#### data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

OPEN a ACCESS

ISSN 2056-9890

#### Crystal structure of ethyl 2-(2-{(1*E*)-[(*E*)-2-(2-hydroxybenzylidene)hydrazin-1-ylidene]methyl}phenoxy)acetate

#### Mehmet Akkurt,<sup>a</sup> Joel T. Mague,<sup>b</sup> Shaaban K. Mohamed,<sup>c,d</sup> Eman A. Ahmed<sup>e</sup> and Mustafa R. Albayati<sup>f\*</sup>

<sup>a</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>b</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, <sup>d</sup>Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, Chemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and <sup>f</sup>Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. \*Correspondence e-mail: shaabankamel@vahoo.com

Received 11 December 2014; accepted 13 December 2014

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

In the title compound,  $C_{18}H_{18}N_2O_4$ , the planes of the benzene rings are twisted with respect to each other at  $27.25 (7)^{\circ}$ . The molecule displays an extended conformation with an intramolecular O-H···N hydrogen bond. In the crystal, weak C-H...O interactions link the molecules, forming supramolecular chains running along the *b*-axis direction.

Keywords: crystal structure; Schiff base ligand; hydrogen bonding.

CCDC reference: 1039095

#### 1. Related literature

For a similar structure, see: Mague et al. (2015). For background to related Schiff base ligands and their biological activity, see: Adsule et al. (2006); Karthikeyan et al. (2006); Amimoto & Kawato (2005); Cohen & Schmidt (1964).



#### 2. Experimental

#### 2.1. Crystal data

| $C_{18}H_{18}N_2O_4$            | V = 1578.43 (6) Å <sup>3</sup> |
|---------------------------------|--------------------------------|
| $M_r = 326.34$                  | Z = 4                          |
| Monoclinic, $P2_1/n$            | Cu Ka radiation                |
| a = 17.6846 (4) Å               | $\mu = 0.81 \text{ mm}^{-1}$   |
| b = 4.8645 (1)  Å               | $T = 150 { m K}$               |
| c = 19.2235 (4) Å               | $0.20 \times 0.09 \times 0.06$ |
| $\beta = 107.357 \ (1)^{\circ}$ |                                |

#### 2.2. Data collection

| Bruker D8 VENTURE PHOTON                   |
|--------------------------------------------|
| 100 CMOS diffractometer                    |
| Absorption correction: multi-scan          |
| (SADABS; Bruker, 2014)                     |
| $T_{\rm min} = 0.90, \ T_{\rm max} = 0.95$ |

2.3. Refinement  $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.109$ S = 1.06

3063 reflections

× 0.06 mm

11331 measured reflections 3063 independent reflections 2538 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.031$ 

| 218 parameters                                             |
|------------------------------------------------------------|
| H-atom parameters constrained                              |
| $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|--------------|--------------|---------------------------|
| $D1 - H1A \cdots N1$        | 0.84 | 1.85         | 2.6441 (17)  | 158                       |
| $C15 - H15A \cdots O4^{i}$  | 0.99 | 2.58         | 3.3568 (19)  | 136                       |
| $C15 - H15B \cdots O3^{ii}$ | 0.99 | 2.57         | 3.440 (2)    | 147                       |

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

#### Acknowledgements

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5832).

#### References

- Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.
- Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207-226.
- Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.



Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996–2000.
Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.

Mague, J. T., Mohamed, S. K., Akkurt, M., Ahmed, E. A. & Omran, O. A. (2015). *Acta Cryst.* E71, o16.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

### supporting information

Acta Cryst. (2015). E71, o70-o71 [doi:10.1107/S2056989014027273]

# Crystal structure of ethyl 2-(2-{(1*E*)-[(*E*)-2-(2-hydroxybenzylidene)hydrazin-1-yl-idene]methyl}phenoxy)acetate

#### Mehmet Akkurt, Joel T. Mague, Shaaban K. Mohamed, Eman A. Ahmed and Mustafa R. Albayati

#### S1. Comment

Schiff bases of salicylaldehyde have gained importance from physiological and pharmacological activities point of view (Adsule *et al.*, 2006; Karthikeyan *et al.*, 2006). They also may exhibit thermochromism or photochromism depending on the planarity or nonplanarity, respectively, of the molecule (Amimoto & Kawato, 2005; Cohen & Schmidt, 1964). As part of our research efforts in the area of schiff base ligands we report in this study the synthesis and crystal structure determination of the title compound.

The title molecule is in an extended conformation with the phenyl rings C1–C6 and C9–C14, respectively, making dihedral angles of 7.4 (1)° and 19.8 (1)° with the mean plane of the central C7, N1, N2, C8 unit. The bond lengths and bond angles of the title molecule are normal and are comparable to those reported for a similar structure (Mague *et al.*, 2015).

The former angle is smaller as a result of the intramolecular O1—H1a···N1 hydrogen bond (Table 1). The packing consists of chains of molecules formed by weak C15—H15B···O3 interactions running parallel to the *b* axis with adjacent pairs of chains associated *via* C15—H15a···O4 interactions across centers of symmetry (Fig. 2 and Table 1).

#### S2. Experimental

A mixture of 0.01 mol of 2-hydroxybenzohydrazide and 0.01 mol of ethyl 2-(2-formylphenoxy)acetate in 20 ml of ethanol was heated under reflux for 2 h. The solid product which precipitated from the hot solution was collected by filtration and dried under vacuum. Colourless crystals sufficient for X-ray diffraction were obtained by recrystallization from an ethanol solution. m.p. 428 K, yield 92%.

#### S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and refined in riding mode while hydroxyl-O atom was located in a difference Fourier map and refined by riding in its as-found relative position to oxygen atom.  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H toms and  $1.2U_{eq}(C,O)$  for the others.



#### Figure 1

Perspective view of the title molecule with 50% probability ellipsoids and showing the atom labeling scheme and the intramolecular O—H···N hydrogen bond.



#### Figure 2

Packing viewed down the b axis showing C—H…O interactions as black dotted lines.

#### Ethyl 2-(2-{(1*E*)-[(*E*)-2-(2-hydroxybenzylidene)hydrazin-1-ylidene]methyl}phenoxy)acetate

| Crystal data                   |                                                       |
|--------------------------------|-------------------------------------------------------|
| $C_{18}H_{18}N_2O_4$           | F(000) = 688                                          |
| $M_r = 326.34$                 | $D_{\rm x} = 1.373 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/n$           | Cu <i>K</i> $\alpha$ radiation, $\lambda = 1.54178$ Å |
| a = 17.6846 (4) Å              | Cell parameters from 6837 reflections                 |
| b = 4.8645 (1)  Å              | $\theta = 4.1 - 72.5^{\circ}$                         |
| c = 19.2235 (4) Å              | $\mu = 0.81 \text{ mm}^{-1}$                          |
| $\beta = 107.357 (1)^{\circ}$  | T = 150  K                                            |
| V = 1578.43 (6) Å <sup>3</sup> | Column, colourless                                    |
| Z = 4                          | $0.20 \times 0.09 \times 0.06 \text{ mm}$             |
|                                |                                                       |

Data collection

| <ul> <li>Bruker D8 VENTURE PHOTON 100 CMOS diffractometer</li> <li>Radiation source: INCOATEC IμS micro–focus source</li> <li>Mirror monochromator</li> <li>Detector resolution: 10.4167 pixels mm<sup>-1</sup></li> <li>ω scans</li> <li>Absorption correction: multi-scan (SADABS; Bruker, 2014)</li> <li>Refinement</li> </ul> | $T_{\min} = 0.90, T_{\max} = 0.95$<br>11331 measured reflections<br>3063 independent reflections<br>2538 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.031$<br>$\theta_{\max} = 72.5^{\circ}, \theta_{\min} = 3.0^{\circ}$<br>$h = -18 \rightarrow 21$<br>$k = -5 \rightarrow 6$<br>$l = -23 \rightarrow 23$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.038$<br>$wR(F^2) = 0.109$<br>S = 1.06<br>3063 reflections<br>218 parameters<br>0 restraints                                                                                                                                                       | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.5415P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$                                |
| Primary atom site location: structure-invariant direct methods                                                                                                                                                                                                                                                                    | $\Delta \rho_{\text{max}} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3}$                                                                                                                                                                                       |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while that attached to oxygen was placed in a location derived from a difference map and its parameters adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|-------------|-----------------------------|--|
| 01  | 0.26107 (6)  | 0.1064 (3)  | 0.62511 (6) | 0.0392 (3)                  |  |
| H1A | 0.2450       | 0.2256      | 0.5924      | 0.047*                      |  |
| O2  | 0.33072 (6)  | 1.1408 (2)  | 0.46429 (6) | 0.0318 (3)                  |  |
| 03  | 0.42576 (7)  | 0.9110 (2)  | 0.38921 (7) | 0.0394 (3)                  |  |
| O4  | 0.49863 (7)  | 1.2963 (2)  | 0.40435 (6) | 0.0365 (3)                  |  |
| N1  | 0.17349 (7)  | 0.4391 (3)  | 0.52416 (6) | 0.0274 (3)                  |  |
| N2  | 0.15351 (7)  | 0.6296 (3)  | 0.46651 (7) | 0.0286 (3)                  |  |
| C1  | 0.11819 (9)  | 0.1146 (3)  | 0.58929 (8) | 0.0259 (3)                  |  |
| C2  | 0.19168 (9)  | 0.0129 (3)  | 0.63240 (8) | 0.0277 (3)                  |  |
| C3  | 0.19421 (10) | -0.1914 (3) | 0.68369 (8) | 0.0322 (3)                  |  |
| Н3  | 0.2438       | -0.2593     | 0.7130      | 0.039*                      |  |
| C4  | 0.12504 (10) | -0.2958 (3) | 0.69212 (8) | 0.0333 (4)                  |  |
| H4  | 0.1274       | -0.4362     | 0.7271      | 0.040*                      |  |
|     |              |             |             |                             |  |

| C5   | 0.05185 (10) | -0.1982 (4) | 0.65017 (9)  | 0.0355 (4) |
|------|--------------|-------------|--------------|------------|
| Н5   | 0.0044       | -0.2718     | 0.6561       | 0.043*     |
| C6   | 0.04881 (9)  | 0.0071 (3)  | 0.59976 (9)  | 0.0326 (4) |
| H6   | -0.0012      | 0.0767      | 0.5717       | 0.039*     |
| C7   | 0.11221 (9)  | 0.3247 (3)  | 0.53449 (8)  | 0.0273 (3) |
| H7   | 0.0611       | 0.3800      | 0.5051       | 0.033*     |
| C8   | 0.21343 (9)  | 0.7639 (3)  | 0.46080 (8)  | 0.0259 (3) |
| H8   | 0.2637       | 0.7370      | 0.4958       | 0.031*     |
| C9   | 0.20573 (8)  | 0.9589 (3)  | 0.40100 (8)  | 0.0248 (3) |
| C10  | 0.13833 (9)  | 0.9571 (3)  | 0.33998 (8)  | 0.0298 (3) |
| H10  | 0.0963       | 0.8334      | 0.3385       | 0.036*     |
| C11  | 0.13200 (9)  | 1.1324 (3)  | 0.28202 (8)  | 0.0323 (4) |
| H11  | 0.0860       | 1.1286      | 0.2409       | 0.039*     |
| C12  | 0.19294 (9)  | 1.3133 (3)  | 0.28420 (8)  | 0.0314 (3) |
| H12  | 0.1885       | 1.4344      | 0.2444       | 0.038*     |
| C13  | 0.26054 (9)  | 1.3203 (3)  | 0.34376 (8)  | 0.0291 (3) |
| H13  | 0.3022       | 1.4450      | 0.3447       | 0.035*     |
| C14  | 0.26682 (8)  | 1.1433 (3)  | 0.40201 (8)  | 0.0251 (3) |
| C15  | 0.39957 (9)  | 1.2843 (3)  | 0.46170 (8)  | 0.0312 (3) |
| H15A | 0.4364       | 1.3016      | 0.5117       | 0.037*     |
| H15B | 0.3846       | 1.4718      | 0.4425       | 0.037*     |
| C16  | 0.44124 (9)  | 1.1381 (3)  | 0.41393 (8)  | 0.0290 (3) |
| C17  | 0.54618 (11) | 1.1827 (4)  | 0.36101 (11) | 0.0423 (4) |
| H17A | 0.5114       | 1.1105      | 0.3142       | 0.051*     |
| H17B | 0.5796       | 1.0304      | 0.3876       | 0.051*     |
| C18  | 0.59662 (11) | 1.4085 (4)  | 0.34751 (11) | 0.0444 (4) |
| H18A | 0.5629       | 1.5554      | 0.3199       | 0.067*     |
| H18B | 0.6306       | 1.3375      | 0.3196       | 0.067*     |
| H18C | 0.6297       | 1.4814      | 0.3942       | 0.067*     |
|      |              |             |              |            |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|------------|------------|------------|-------------|------------|-------------|
| 01 | 0.0279 (6) | 0.0439 (7) | 0.0432 (7) | -0.0035 (5) | 0.0066 (5) | 0.0125 (5)  |
| O2 | 0.0294 (5) | 0.0372 (6) | 0.0291 (5) | -0.0080 (5) | 0.0091 (4) | 0.0026 (5)  |
| O3 | 0.0414 (7) | 0.0279 (6) | 0.0506 (7) | -0.0041 (5) | 0.0164 (5) | -0.0039 (5) |
| O4 | 0.0364 (6) | 0.0330 (6) | 0.0461 (7) | -0.0077 (5) | 0.0212 (5) | -0.0072 (5) |
| N1 | 0.0294 (6) | 0.0258 (7) | 0.0276 (6) | -0.0011 (5) | 0.0092 (5) | 0.0035 (5)  |
| N2 | 0.0296 (6) | 0.0270 (7) | 0.0299 (6) | 0.0001 (5)  | 0.0101 (5) | 0.0053 (5)  |
| C1 | 0.0290 (7) | 0.0236 (7) | 0.0256 (7) | -0.0023 (6) | 0.0091 (6) | -0.0019 (6) |
| C2 | 0.0291 (7) | 0.0262 (8) | 0.0270 (7) | -0.0039 (6) | 0.0073 (6) | -0.0035 (6) |
| C3 | 0.0351 (8) | 0.0310 (8) | 0.0280 (7) | 0.0007 (7)  | 0.0058 (6) | 0.0022 (7)  |
| C4 | 0.0459 (9) | 0.0284 (8) | 0.0286 (7) | 0.0006 (7)  | 0.0157 (7) | 0.0035 (6)  |
| C5 | 0.0360 (8) | 0.0355 (9) | 0.0405 (9) | -0.0024 (7) | 0.0197 (7) | 0.0038 (7)  |
| C6 | 0.0288 (8) | 0.0336 (9) | 0.0367 (8) | 0.0000 (7)  | 0.0119 (6) | 0.0036 (7)  |
| C7 | 0.0259 (7) | 0.0260 (8) | 0.0301 (7) | 0.0004 (6)  | 0.0084 (6) | 0.0008 (6)  |
| C8 | 0.0269 (7) | 0.0243 (8) | 0.0278 (7) | 0.0006 (6)  | 0.0102 (6) | 0.0002 (6)  |
| С9 | 0.0266 (7) | 0.0222 (7) | 0.0280 (7) | 0.0029 (6)  | 0.0121 (6) | 0.0006 (6)  |
|    |            |            |            |             |            |             |

## supporting information

| C10 | 0.0265 (7)  | 0.0300 (8)  | 0.0340 (8)  | -0.0003 (6) | 0.0108 (6) | 0.0013 (7)  |
|-----|-------------|-------------|-------------|-------------|------------|-------------|
| C11 | 0.0292 (8)  | 0.0357 (9)  | 0.0308 (8)  | 0.0051 (7)  | 0.0069 (6) | 0.0045 (7)  |
| C12 | 0.0372 (8)  | 0.0286 (8)  | 0.0314 (8)  | 0.0082 (7)  | 0.0147 (6) | 0.0080 (7)  |
| C13 | 0.0333 (8)  | 0.0251 (8)  | 0.0335 (8)  | -0.0007 (6) | 0.0170 (6) | 0.0015 (6)  |
| C14 | 0.0261 (7)  | 0.0244 (7)  | 0.0272 (7)  | 0.0025 (6)  | 0.0115 (6) | -0.0007 (6) |
| C15 | 0.0295 (8)  | 0.0331 (9)  | 0.0309 (8)  | -0.0079 (7) | 0.0090 (6) | -0.0026 (7) |
| C16 | 0.0275 (7)  | 0.0271 (8)  | 0.0302 (7)  | -0.0022 (6) | 0.0053 (6) | 0.0018 (6)  |
| C17 | 0.0435 (10) | 0.0358 (10) | 0.0562 (11) | 0.0005 (8)  | 0.0280 (8) | -0.0050 (8) |
| C18 | 0.0440 (10) | 0.0438 (11) | 0.0537 (11) | 0.0029 (8)  | 0.0273 (8) | 0.0046 (9)  |
|     |             |             |             |             |            |             |

Geometric parameters (Å, °)

| 01—C2      | 1.3548 (18) | C8—C9       | 1.465 (2)   |
|------------|-------------|-------------|-------------|
| O1—H1A     | 0.8403      | C8—H8       | 0.9500      |
| O2—C14     | 1.3797 (17) | C9—C14      | 1.400 (2)   |
| O2—C15     | 1.4172 (17) | C9—C10      | 1.401 (2)   |
| O3—C16     | 1.2016 (19) | C10-C11     | 1.381 (2)   |
| O4—C16     | 1.3295 (18) | C10—H10     | 0.9500      |
| O4—C17     | 1.4577 (19) | C11—C12     | 1.382 (2)   |
| N1C7       | 1.2854 (19) | C11—H11     | 0.9500      |
| N1—N2      | 1.4064 (17) | C12—C13     | 1.387 (2)   |
| N2—C8      | 1.2772 (19) | C12—H12     | 0.9500      |
| C1—C6      | 1.402 (2)   | C13—C14     | 1.390 (2)   |
| C1—C2      | 1.406 (2)   | C13—H13     | 0.9500      |
| C1—C7      | 1.449 (2)   | C15—C16     | 1.515 (2)   |
| C2—C3      | 1.391 (2)   | C15—H15A    | 0.9900      |
| C3—C4      | 1.378 (2)   | C15—H15B    | 0.9900      |
| С3—Н3      | 0.9500      | C17—C18     | 1.486 (3)   |
| C4—C5      | 1.389 (2)   | C17—H17A    | 0.9900      |
| C4—H4      | 0.9500      | C17—H17B    | 0.9900      |
| C5—C6      | 1.381 (2)   | C18—H18A    | 0.9800      |
| С5—Н5      | 0.9500      | C18—H18B    | 0.9800      |
| С6—Н6      | 0.9500      | C18—H18C    | 0.9800      |
| С7—Н7      | 0.9500      |             |             |
| C2—O1—H1A  | 101.2       | C9—C10—H10  | 119.5       |
| C14—O2—C15 | 117.06 (11) | C10-C11-C12 | 119.60 (14) |
| C16—O4—C17 | 117.01 (13) | C10-C11-H11 | 120.2       |
| C7—N1—N2   | 112.44 (12) | C12—C11—H11 | 120.2       |
| C8—N2—N1   | 112.64 (12) | C11—C12—C13 | 120.84 (14) |
| C6C1C2     | 118.59 (14) | C11—C12—H12 | 119.6       |
| C6—C1—C7   | 119.35 (14) | C13—C12—H12 | 119.6       |
| C2—C1—C7   | 122.06 (13) | C12—C13—C14 | 119.45 (14) |
| O1—C2—C3   | 118.34 (14) | C12—C13—H13 | 120.3       |
| 01—C2—C1   | 121.82 (14) | C14—C13—H13 | 120.3       |
| C3—C2—C1   | 119.84 (14) | O2—C14—C13  | 123.53 (13) |
| C4—C3—C2   | 120.30 (15) | O2—C14—C9   | 115.80 (12) |
| С4—С3—Н3   | 119.9       | C13—C14—C9  | 120.65 (14) |
|            |             |             |             |

| С2—С3—Н3       | 119.9        | O2—C15—C16      | 111.61 (13)  |
|----------------|--------------|-----------------|--------------|
| C3—C4—C5       | 120.80 (15)  | O2—C15—H15A     | 109.3        |
| C3—C4—H4       | 119.6        | C16—C15—H15A    | 109.3        |
| C5—C4—H4       | 119.6        | O2—C15—H15B     | 109.3        |
| C6—C5—C4       | 119.29 (15)  | C16—C15—H15B    | 109.3        |
| С6—С5—Н5       | 120.4        | H15A—C15—H15B   | 108.0        |
| C4—C5—H5       | 120.4        | O3—C16—O4       | 124.80 (15)  |
| C5—C6—C1       | 121.17 (15)  | O3—C16—C15      | 125.22 (14)  |
| С5—С6—Н6       | 119.4        | O4—C16—C15      | 109.98 (13)  |
| С1—С6—Н6       | 119.4        | O4—C17—C18      | 107.37 (14)  |
| N1—C7—C1       | 122.39 (14)  | O4—C17—H17A     | 110.2        |
| N1—C7—H7       | 118.8        | C18—C17—H17A    | 110.2        |
| С1—С7—Н7       | 118.8        | O4—C17—H17B     | 110.2        |
| N2—C8—C9       | 120.88 (13)  | C18—C17—H17B    | 110.2        |
| N2—C8—H8       | 119.6        | H17A—C17—H17B   | 108.5        |
| С9—С8—Н8       | 119.6        | C17—C18—H18A    | 109.5        |
| C14—C9—C10     | 118.41 (13)  | C17—C18—H18B    | 109.5        |
| C14—C9—C8      | 120.88 (13)  | H18A—C18—H18B   | 109.5        |
| C10—C9—C8      | 120.65 (13)  | C17—C18—H18C    | 109.5        |
| C11—C10—C9     | 121.06 (14)  | H18A—C18—H18C   | 109.5        |
| С11—С10—Н10    | 119.5        | H18B—C18—H18C   | 109.5        |
|                | 172 22 (12)  |                 | 177 20 (14)  |
| C/N1N2C8       | 173.32 (13)  | C8—C9—C10—C11   | -177.30(14)  |
| C6-C1-C2-01    | 1/9.77 (14)  | C9—C10—C11—C12  | -0.2(2)      |
| C7—C1—C2—O1    | 0.1 (2)      | C10—C11—C12—C13 | 0.3 (2)      |
| C6-C1-C2-C3    | 0.4 (2)      | C11—C12—C13—C14 | -0.2 (2)     |
| C7—C1—C2—C3    | -179.22 (14) | C15—O2—C14—C13  | -13.6 (2)    |
| 01-C2-C3-C4    | -178.94 (14) | C15—O2—C14—C9   | 168.16 (13)  |
| C1—C2—C3—C4    | 0.4 (2)      | C12—C13—C14—O2  | -178.18 (13) |
| C2—C3—C4—C5    | -0.5 (2)     | C12—C13—C14—C9  | 0.0 (2)      |
| C3—C4—C5—C6    | -0.4(3)      | C10—C9—C14—O2   | 178.35 (13)  |
| C4—C5—C6—C1    | 1.2 (3)      | C8—C9—C14—O2    | -4.28 (19)   |
| C2—C1—C6—C5    | -1.3 (2)     | C10—C9—C14—C13  | 0.0 (2)      |
| C7—C1—C6—C5    | 178.39 (15)  | C8—C9—C14—C13   | 177.39 (13)  |
| N2—N1—C7—C1    | 177.86 (13)  | C14—O2—C15—C16  | -71.06 (17)  |
| C6—C1—C7—N1    | 177.23 (14)  | C17—O4—C16—O3   | -0.4 (2)     |
| C2—C1—C7—N1    | -3.1 (2)     | C17—O4—C16—C15  | 178.44 (14)  |
| N1—N2—C8—C9    | 175.83 (12)  | O2—C15—C16—O3   | -9.9 (2)     |
| N2-C8-C9-C14   | 167.75 (14)  | O2—C15—C16—O4   | 171.21 (12)  |
| N2-C8-C9-C10   | -14.9 (2)    | C16—O4—C17—C18  | 170.82 (14)  |
| C14—C9—C10—C11 | 0.1 (2)      |                 |              |
|                |              |                 |              |
|                |              |                 |              |

#### Hydrogen-bond geometry (Å, °)

| D—H···A   | <i>D</i> —Н | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------|-------------|-------|-------------|-------------------------|
| 01—H1A…N1 | 0.84        | 1.85  | 2.6441 (17) | 158                     |

# C15—H15.4···O4<sup>i</sup> 0.99 2.58 3.3568 (19) 136 C15—H15.B···O3<sup>ii</sup> 0.99 2.57 3.440 (2) 147

Symmetry codes: (i) -*x*+1, -*y*+3, -*z*+1; (ii) *x*, *y*+1, *z*.