data reports

open 👌 access

ISSN 2056-9890

Crystal structure of tris(1,10-phenanthroline- $\kappa^2 N, N'$)iron(II) bis[bis(trifluoromethylsulfonyl)imide] monohydrate

Kazunori Teramoto,^a Takeshi Kawasaki,^b Toshikazu Nishide^a and Yasuhisa Ikeda^c*

^aDepartment of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara Tokusada Tamura, Koriyama 963-8642, Japan, ^bDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and ^cResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. *Correspondence e-mail: yikeda@nr.titech.ac.jp

Received 3 December 2014; accepted 9 December 2014

Edited by M. Weil, Vienna University of Technology, Austria

The title crystal structure of the complex, $[Fe(C_{12}H_8N_2)_3][(CF_3SO_2)_2N]_2 \cdot H_2O$, is constructed by one octahedral $[Fe(phen)_3]^{2+}$ (phen = 1,10-phenanthroline) cation (point group symmetry 2), two Tf_2N^- [bis(trifluoromethylsulfonyl)imide] anions, and one water molecule of crystallization (point group 2). The Fe-N bond lengths are indicative of a d^6 low-spin state for the Fe^{II} ion in the complex. The dihedral angle between the phen ligands in the cation is 87.64 (6)°. The Tf_2N^- counter-anion is noncoordinating, with the -CF₃ groups arranged in a *trans* fashion with respect to each other, leading to an anti, anti conformation of the $-CF_3$ groups and $-SO_2N$ - moieties relative to the S-C bonds. The water molecule of crystallization connects two O atoms of the Tf₂N⁻ anions through weak hydrogen bonds. C-H...O hydrogen-bonding interactions are also observed, consolidating the packing of the molecules into a threedimensional network structure.

Keywords: crystal structure; 1,10-phenanthroline; iron(II) complex; complex salt; bis(trifluoromethylsulfonyl)imide; low-spin d^6 Fe^{II} ions; hydrogen bonding.

CCDC reference: 1038289

1. Related literature

For the synthesis of the anhydrous title complex, see: Teramoto *et al.* (2014). For typical Fe–N bond lengths of low-spin d^6 Fe^{II} ions, see: Deng *et al.* (2001); Setifi *et al.* (2013). Crystal structures of complexes with the [Fe(phen)₃]²⁺ cation were reported by Koh (1994), Potočňák *et al.* (2014) and Zhong (2012). In the crystal structure of the ionic liquid choline bis(trifluoromethylsulfonyl)imide (Nockemann *et al.*, 2009), the free Tf_2N^- anion has a similar conformation to that in the title compound.

2. Experimental

2.1. Crystal data

 $[Fe(C_{12}H_8N_2)_3](C_2F_6NO_4S_2)_2 \cdot H_2O M_r = 1174.78$ Monoclinic, C2/c a = 20.7745 (15) Å b = 16.0107 (12) Å c = 13.3084 (10) Å $\beta = 91.657$ (1)° $V = 4424.7 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.65 \text{ mm}^{-1}$ T = 100 K $0.42 \times 0.11 \times 0.10 \text{ mm}$

13659 measured reflections 4910 independent reflections

3247 reflections with $I > 2\sigma(I)$

2.2. Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\rm min} = 0.773, T_{\rm max} = 0.938$

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.122$	independent and constrained
S = 1.02	refinement
4910 reflections	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
338 parameters	$\Delta \rho_{\rm min} = -0.90 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.90 \ {\rm e} \ {\rm \AA}^{-3}$

 $R_{\rm int} = 0.065$

 Table 1

 Selected bond lengths (Å).

2 restraints

Fe1-N1	1.977 (3)	Fe1-N3	1.966 (3)
Fe1-N2	1.974 (3)		

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O5-H5W\cdots O4^{i}\\ C2-H2\cdots O3^{ii}\\ C14-H14\cdots O2 \end{array}$	0.88 (1)	2.23 (6)	2.963 (4)	141 (7)
	0.95	2.50	3.433 (4)	166
	0.95	2.53	3.481 (5)	174

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

Acknowledgements

We thank Professor Takafumi Kitazawa of Toho University for his useful comments.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5100).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, R. M. K., Simon, S., Dillon, K. B. & Goeta, A. E. (2001). Acta Cryst. C57, 4–6.
- Koh, L. L., Xu, Y., Hsieh, A. K., Song, B., Wu, F. & Ji, L. (1994). Acta Cryst. C50, 884–886.

Nockemann, P., Binnemans, K., Thijs, B., Parac-Vogt, T. N., Merz, K., Mudring, A.-V., Menon, P. C., Rajesh, R. N., Cordoyiannis, G., Thoen, J., Leys, J. & Glorieux, C. (2009). J. Phys. Chem. B, 113, 1429–1437.

- Potočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432-436.
- Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Teramoto, K., Nishide, T., Okumura, S., Takao, K. & Ikeda, Y. (2014). *Electrochemistry*, **82**, 566–572.
- Zhong, K.-L. (2012). Acta Cryst. C68, m259-m264.

supporting information

Acta Cryst. (2015). E71, m8–m9 [https://doi.org/10.1107/S2056989014026966]

Crystal structure of tris(1,10-phenanthroline- $\kappa^2 N, N'$)iron(II) bis[bis(trifluoro-methylsulfonyl)imide] monohydrate

Kazunori Teramoto, Takeshi Kawasaki, Toshikazu Nishide and Yasuhisa Ikeda

S1. Experimental

Red powders of $[Fe(phen)_3](Tf_2N)_2$ were synthesized as described in the literature by Teramoto *et al.* (2014). The title complex was crystallized by cooling a hot concentrated aqueous solution of $[Fe(phen)_3](Tf_2N)_2$.

S2. Refinement

The H atom of the water molecule was located in a difference map and was refined by applying a restraint for the O—H bond length (0.85 (1) Å). The remaining H atoms were positioned geometrically with C—H = 0.95 Å. All H atoms were constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figure 1

View of the $[Fe(phen)_3]^{2+}$, Tf_2N^- and H_2O molecular units. Displacement ellipsoids are represented at the 30% probability level. Hydrogen atoms were omitted for clarity. [Symmetry code: i) -*x* + 1,*y*,-*z* + 1/2.]

Figure 2

Hydrogen bonds between the H₂O molecule and Tf₂N⁻ anions. [Symmetry codes: ii) x - 1/2, y - 1/2, z, iii) -x + 3/2, y - 1/2, -z + 3/2.]

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)iron(II) bis[bis(trifluoromethylsulfonyl)imide] monohydrate

Crystal data

$[Fe(C_{12}H_8N_2)_3](C_2F_6NO_4S_2)_2 \cdot H_2O$	F(000) = 2368
$M_r = 1174.78$	$D_{\rm x} = 1.764 {\rm ~Mg~m^{-3}}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1623 reflections
a = 20.7745 (15) Å	$\theta = 2.2 - 23.5^{\circ}$
b = 16.0107 (12) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 13.3084 (10) Å	T = 100 K
$\beta = 91.657 (1)^{\circ}$	Block, red
$V = 4424.7 (6) Å^3$	$0.42 \times 0.11 \times 0.10 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD area-detector	13659 measured reflections
diffractometer	4910 independent reflections
Radiation source: fine-focus sealed tube	3247 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.065$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\rm max} = 27.2^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
phi and ω scans	$h = -26 \rightarrow 24$
Absorption correction: multi-scan	$k = -17 \rightarrow 20$
(SADABS; Bruker, 2007)	$l = -17 \rightarrow 16$
$T_{\min} = 0.773, \ T_{\max} = 0.938$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
4910 reflections	and constrained refinement
338 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 0.4369P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{\min} = -0.90 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.5000	0.81145 (4)	0.2500	0.01247 (17)	
S 1	0.70284 (4)	0.87060 (6)	0.73999 (6)	0.0194 (2)	
S2	0.81435 (4)	0.96272 (6)	0.78549 (6)	0.0190 (2)	
N1	0.41901 (12)	0.80991 (17)	0.32441 (19)	0.0128 (6)	
N2	0.52464 (12)	0.72317 (17)	0.34722 (19)	0.0136 (6)	
N3	0.53087 (12)	0.90330 (18)	0.33681 (19)	0.0141 (6)	
N4	0.77157 (14)	0.88188 (19)	0.7924 (2)	0.0231 (7)	
01	0.66576 (12)	0.81717 (18)	0.80049 (19)	0.0320 (7)	
O2	0.67338 (11)	0.94387 (16)	0.69810 (18)	0.0243 (6)	
03	0.80627 (11)	1.01191 (16)	0.69622 (17)	0.0235 (6)	
O4	0.87849 (11)	0.94170 (17)	0.81960 (19)	0.0264 (6)	
05	0.5000	0.5160 (4)	0.7500	0.102 (2)	
H5W	0.4670 (6)	0.4824 (12)	0.742 (7)	0.153*	
F1	0.75397 (11)	0.73840 (14)	0.65849 (17)	0.0369 (6)	
F2	0.75628 (11)	0.84768 (16)	0.56672 (17)	0.0409 (6)	
F3	0.66724 (10)	0.78257 (14)	0.58392 (17)	0.0343 (6)	
F4	0.78834 (11)	0.98981 (14)	0.97358 (15)	0.0318 (6)	
F5	0.82027 (10)	1.09733 (13)	0.89196 (16)	0.0281 (5)	
F6	0.72349 (9)	1.05100 (14)	0.86804 (15)	0.0283 (5)	
C1	0.36704 (15)	0.8593 (2)	0.3148 (2)	0.0150 (7)	
H1	0.3646	0.8974	0.2601	0.018*	
C2	0.31626 (16)	0.8573 (2)	0.3816 (2)	0.0175 (8)	
H2	0.2807	0.8941	0.3725	0.021*	
C3	0.31802 (15)	0.8018 (2)	0.4603 (3)	0.0177 (8)	
H3	0.2841	0.8008	0.5067	0.021*	
C4	0.37042 (16)	0.7465 (2)	0.4717 (2)	0.0160 (7)	
C5	0.42054 (15)	0.7547 (2)	0.4026 (2)	0.0143 (7)	
C6	0.37791 (16)	0.6843 (2)	0.5492 (3)	0.0190 (8)	
H6	0.3445	0.6769	0.5956	0.023*	
C7	0.43081 (16)	0.6365 (2)	0.5575 (2)	0.0197 (8)	
H7	0.4339	0.5955	0.6090	0.024*	
C8	0.47740 (15)	0.7066 (2)	0.4134 (2)	0.0153 (7)	
C9	0.48305 (16)	0.6464 (2)	0.4898 (2)	0.0164 (7)	
C10	0.54083 (16)	0.5999 (2)	0.4945 (3)	0.0206 (8)	
H10	0.5475	0.5585	0.5449	0.025*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.58709 (17)	0.6152 (2)	0.4258 (2)	0.0193 (8)	
H11	0.6255	0.5830	0.4268	0.023*	
C12	0.57795 (16)	0.6777 (2)	0.3545 (2)	0.0173 (8)	
H12	0.6114	0.6884	0.3090	0.021*	
C13	0.56412 (15)	0.9013 (2)	0.4249 (2)	0.0177 (8)	
H13	0.5741	0.8486	0.4542	0.021*	
C14	0.58467 (16)	0.9738 (2)	0.4751 (3)	0.0199 (8)	
H14	0.6086	0.9698	0.5368	0.024*	
C15	0.57025 (16)	1.0499 (2)	0.4352 (3)	0.0209 (8)	
H15	0.5840	1.0993	0.4692	0.025*	
C16	0.53488 (16)	1.0558 (2)	0.3435 (3)	0.0178 (8)	
C17	0.51693 (15)	0.9803 (2)	0.2973 (2)	0.0153 (7)	
C18	0.51659 (16)	1.1325 (2)	0.2942 (3)	0.0214 (8)	
H18	0.5282	1.1843	0.3246	0.026*	
C19	0.72140 (18)	0.8058 (2)	0.6315 (3)	0.0236 (8)	
C20	0.78431 (17)	1.0287 (2)	0.8856 (3)	0.0213 (8)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0125 (3)	0.0142 (4)	0.0107 (3)	0.000	0.0000 (3)	0.000
S 1	0.0223 (5)	0.0212 (5)	0.0148 (4)	0.0016 (4)	-0.0001 (4)	0.0002 (4)
S2	0.0201 (5)	0.0208 (5)	0.0161 (4)	0.0048 (4)	-0.0013 (4)	-0.0022 (4)
N1	0.0138 (14)	0.0118 (15)	0.0125 (14)	-0.0030 (12)	-0.0016 (11)	-0.0011 (11)
N2	0.0119 (14)	0.0160 (16)	0.0128 (14)	0.0010 (12)	-0.0006 (11)	-0.0017 (12)
N3	0.0112 (13)	0.0188 (16)	0.0124 (14)	0.0001 (12)	0.0017 (11)	-0.0010 (12)
N4	0.0255 (16)	0.0209 (18)	0.0223 (16)	0.0033 (14)	-0.0104 (14)	-0.0022 (13)
O1	0.0329 (15)	0.0405 (19)	0.0229 (14)	-0.0055 (13)	0.0053 (12)	0.0070 (13)
O2	0.0242 (13)	0.0233 (16)	0.0249 (14)	0.0049 (11)	-0.0071 (11)	-0.0013 (11)
O3	0.0247 (13)	0.0297 (16)	0.0162 (13)	0.0038 (11)	0.0001 (11)	0.0037 (11)
O4	0.0198 (13)	0.0316 (17)	0.0276 (14)	0.0076 (12)	-0.0043 (11)	-0.0029 (12)
O5	0.088 (5)	0.098 (6)	0.120 (6)	0.000	-0.005 (5)	0.000
F1	0.0399 (14)	0.0241 (14)	0.0461 (15)	0.0071 (11)	-0.0105 (12)	-0.0124 (11)
F2	0.0504 (15)	0.0476 (17)	0.0257 (12)	-0.0160 (12)	0.0163 (12)	-0.0074 (11)
F3	0.0352 (13)	0.0325 (14)	0.0343 (13)	-0.0027 (11)	-0.0124 (11)	-0.0101 (11)
F4	0.0465 (14)	0.0333 (14)	0.0153 (11)	0.0019 (11)	-0.0021 (10)	0.0005 (10)
F5	0.0301 (12)	0.0205 (13)	0.0334 (13)	-0.0013 (10)	-0.0050 (10)	-0.0065 (10)
F6	0.0210 (11)	0.0354 (14)	0.0283 (12)	0.0071 (10)	-0.0019 (9)	-0.0127 (10)
C1	0.0140 (16)	0.0155 (19)	0.0152 (17)	0.0005 (14)	-0.0026 (14)	-0.0021 (14)
C2	0.0137 (17)	0.018 (2)	0.0201 (18)	0.0011 (14)	-0.0022 (14)	-0.0013 (15)
C3	0.0131 (16)	0.020 (2)	0.0195 (18)	-0.0058 (14)	0.0033 (14)	-0.0044 (15)
C4	0.0156 (17)	0.017 (2)	0.0156 (17)	-0.0053 (14)	-0.0012 (14)	-0.0030 (14)
C5	0.0174 (17)	0.0144 (19)	0.0111 (16)	-0.0036 (14)	-0.0003 (14)	-0.0037 (13)
C6	0.0212 (18)	0.0158 (19)	0.0201 (18)	-0.0044 (15)	0.0036 (15)	-0.0002 (15)
C7	0.0262 (19)	0.020 (2)	0.0136 (17)	-0.0033 (16)	0.0047 (15)	0.0024 (15)
C8	0.0170 (17)	0.0142 (19)	0.0145 (17)	-0.0051 (14)	-0.0006 (14)	-0.0030 (14)
C9	0.0202 (18)	0.016 (2)	0.0125 (17)	-0.0021 (15)	-0.0025 (14)	-0.0031 (14)
C10	0.0284 (19)	0.019 (2)	0.0143 (17)	0.0016 (16)	-0.0038 (15)	0.0010 (15)

supporting information

C11	0.0193 (17)	0.021 (2)	0.0172 (18)	0.0057 (15)	-0.0021 (14)	0.0007 (15)
C12	0.0168 (17)	0.019 (2)	0.0157 (17)	0.0019 (15)	0.0002 (14)	-0.0026 (14)
C13	0.0139 (17)	0.025 (2)	0.0135 (17)	0.0044 (15)	-0.0012 (14)	0.0009 (15)
C14	0.0147 (17)	0.029 (2)	0.0163 (18)	0.0011 (16)	-0.0010 (14)	-0.0068 (15)
C15	0.0174 (18)	0.022 (2)	0.0231 (19)	-0.0041 (15)	0.0027 (15)	-0.0117 (16)
C16	0.0153 (17)	0.019 (2)	0.0195 (18)	-0.0003 (15)	0.0032 (14)	-0.0038 (15)
C17	0.0127 (17)	0.019 (2)	0.0148 (17)	0.0025 (14)	0.0038 (14)	-0.0014 (14)
C18	0.0191 (19)	0.015 (2)	0.030 (2)	0.0010 (14)	0.0018 (15)	-0.0055 (16)
C19	0.028 (2)	0.019 (2)	0.023 (2)	-0.0039 (17)	-0.0014 (16)	-0.0033 (16)
C20	0.0235 (19)	0.025 (2)	0.0156 (18)	0.0052 (16)	-0.0017 (15)	-0.0019 (15)

Geometric parameters (Å, °)

Fe1—N1	1.977 (3)	C2—C3	1.372 (5)	_
Fe1—N1 ⁱ	1.977 (3)	С2—Н2	0.9500	
Fe1—N2	1.974 (3)	C3—C4	1.408 (5)	
Fe1—N2 ⁱ	1.974 (3)	С3—Н3	0.9500	
Fe1—N3	1.966 (3)	C4—C5	1.415 (4)	
Fe1—N3 ⁱ	1.966 (3)	C4—C6	1.439 (5)	
S101	1.417 (3)	C5—C8	1.414 (5)	
S1—O2	1.429 (3)	C6—C7	1.341 (5)	
S1—N4	1.581 (3)	С6—Н6	0.9500	
S1-C19	1.827 (4)	С7—С9	1.439 (5)	
S2—O3	1.431 (2)	С7—Н7	0.9500	
S2—O4	1.435 (2)	C8—C9	1.403 (5)	
S2—N4	1.574 (3)	C9—C10	1.413 (5)	
S2-C20	1.824 (4)	C10-C11	1.368 (5)	
N1—C1	1.341 (4)	C10—H10	0.9500	
N1C5	1.366 (4)	C11—C12	1.388 (5)	
N2—C8	1.364 (4)	C11—H11	0.9500	
N2-C12	1.326 (4)	C12—H12	0.9500	
N3—C13	1.343 (4)	C13—C14	1.400 (5)	
N3—C17	1.368 (4)	C13—H13	0.9500	
O5—H5W	0.875 (10)	C14—C15	1.360 (5)	
F1—C19	1.318 (4)	C14—H14	0.9500	
F2—C19	1.324 (4)	C15—C16	1.410 (5)	
F3—C19	1.329 (4)	C15—H15	0.9500	
F4—C20	1.327 (4)	C16—C17	1.401 (5)	
F5—C20	1.330 (4)	C16—C18	1.439 (5)	
F6—C20	1.327 (4)	C17—C17 ⁱ	1.425 (6)	
C1—C2	1.400 (4)	C18-C18 ⁱ	1.345 (7)	
C1—H1	0.9500	C18—H18	0.9500	
N3—Fe1—N3 ⁱ	83.17 (16)	C7—C6—C4	121.7 (3)	
N3—Fe1—N2 ⁱ	174.17 (11)	С7—С6—Н6	119.1	
N3 ⁱ —Fe1—N2 ⁱ	94.38 (11)	С4—С6—Н6	119.1	
N3—Fe1—N2	94.38 (11)	C6—C7—C9	121.1 (3)	
N3 ⁱ —Fe1—N2	174.17 (11)	С6—С7—Н7	119.5	

N2 ⁱ —Fe1—N2	88.54 (16)	С9—С7—Н7	119.5
N3—Fe1—N1 ⁱ	92.05 (11)	N2—C8—C9	123.7 (3)
N3 ⁱ —Fe1—N1 ⁱ	89.01 (11)	N2—C8—C5	116.3 (3)
N2 ⁱ —Fe1—N1 ⁱ	82.60 (11)	C9—C8—C5	120.0 (3)
N2—Fe1—N1 ⁱ	96.38 (11)	C8—C9—C10	116.6 (3)
N3—Fe1—N1	89.01 (11)	C8—C9—C7	118.7 (3)
N3 ⁱ —Fe1—N1	92.05 (11)	С10—С9—С7	124.7 (3)
N2 ⁱ —Fe1—N1	96.38 (11)	С11—С10—С9	119.2 (3)
N2—Fe1—N1	82.60 (11)	C11—C10—H10	120.4
N1 ⁱ —Fe1—N1	178.58 (17)	C9—C10—H10	120.4
O1—S1—O2	118.91 (16)	C10-C11-C12	120.1 (3)
O1—S1—N4	108.49 (16)	C10-C11-H11	120.0
O2—S1—N4	116.70 (16)	C12—C11—H11	120.0
O1—S1—C19	103.70 (17)	N2-C12-C11	122.9 (3)
O2—S1—C19	104.80 (16)	N2—C12—H12	118.6
N4—S1—C19	101.81 (17)	C11—C12—H12	118.6
O3—S2—O4	118.49 (16)	N3—C13—C14	122.6 (3)
O3—S2—N4	116.61 (16)	N3—C13—H13	118.7
O4—S2—N4	108.02 (16)	C14—C13—H13	118.7
O3—S2—C20	104.65 (16)	C15—C14—C13	119.8 (3)
O4—S2—C20	103.83 (15)	C15—C14—H14	120.1
N4—S2—C20	103.19 (17)	C13—C14—H14	120.1
C1—N1—C5	117.1 (3)	C14—C15—C16	120.1 (3)
C1—N1—Fe1	129.7 (2)	C14—C15—H15	120.0
C5—N1—Fe1	112.9 (2)	C16—C15—H15	120.0
C12—N2—C8	117.4 (3)	C17—C16—C15	116.6 (3)
C12—N2—Fe1	129.9 (2)	C17—C16—C18	118.2 (3)
C8—N2—Fe1	112.6 (2)	C15—C16—C18	125.2 (3)
C13—N3—C17	117.1 (3)	N3—C17—C16	123.9 (3)
C13—N3—Fe1	130.2 (2)	N3—C17—C17 ⁱ	115.67 (18)
C17—N3—Fe1	112.7 (2)	C16—C17—C17 ⁱ	120.4 (2)
S1—N4—S2	124.92 (19)	C18 ⁱ —C18—C16	121.4 (2)
N1—C1—C2	123.0 (3)	C18 ⁱ —C18—H18	119.3
N1—C1—H1	118.5	C16—C18—H18	119.3
C2—C1—H1	118.5	F1	107.8 (3)
C3—C2—C1	119.7 (3)	F1	108.7 (3)
C3—C2—H2	120.1	F2—C19—F3	107.6 (3)
C1—C2—H2	120.1	F1—C19—S1	111.6 (3)
C2—C3—C4	119.5 (3)	F2—C19—S1	111.1 (3)
С2—С3—Н3	120.2	F3—C19—S1	109.9 (3)
C4—C3—H3	120.2	F4—C20—F5	108.1 (3)
C3—C4—C5	116.9 (3)	F4—C20—F6	108.5 (3)
C3—C4—C6	125.4 (3)	F5—C20—F6	108.6 (3)
C5—C4—C6	117.6 (3)	F4—C20—S2	111.0 (3)
N1—C5—C8	115.5 (3)	F5—C20—S2	108.8 (2)

supporting information

N1C5C4	123.6 (3)	F6—C20—S2	111.8 (2)
C8—C5—C4	120.8 (3)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A	
O5—H5 <i>W</i> ···O4 ⁱⁱ	0.88(1)	2.23 (6)	2.963 (4)	141 (7)	
С2—Н2…ОЗ ^{ііі}	0.95	2.50	3.433 (4)	166	
C14—H14…O2	0.95	2.53	3.481 (5)	174	

Symmetry codes: (ii) *x*-1/2, *y*-1/2, *z*; (iii) -*x*+1, -*y*+2, -*z*+1.