

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 22 December 2014
Accepted 6 January 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

Keywords: crystal structure; gossypol; gossypol tetramethyl ether; porous structure; $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions

CCDC reference: 1007641
Supporting information: this article has supporting information at journals.iucr.org/e

Molecular and crystal structure of gossypol tetramethyl ether with an unknown solvate

Muhabbat Honkeldieva,* Samat Talipov, Rustam Mardanov and Bakhtiyar Ibragimov

Institute of Bioorganic Chemistry, Mirzo-Ulughbek Str. 83, Tashkent, 100125, Uzbekistan. *Correspondence e-mail: mturgunovna@mail.ru

The title compound, $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{8}$ (systematic name: 5,5'-diisopropyl-2, 2', 3, 3^{\prime} -tetramethoxy-7, 7^{\prime}-dimethyl-2H, $2^{\prime} H-8,8^{\prime}$-bi[naphtho[1,8-bc]furan]-4, 4^{\prime}-diol), has been obtained from a gossypol solution in a mixture of dimethyl sulfate and methanol. The molecule is situated on a twofold rotation axis, so the asymmetric unit contains one half-molecule. In the molecule, the hydroxy groups are involved in intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and the two naphthyl fragments are inclined each to other by $83.8(1)^{\circ}$. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions consolidate the packing, which exhibits channels with an approximate diameter of $6 \AA$ extending along the c-axis direction. These channels are filled with highly disordered solvent molecules, so their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek, A. L. (2015). Acta Cryst. C71, 9-18].

1. Chemical context

Gossypol [systematic name: 2,2'-bis(8-formyl-1,6,7-tri-hydroxyl-5-isopropyl-3-methylnaphthalene)] is an unique terpenoid found in Gossypium (cotton) and related species. Within plants, gossypol appears to act as a natural insecticide and fungicide (Adams et al., 1960). Because of its antinutritive effect, gossypol limits the feeding of cottonseed and cottonseed meal to ruminant animals. However, the compound also has a wide range of biological actions, including anti-HIV, anticancer, and antifertility effects (Liang et al., 1995; Dorsett et al., 1975; Coutinho, 2002; Royer et al., 1995). Gossypol is a surprisingly versatile host compound that forms inclusion complexes with a great variety of organic substances such as ketones, ethers, esters, organic and mineral acids, water, various benzyl compounds and chlorinated and brominated compounds. More than one hundred of these complexes with different guest molecules have been obtained and structurally characterized (Talipov et al., 2002; 2003; 2007; Ibragimov et al., 2004). A specific feature of gossypol is the existence of gossypol host-guest complexes in the form of polymorphic crystals. As a result of its comprehensive biological properties, there is current interest in the synthesis of new gossypol derivatives. Many derivatives have been reported, including ethers, acetates and Schiff bases with aldehydes (Talipov et al., 2004; 2009; Tilyabaev et al., 2009; Kenar, 2006). As first reported by Morris \& Adams (1937), treatment with an alkali of a gossypol solution in a mixture of dimethyl sulfate and methanol, yields a white gossypol tetramethyl ether, the title compound.

2. Structural commentary

Gossypol can exist in one of the following tautomeric forms: aldehyde, quinoid and lactol (Adams et al., 1960). In most solvents it is found in the aldehyde form. However, there are some reports that gossypol also exists in a pure lactol form (Reyes et al., 1986) or as a dynamic equilibrium mixture of the aldehyde and lactol forms in some highly polar solvents (Kamaev et al., 1979). In the structure described here, the title compound exists in the lactol form.
The crystallographically imposed symmetry of the title molecule is $C 2$; the twofold axis is perpendicular to the $\mathrm{C} 2-$ C2A bond [symmetry code $(A):-x, y, \frac{3}{2}-z$]. The symmetry of the molecule corresponds to symmetry of the crystal, the title compound molecule being situated on a twofold axis. An ORTEP diagram of the molecule showing the atomnumbering scheme is given in Fig. 1. The molecule consists of two fused ring systems, each containing a naphthalene ring system with a fused furan ring. The two napthyl bicycles of the molecule are nearly perpendicular and the dihedral angle between their least-squares planes is $83.8(1)^{\circ}$. The furan ring is not completely planar, with atom C12 deviating from the C1/ O1/C8/C9 plane by 0.225 (4) A. The methoxy group at the C-7 position is almost coplanar with the plane of the naphthalene ring system; atomic deviations from this plane are 0.004 (3) for

Figure 1
The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled ones by the symmetry operation (A) $-x, y$, $\frac{3}{2}-z$.

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).
$C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 3$	$0.67(3)$	$2.17(4)$	$2.586(3)$	$122(4)$
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.96	2.71	$3.286(3)$	119
${\mathrm{C} 17-\mathrm{H} 17 C \cdots C g^{\mathrm{ii}}}^{2}$	0.96	2.77	$3.551(4)$	139

Symmetry codes: (i) $-x,-y,-z+2$; (ii) $x,-y, z+\frac{1}{2}$.

O3 and 0.163 (5) \AA for C16. The methoxy group on the furan ring ($\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 17 \mathrm{H}_{3}$) and atom O 1 are located on the same side of the host ring (C1-C4/C9/C10). The isopropyl groups are positioned with the ternary hydrogen atoms pointed outwards and away from the center of the molecule, the isopropyl groups bisect the extended naphthalene ring system plane.

There is an intramolecular $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 3$ hydrogen bond (Table 1) which is similar to those observed previously in structures of gossypol and its Schiff bases. The values of the bond lengths and angles in the title molecule are within expected values. However, there are notable differences in the lengths of some of these bonds compared with typical values for gossypol structures. Compared with the relatively short C5-C6 aromatic ring bonds of gossypol molecules ($1.36 \AA$), the corresponding bond in the title molecule is longer at 1.380 (3) A. In addition, the $\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 8-\mathrm{C} 9$ bonds in the title compound are shorter than those in gossypol by 0.03 and $0.06 \AA$, respectively. The shortest bond within these rings is the C1-C2 bond with a length of 1.359 (3) Å. In the furan ring, there are some differences in the lengths of some bonds compared with the values found in dianhydrogossypol. In the title molecule, the $\mathrm{C} 1-\mathrm{O} 1$ bond $[1.374$ (3) \AA] is shorter than the $\mathrm{O} 1-\mathrm{C} 12$ bond [1.463 (3) \AA].

Figure 2
A portion of the crystal packing viewed approximately along the c axis.

Table 2
Experimental details.
Crystal data
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{8}$
574.64

Orthorhombic, Pbcn
293
19.7086 (5), 20.3099 (7), 8.8443 (4)
3540.2 (2)

4
$\mathrm{Cu} K \alpha$
0.62
$0.35 \times 0.28 \times 0.26$

Oxford Diffraction Xcalibur Ruby Multi-scan (SCALE3 ABSPACK
in CrysAlis PRO; Oxford
Diffraction, 2009)
0.914, 1.000

12345, 3340, 1826
0.049
0.613
$0.056,0.162,0.93$
3340
200
H atoms treated by a mixture of independent and constrained refinement
$0.24,-0.17$

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97, SHELXL97 and $X P$ in SHELXTL (Sheldrick, 2008).

3. Supramolecular features

The packing of the title molecules is shown in Fig. 2. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1) consolidate the crystal packing, which exhibits channels with a diameter of approximately $6 \AA$ extending along the c-axis direction. These channels are similar to the channels previously reported in a dianhydrogossypol crystal structure (Talipov et al., 2009). In the present structure, for each unit cell, the channels provide a void volume of $672 \AA^{3}$ corresponding to 19% of the unit-cell volume. Highly disordered solvent molecules, most probably water molecules, occupy these voids in the crystal; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program (Spek, 2009, 2015).

4. Database survey

A search in the Cambridge Structural Database (Version 5.33, last update November 2013; Groom \& Allen, 2014) indicated the presence of 191 entries for gossypol (137 entries) or gossypol derivatives. However, only four entries were found for fused-ring systems containing a naphthalene ring system with a fused furan ring. The dihedral angle between two fused ring systems in these structures is equal to 84.8 in TEYJEM (Ibragimov et al., 1995), 111.8 in TEYJEN (Ibragimov et al., 1995), 117.0 in YURMEE (Talipov et al., 1999) and 119.1° in FOVKEG (Talipov et al., 1999).

5. Synthesis and crystallization

Gossypol was obtained from the Experimental Plant of the Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan where it was produced from by-products of the cottonseed oil industry. The title compound was synthesized following the known procedure (Morris \& Adams, 1937). In order to prepare single crystals suitable for X-ray experiments, powdered material was dissolved in acetone $(20 \mathrm{mg} / 1 \mathrm{ml})$ and stored for few days at room temperature under slow evaporation of the solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom of the hydroxyl substituent was located in an electron density map and its coordinates were freely refined with $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{O}) . \mathrm{C}-$ bound H atoms were positioned geometrically and refined using a riding model, with $d(\mathrm{C}-\mathrm{H})=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{e q}$ (C) for aromatic, $d(\mathrm{C}-\mathrm{H})=0.98 \AA$ and $U_{\text {iso }}=1.2 U_{e q}(\mathrm{C})$ for methine, $d(\mathrm{C}-\mathrm{H})=0.96 \AA$ and $U_{\text {iso }}=1.5 U_{e q}(\mathrm{C})$ for methyl H atoms.

Acknowledgements

This investigation was supported by research grants F7-T048 from the Uzbek National Science Foundation.

References

Adams, R., Geissman, T. A. \& Edwards, J. D. (1960). Chem. Rev. 60, 555-574.
Coutinho, E. M. (2002). Contraception, 65, 259-263.
Dorsett, P. H., Kerstine, E. E. \& Powers, L. J. (1975). J. Pharm. Sci. 64, 1073-1075.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Ibragimov, B. T., Beketov, K. M., Talipov, S. A. \& Mardanov, R. G. (1995). Chem. Nat. Compd, 31, 575-578.

Ibragimov, B. T. \& Talipov, S. A. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood \& J. W. Steed, pp. 606-614. New York: Dekker.
Kamaev, F. G., Baram, N. I., Ismailov, A. I., Leont'ev, V. B. \& Sadykov, A. S. (1979). Russ. Chem. Bull. 28, 938-944.

Kenar, J. A. (2006). J Amer Oil Chem Soc, 83, 269-302.
Liang, X. S., Rogers, A. J., Webber, C. L., Ormsby, T. J., Tiritan, M. E., Matlin, S. A. \& Benz, C. C. (1995). Invest. New Drugs, 13, 181-186.
Morris, R. C. \& Adams, R. (1937). J. Am. Chem. Soc. 59, 1731-1735.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
Reyes, J., Wyrick, S. D., Borriero, L. \& Benos, D. J. (1986). Biochim. Biophys. Acta, 863, 101-109.
Royer, R. E., Deck, L. M., Vander Jagt, T. J., Martinez, F. J., Mills, R. G., Young, S. A. \& Vander Jagt, D. L. (1995). J. Med. Chem. 38, 2427-2432.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Talipov, S. A., Ibragimov, B. T., Beketov, K. M., Praliev, D. K. \& Aripov, T. F. (2004). Crystallogr. Rep. 49, 752-757.
Talipov, S. A., Ibragimov, B. T., Ohashi, Y., Harada, J. \& Saleh, M. I. (2002). Crystallogr. Rep. 47, 443-448.

research communications

Talipov, S. A., Ibragimov, B. T., Tadjimukhamedov, F. Kh., Tiljakov, Z. G., Blake, A. J., Hertzsch, T. \& Hulliger, J. (2007). J. Incl. Phenom. Macrocycl. Chem. 59, 287-292.
Talipov, S. A., Mamadrakhimov, A. A., Tiljakov, Z. G., Dowd, M. K., Ibragimov, B. T. \& Xonkeldieva, M. T. (2009). J. Am. Oil Chem. Soc. 86, 207-213.

Talipov, S. A., Mardanov, R. G., Ibragimov, B. T., Beketov, K. M. \& Kholbekov, O. Kh. (1999). Chem. Nat. Compd, 35, 409-414.
Talipov, S. A., Tadjimukhamedov, F. K., Hulliger, J., Ibragimov, B. T. \& Yuldashev, A. (2003). Cryst. Eng. 6, 137-144.
Tilyabaev, K. Z., Talipov, S. A., Ibragimov, B. T., Dowd, M. K. \& Yuldashev, A. M. (2009). J. Chem. Crystallogr. 39, 677-682.

supporting information

Molecular and crystal structure of gossypol tetramethyl ether with an unknown solvate

Muhabbat Honkeldieva, Samat Talipov, Rustam Mardanov and Bakhtiyar Ibragimov

Computing details

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

5,5'-Diisopropyl-2,2',3,3'-tetramethoxy-7,7'-dimethyl-2H,2'H-8, $\mathbf{8}^{\prime}$-bi[naphtho[1,8-bc]furan]-4,4'-diol

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{8}$
$M_{r}=574.64$
Orthorhombic, Pbcn
$a=19.7086$ (5) \AA
$b=20.3099$ (7) \AA
$c=8.8443$ (4) \AA
$V=3540.2(2) \AA^{3}$
$Z=4$
$F(000)=1224$

Data collection

Oxford Diffraction Xcalibur Ruby
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.2576 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Oxford
Diffraction, 2009)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.162$
$S=0.93$
3340 reflections
200 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.078 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2468 reflections
$\theta=4.4-70.6^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, white
$0.35 \times 0.28 \times 0.26 \mathrm{~mm}$
$T_{\min }=0.914, T_{\text {max }}=1.000$
12345 measured reflections
3340 independent reflections
1826 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=71.0^{\circ}, \theta_{\text {min }}=4.4^{\circ}$
$h=-23 \rightarrow 24$
$k=-22 \rightarrow 24$
$l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0932 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00096 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	0.06600 (7)	0.08142 (8)	0.91284 (19)	0.0592 (5)
O2	0.12998 (9)	-0.01420 (8)	0.8665 (2)	0.0664 (5)
O3	0.29694 (8)	0.05026 (10)	0.9636 (2)	0.0735 (6)
O4	0.35682 (9)	0.13669 (12)	0.7953 (3)	0.0731 (6)
C1	0.08110 (10)	0.12972 (12)	0.8095 (3)	0.0487 (6)
C2	0.03731 (10)	0.17024 (12)	0.7358 (3)	0.0486 (6)
C3	0.06794 (11)	0.21591 (12)	0.6321 (3)	0.0521 (6)
C4	0.13705 (10)	0.22063 (12)	0.6150 (2)	0.0503 (6)
H4A	0.1545	0.2512	0.5472	0.060*
C5	0.25535 (11)	0.18076 (12)	0.6976 (2)	0.0498 (6)
C6	0.28733 (10)	0.13639 (12)	0.7919 (3)	0.0518 (6)
C7	0.25350 (11)	0.08978 (12)	0.8849 (3)	0.0532 (6)
C8	0.18412 (11)	0.08864 (11)	0.8835 (2)	0.0482 (6)
C9	0.15172 (10)	0.13466 (11)	0.7923 (2)	0.0465 (5)
C10	0.18240 (10)	0.18039 (12)	0.6973 (2)	0.0463 (6)
C11	0.02224 (12)	0.25791 (16)	0.5367 (3)	0.0750 (9)
H11B	0.0492	0.2873	0.4766	0.113*
H11C	-0.0073	0.2830	0.6009	0.113*
H11A	-0.0044	0.2303	0.4716	0.113*
C12	0.12826 (11)	0.04508 (13)	0.9467 (3)	0.0575 (7)
H12	0.1337	0.0379	1.0556	0.069*
C13	0.29419 (11)	0.22682 (14)	0.5945 (3)	0.0618 (7)
H13	0.2602	0.2522	0.5385	0.074*
C14	0.33502 (14)	0.18881 (18)	0.4773 (3)	0.0909 (10)
H14A	0.3052	0.1608	0.4204	0.136*
H14C	0.3686	0.1624	0.5273	0.136*
H14B	0.3570	0.2192	0.4102	0.136*
C15	0.33765 (15)	0.27649 (16)	0.6781 (4)	0.0922 (11)
H15B	0.3096	0.3020	0.7448	0.138*
H15A	0.3592	0.3052	0.6065	0.138*
H15C	0.3716	0.2538	0.7357	0.138*
C16	0.26946 (16)	0.00777 (18)	1.0766 (4)	0.1007 (12)

H16C	0.3057	-0.0154	1.1260	0.151^{*}
H16A	0.2393	-0.0233	1.0301	0.151^{*}
H16B	0.2450	0.0334	1.1496	0.151^{*}
C17	$0.08064(15)$	$-0.06108(16)$	$0.9165(4)$	$0.0945(11)$
H17B	0.0860	-0.1014	0.8610	0.142^{*}
H17A	0.0359	-0.0438	0.8997	0.142^{*}
H17C	0.0869	-0.0695	1.0224	0.142^{*}
H4	$0.3667(18)$	$0.1176(19)$	$0.854(4)$	$0.103(15)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0420(8)$	$0.0675(11)$	$0.0681(11)$	$0.0003(8)$	$0.0123(8)$	$0.0175(9)$
O2	$0.0564(10)$	$0.0584(11)$	$0.0845(13)$	$-0.0061(8)$	$0.0122(9)$	$0.0081(10)$
O3	$0.0514(10)$	$0.0864(14)$	$0.0826(13)$	$0.0050(9)$	$-0.0047(9)$	$0.0296(11)$
O4	$0.0407(10)$	$0.0939(16)$	$0.0847(15)$	$-0.0017(9)$	$-0.0052(9)$	$0.0252(13)$
C1	$0.0415(12)$	$0.0552(14)$	$0.0493(13)$	$-0.0065(10)$	$0.0090(10)$	$0.0020(12)$
C2	$0.0375(11)$	$0.0582(14)$	$0.0501(13)$	$0.0007(11)$	$0.0027(10)$	$-0.0023(12)$
C3	$0.0425(12)$	$0.0617(15)$	$0.0519(13)$	$0.0020(11)$	$0.0005(10)$	$0.0027(12)$
C4	$0.0432(12)$	$0.0590(15)$	$0.0487(13)$	$-0.0012(11)$	$0.0035(10)$	$0.0063(11)$
C5	$0.0394(11)$	$0.0610(15)$	$0.0489(13)$	$-0.0040(10)$	$0.0019(10)$	$0.0022(12)$
C6	$0.0328(11)$	$0.0673(16)$	$0.0553(13)$	$-0.0021(11)$	$-0.0013(10)$	$0.0006(12)$
C7	$0.0454(12)$	$0.0613(16)$	$0.0530(14)$	$0.0030(11)$	$-0.0028(11)$	$0.0063(12)$
C8	$0.0412(12)$	$0.0544(14)$	$0.0491(13)$	$0.0001(10)$	$0.0029(10)$	$0.0052(11)$
C9	$0.0402(11)$	$0.0545(14)$	$0.0448(12)$	$-0.0016(10)$	$0.0042(10)$	$0.0000(11)$
C10	$0.0393(11)$	$0.0569(14)$	$0.0428(12)$	$-0.0033(10)$	$0.0037(9)$	$-0.0035(11)$
C11	$0.0463(13)$	$0.094(2)$	$0.085(2)$	$0.0059(14)$	$-0.0003(13)$	$0.0254(17)$
C12	$0.0486(13)$	$0.0697(17)$	$0.0543(15)$	$0.0002(12)$	$0.0060(11)$	$0.0100(13)$
C13	$0.0400(12)$	$0.0816(18)$	$0.0638(16)$	$-0.0047(12)$	$0.0038(11)$	$0.0176(14)$
C14	$0.0742(19)$	$0.124(3)$	$0.075(2)$	$0.0012(18)$	$0.0247(16)$	$0.020(2)$
C15	$0.086(2)$	$0.097(2)$	$0.094(2)$	$-0.0331(19)$	$-0.0049(17)$	$0.024(2)$
C16	$0.077(2)$	$0.119(3)$	$0.106(2)$	$0.002(2)$	$-0.0097(18)$	$0.062(2)$
C17	$0.084(2)$	$0.081(2)$	$0.119(3)$	$-0.0242(18)$	$0.0142(19)$	$0.022(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.374(3)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.519(3)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.463(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.391(3)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.398(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{O} 2-\mathrm{C} 17$	$1.431(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{O} 3-\mathrm{C} 7$	$1.364(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{O} 3-\mathrm{C} 16$	$1.427(3)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9800
$\mathrm{O} 4-\mathrm{C} 6$	$1.370(3)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.516(4)$
$\mathrm{O} 4-\mathrm{H} 4$	$0.67(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.523(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.359(3)$	$\mathrm{C} 13-\mathrm{H} 13$	0.9800
$\mathrm{C} 1-\mathrm{C} 9$	$1.404(3)$	$\mathrm{C} 14 — \mathrm{H} 14 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 3$	$1.437(3)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{C} 2{ }^{\mathrm{i}}$	$1.492(4)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.9600

C3-C4	1.374 (3)
C3-C11	1.500 (3)
C4-C10	1.413 (3)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
C5-C6	1.380 (3)
C5-C10	1.438 (3)
C5-C13	1.514 (3)
C6-C7	1.420 (3)
C7-C8	1.368 (3)
C8-C9	1.390 (3)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 12$	108.35 (16)
C12-O2-C17	113.6 (2)
C7-O3-C16	118.3 (2)
C6-O4-H4	108 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	127.89 (19)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$	122.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 9$	109.76 (19)
C1-C2-C3	115.48 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	123.0 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 2{ }^{\mathrm{i}}$	121.44 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.1 (2)
C4-C3-C11	119.6 (2)
C2-C3-C11	118.3 (2)
C3-C4-C10	122.0 (2)
C3-C4-H4A	119.0
C10-C4-H4A	119.0
C6-C5-C10	117.0 (2)
C6-C5-C13	122.44 (19)
C10-C5-C13	120.5 (2)
O4-C6-C5	117.8 (2)
O4-C6-C7	117.3 (2)
C5-C6-C7	124.81 (19)
O3-C7-C8	128.5 (2)
O3-C7-C6	113.13 (19)
C8-C7-C6	118.4 (2)
C7-C8-C9	116.9 (2)
C7-C8-C12	137.0 (2)
C9-C8-C12	105.79 (18)
C8-C9-C10	126.9 (2)
C8-C9-C1	110.1 (2)
C10-C9-C1	123.0 (2)
C9-C10-C4	114.98 (19)
C9-C10-C5	115.9 (2)
C4-C10-C5	129.1 (2)
C3-C11-H11B	109.5
C3-C11-H11C	109.5
H11B-C11-H11C	109.5

$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9600
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9600
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	0.9600
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	0.9600
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9600
C16-H16B	0.9600
C17-H17B	0.9600
C17-H17A	0.9600
C17-H17C	0.9600

$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{H} 11 \mathrm{C}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{O} 1$	$110.5(2)$
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 8$	$107.31(18$
$\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 8$	$103.82(18$
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{H} 12$	111.6
$\mathrm{O} 1-\mathrm{C} 12-\mathrm{H} 12$	111.6
$\mathrm{C} 8-\mathrm{C} 12-\mathrm{H} 12$	111.6
$\mathrm{C} 5-\mathrm{C} 13-\mathrm{C} 15$	$113.8(2)$
$\mathrm{C} 5-\mathrm{C} 13-\mathrm{C} 14$	$111.3(2)$
$\mathrm{C} 15-\mathrm{C} 13-\mathrm{C} 14$	$111.8(2)$

$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C} \quad 109.5$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B} \quad 109.5$
$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B} \quad 109.5$
$\mathrm{H} 14 \mathrm{C}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B} \quad 109.5$
$\mathrm{C} 13-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B} \quad 109.5$
C13-C15-H15A 109.5
H15B-C15-H15A 109.5
C13-C15-H15C 109.5
$\mathrm{H} 15 \mathrm{~B}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \quad 109.5$
$\mathrm{H} 15 \mathrm{~A}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \quad 109.5$
$\mathrm{O} 3-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C} \quad 109.5$
$\mathrm{O} 3-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \quad 109.5$
$\mathrm{H} 16 \mathrm{C}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \quad 109.5$
$\mathrm{O} 3-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 109.5$
$\mathrm{H} 16 \mathrm{C}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 109.5$
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 109.5$
$\mathrm{O} 2-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B} \quad 109.5$
O2-C17-H17A 109.5
$\mathrm{H} 17 \mathrm{~B}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A} \quad 109.5$
$\mathrm{O} 2-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \quad 109.5$
$\mathrm{H} 17 \mathrm{~B}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \quad 109.5$
supporting information

$\mathrm{C} 3-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 12-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$172.7(2)$
$\mathrm{C} 12-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 9$	$-9.9(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.4(2)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$3.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$3.4(4)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$-173.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-3.4(3)$
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$173.9(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$174.6(2)$
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$-8.1(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$0.6(4)$
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$-177.4(2)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 4$	$-179.0(2)$
$\mathrm{C} 13-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 4$	$1.7(4)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-176.6(2)$
$\mathrm{C} 13-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-10.0(4)$
$\mathrm{C} 16-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$171.4(2)$
$\mathrm{C} 16-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$-1.3(3)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$	$178.0(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$	$179.9(2)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.8(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-179.8(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-1.3(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-6.8(5)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	$171.7(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	$2.6(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-172.4(2)$
$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	

H17A-C17-H17C

C7-C8-C9-C1
C12-C8-C9-C1
C2-C1-C9-C8
O1-C1-C9-C8
C2-C1-C9-C10
O1-C1-C9-C10
C8-C9-C10-C4
C1-C9-C10-C4
C8-C9-C10-C5
C1-C9-C10-C5
C3-C4-C10-C9
C3-C4-C10-C5
C6-C5-C10-C9
C13-C5-C10-C9
C6-C5-C10-C4
C13-C5-C10-C4
C17-O2-C12-O1
C17-O2-C12-C8
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 12-\mathrm{O} 2$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 8$
C7-C8-C12-O2
C9-C8-C12-O2
C7-C8-C12-O1
C9-C8-C12-O1
C6-C5-C13-C15
C10-C5-C13-C15
C6-C5-C13-C14
C10-C5-C13-C14
109.5
$-176.7(2)$
8.3 (3)
178.3 (2)
0.8 (3)
-1.0 (4)
-178.6 (2)
178.9 (2)
-1.9 (3)
-1.7 (3)
177.5 (2)
2.0 (3)
-177.2 (2)
-0.4 (3)
177.8 (2)
178.8 (2)
-2.9 (4)
-68.7 (3)
178.7 (2)
-100.5 (2)
14.3 (2)
-70.0 (4)
103.5 (2)
172.9 (3)
-13.6 (2)
-64.3 (3)
117.5 (3)
63.1 (3)
-115.1 (3)

Symmetry code: (i) $-x, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 4 \cdots \mathrm{O} 3$	$0.67(3)$	$2.17(4)$	$2.586(3)$	$122(4)$
$\mathrm{C} 17 — \mathrm{H} 17 A \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.96	2.71	$3.286(3)$	119
$\mathrm{C} 17 — \mathrm{H} 17 C \cdots C g^{\mathrm{iii}}$	0.96	2.77	$3.551(4)$	139

Symmetry codes: (ii) $-x,-y,-z+2$; (iii) $x,-y, z+1 / 2$.

