	-0.0102 (15)
C21	0.0473 (19)	0.065 (2)	0.0425 (16)	0.0237 (16)	0.0014 (14)	-0.0029 (15)
Pd2	0.02961 (16)	0.0489 (2)	0.04031 (18)	0.01548 (13)	0.00172 (12)	0.00076 (14)
S22	0.0517 (6)	0.0667 (7)	0.0806 (7)	0.0003 (5)	-0.0215 (5)	0.0161 (5)
C23	0.0440 (18)	0.070 (2)	0.0495 (19)	0.0088 (17)	0.0082 (15)	-0.0040 (17)
N24	0.085 (3)	0.096 (3)	0.057 (2)	-0.007 (2)	0.015 (2)	0.016 (2)
S25	0.0460 (5)	0.0790 (7)	0.0549 (5)	0.0166 (4)	0.0031 (4)	0.0192 (5)
C26	0.056 (2)	0.081 (3)	0.051 (2)	0.032 (2)	0.0013 (17)	0.0122 (19)
N27	0.062 (3)	0.153 (5)	0.103 (4)	0.046 (3)	-0.001 (2)	0.044 (4)

Pd1—N20	1.984 (3)	N10B—H10B	0.9000	
Pd1—N1	2.005 (3)	N11—C15	1.340 (5)	
Pd1—N11	2.009 (3)	N11—N12	1.353 (4)	
Pd1—N10A	2.022 (4)	N12—C13	1.335 (5)	
Pd1—N10B	2.111 (12)	N12—C18	1.447 (5)	
S1—C21	1.607 (4)	C13—C14	1.362 (7)	
N1—C5	1.342 (4)	C13—C16	1.493 (7)	
N1—N2	1.365 (4)	C14—C15	1.372 (6)	
N2—C3	1.336 (4)	C14—H14A	0.9300	
N2—C8	1.449 (4)	C15—C17	1.478 (6)	
C3—C4	1.366 (6)	C16—H16A	0.9600	
С3—С6	1.496 (6)	C16—H16B	0.9600	
C4—C5	1.379 (5)	C16—H16C	0.9600	
C4—H4A	0.9300	C17—H17A	0.9600	
C5—C7	1.482 (5)	C17—H17B	0.9600	
С6—Н6А	0.9600	C17—H17C	0.9600	
C6—H6B	0.9600	C18—C19	1.493 (6)	

С6—Н6С	0.9600	C18—H18A	0.9700
С7—Н7А	0.9600	C18—H18B	0.9700
С7—Н7В	0.9600	C19—H19A	0.9700
C7—H7C	0.9600	C19—H19B	0.9700
C8—C9	1.494 (6)	С19—Н19С	0.9700
C8—H8A	0.9700	C19—H19D	0.9700
C8—H8B	0.9700	N20—C21	1.153 (5)
C9—N10B	1.373 (14)	Pd2—\$22	2.3085 (12)
C9—N10A	1.474 (6)	$Pd2$ — $S22^{i}$	2.3085 (12)
C9—H9A	0 9700	Pd2—\$25	2.3227(11)
C9—H9B	0.9700	$Pd2 = 825^{i}$	2 3227 (11)
C9—H9C	0.9700	S22-C23	1.656(5)
C9—H9D	0.9700	C23_N24	1.030(5) 1.133(6)
N10A-C19	1483(5)	S25-C26	1.155(0) 1.654(4)
N10A—H10A	0.9000	C26—N27	1.031(1)
N10B_C19	1.498(15)	020-1127	1.155 (0)
	1.490 (13)		
N20 Pd1 N1	01.68 (12)	C10 N10B Pd1	111.8 (0)
N20 Pd1 N11	91.08(12) 92.64(12)	C_{0} N10B H10B	103.3
$N1 \mathbf{P}d1 N11$	92.04(12)	$C_{10} = M_{10} = M_{10} = M_{10}$	103.3
N20 Pd1 N104	173.00(11) 172.5(2)	Dd1 N10D H10D	103.3
N1 Dd1 N10A	172.3(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105.5 106.7(2)
N11 DA1 N10A	02.34(10)	$C15 \qquad N11 \qquad D41$	100.7(3)
N10 D41 N10D	95.08(18)	NI2 NI1 D41	134.0(3)
N1 D41 N10D	100.4(7)	N12— $N11$ — $P01$	110.0(2)
NI-Pai-NI0B	94.8 (5)	C13— $N12$ — $N11$	110.3(3)
NII—PuI—NIUB	81.2(3)	$\frac{13-12}{12}$	129.9 (3)
C5 = N1 = D11	106.4(3)	N11 - N12 - C18	119.4 (3)
CS—NI—Pdi	134.7 (3)	N12 - C13 - C14	107.0 (4)
$N_2 - N_1 - P_{d_1}$	118.4 (2)	N12 - C13 - C16	123.0 (5)
$C_3 = N_2 = C_1^2$	110.7 (3)	C14 - C13 - C16	129.9 (5)
C3—N2—C8	130.8 (3)	C13 - C14 - C15	107.3 (4)
NI—N2—C8	118.5 (3)	C13—C14—H14A	126.4
N2-C3-C4	106.7 (3)	C15—C14—H14A	126.4
N2—C3—C6	123.2 (4)	NII—CI5—CI4	108.7 (4)
C4—C3—C6	130.1 (3)	NII—CI5—CI7	123.2 (4)
$C_3 - C_4 - C_5$	107.6 (3)	C14—C15—C17	128.1 (4)
C3—C4—H4A	126.2	С13—С16—Н16А	109.5
C5—C4—H4A	126.2	C13—C16—H16B	109.5
N1—C5—C4	108.6 (3)	H16A—C16—H16B	109.5
N1—C5—C7	123.2 (3)	C13—C16—H16C	109.5
C4—C5—C7	128.2 (3)	H16A—C16—H16C	109.5
С3—С6—Н6А	109.5	H16B—C16—H16C	109.5
C3—C6—H6B	109.5	С15—С17—Н17А	109.5
H6A—C6—H6B	109.5	C15—C17—H17B	109.5
С3—С6—Н6С	109.5	H17A—C17—H17B	109.5
Н6А—С6—Н6С	109.5	C15—C17—H17C	109.5
H6B—C6—H6C	109.5	H17A—C17—H17C	109.5
С5—С7—Н7А	109.5	H17B—C17—H17C	109.5

С5—С7—Н7В	109.5	N12—C18—C19	111.4 (3)
H7A—C7—H7B	109.5	N12—C18—H18A	109.4
С5—С7—Н7С	109.5	C19—C18—H18A	109.4
H7A—C7—H7C	109.5	N12-C18-H18B	109.4
H7B—C7—H7C	109.5	C19—C18—H18B	109.4
N2—C8—C9	112.1 (3)	H18A—C18—H18B	108.0
N2—C8—H8A	109.2	N10A—C19—C18	110.4 (3)
C9—C8—H8A	109.2	C18-C19-N10B	116.8(5)
N2-C8-H8B	109.2	N10A—C19—H19A	109.6
C9-C8-H8B	109.2	C_{18} C_{19} H_{19A}	109.6
H8A = C8 = H8B	107.9	N10A_C19_H19B	109.6
N10B-C9-C8	115.9 (6)	C_{18} C_{19} H_{19B}	109.6
N10A - C9 - C8	113.3(3)	H10A (10 H10B)	109.0
N10A = C9 = C8	108.0	$\begin{array}{cccc} 1119 A - C 19 - 1119 B \\ C 18 - C 19 - H 19 C \\ \end{array}$	108.1
	108.9	NIOP CIO HIOC	108.1
	108.9	$\begin{array}{cccc} \mathbf{C} 18 & \mathbf{C} 10 & \mathbf{H} 10 \mathbf{D} \end{array}$	108.1
$110A - C_{2} - 112B$	108.9	N10P C10 H10D	108.1
	108.9		108.1
H9A—C9—H9B	107.7	H19C - C19 - H19D	107.3
N10B - C9 - H9C	108.5	$C_2I = N_20 = PdI$	104.8 (3)
C8—C9—H9C	108.3	N20-C21-S1	1/9.0 (4)
N10B—C9—H9D	108.3	S22—Pd2—S22 ⁴	180.0
C8—C9—H9D	108.3	S22—Pd2—S25	87.77 (4)
H9C—C9—H9D	107.4	S22 ¹ —Pd2—S25	92.23 (4)
C9—N10A—C19	112.4 (4)	S22—Pd2—S25 ¹	92.23 (4)
C9—N10A—Pd1	115.1 (3)	$S22^{i}$ —Pd2— $S25^{i}$	87.77 (4)
C19—N10A—Pd1	117.4 (3)	$S25$ —Pd2— $S25^{i}$	180.0
C9—N10A—H10A	103.2	C23—S22—Pd2	109.52 (14)
C19—N10A—H10A	103.2	N24—C23—S22	175.1 (4)
Pd1—N10A—H10A	103.2	C26—S25—Pd2	107.53 (16)
C9—N10B—C19	117.7 (11)	N27—C26—S25	176.9 (5)
C9—N10B—Pd1	115.0 (8)		
C5—N1—N2—C3	0.8 (4)	C15—N11—N12—C13	0.6 (4)
Pd1—N1—N2—C3	173.4 (2)	Pd1—N11—N12—C13	179.3 (3)
C5—N1—N2—C8	-178.9 (3)	C15—N11—N12—C18	-172.6 (3)
Pd1—N1—N2—C8	-6.4 (4)	Pd1—N11—N12—C18	6.1 (4)
N1—N2—C3—C4	-0.9 (4)	N11—N12—C13—C14	-0.1 (5)
C8—N2—C3—C4	178.8 (4)	C18—N12—C13—C14	172.2 (4)
N1—N2—C3—C6	178.5 (4)	N11—N12—C13—C16	-178.4 (4)
C8—N2—C3—C6	-1.7 (7)	C18—N12—C13—C16	-6.1 (7)
N2—C3—C4—C5	0.6 (4)	N12-C13-C14-C15	-0.4(5)
C6—C3—C4—C5	-178.8(5)	C16—C13—C14—C15	177.7 (5)
N2—N1—C5—C4	-0.4 (4)	N12—N11—C15—C14	-0.8 (5)
Pd1—N1—C5—C4	-171.2 (3)	Pd1—N11—C15—C14	-179.3(3)
N2—N1—C5—C7	179.1 (3)	N12—N11—C15—C17	177.5 (4)
Pd1—N1—C5—C7	8.3 (5)	Pd1—N11—C15—C17	-1.0(7)
C3-C4-C5-N1	-0.1(4)	C_{13} C_{14} C_{15} N_{11}	0.8 (5)
C3—C4—C5—C7	-179.6 (4)	C_{13} C_{14} C_{15} C_{17}	-177.4(5)
	- / / • • • • • /		

N1 - N2 - C8 - C9 $64.6.(4)$ $N11 - N12 - C18 - C19$ $58.3.(4)$	
$N1_N2_C8_C9$ 64 6 (4) $N11_N12_C18_C19$ 58 3 (4)	
$N_1 - N_2 - C_0 - C_2 - C_2 - C_1 $	
N2—C8—C9—N10B -75.9 (12) C9—N10A—C19—C18 166.9 (4)	
N2—C8—C9—N10A -42.8 (5) Pd1—N10A—C19—C18 30.0 (6)	
N10B—C9—N10A—C19 -63.7 (12) C9—N10A—C19—N10B 58.3 (11)	
C8—C9—N10A—C19 –165.4 (4) Pd1—N10A—C19—N10B –78.6 (10)	
N10B—C9—N10A—Pd1 74.3 (11) N12—C18—C19—N10A -77.7 (5)	
C8—C9—N10A—Pd1 –27.4 (6) N12—C18—C19—N10B –46.7 (11)	
N10A—C9—N10B—C19 68.0 (18) C9—N10B—C19—N10A -72.5 (18)	
C8—C9—N10B—C19 160.4 (10) Pd1—N10B—C19—N10A 64.0 (11)	
N10A—C9—N10B—Pd1 -67.2 (12) C9—N10B—C19—C18 -156.5 (11)	
C8—C9—N10B—Pd1 25.2 (17) Pd1—N10B—C19—C18 -20.0 (15)	

Symmetry code: (i) -x+1, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N10A—H10A····N24 ⁱⁱ	0.90	2.01	2.889 (9)	166
$N10B$ — $H10B$ ···· $S1^{iii}$	0.90	2.71	3.52 (2)	151

Symmetry codes: (ii) *x*, *y*, *z*–1; (iii) *x*–1, *y*, *z*.