

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 23 January 2015
Accepted 27 January 2015

Edited by I. D. Brown, McMaster University, Canada

Keywords: crystal structure; high-temperature crystallization; langbeinite-type structure; threedimensional framework

CCDC reference: 1045876 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of langbeinite-related $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$

Nataliia Yu. Strutynska, ${ }^{\text {a* }}$ Marina A. Bondarenko, ${ }^{\text {a }}$ Ivan V. Ogorodnyk, ${ }^{\text {a }}$ Vyacheslav N. Baumer ${ }^{\text {b,c }}$ and Nikolay S. Slobodyanik ${ }^{\text {a }}$

 Kyiv, Ukraine, ${ }^{\mathbf{b}}$ STC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine, and ${ }^{\text {TV }}$. N. Karazin National University, 4, Svobody Square, 61001 Kharkiv, Ukraine. *Correspondence e-mail:
Strutynska_N@bigmir.net

Potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate), $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$, has been obtained using a high-temperature crystallization method. The obtained compound has a langbeinite-type structure. The three-dimensional framework is built up from mixed-occupied $\left(\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}\right) \mathrm{O}_{6}$ octahedra (point group symmetry .3.) and PO_{4} tetrahedra. The K^{+} and Rb^{+}cations are statistically distributed over two distinct sites (both with site symmetry .3.) in the large cavities of the framework. They are surrounded by 12 O atoms.

1. Chemical context

Nowadays, there are a number of reports on the synthesis and investigation of langbeinite-related complex phosphates, which exhibit interesting properties such as magnetic (Ogorodnyk et al., 2006), luminescence (Zhang et al., 2013; Chawla et al., 2013) and phase transitions (Hikita et al., 1977). It should be noted that compounds with a langbeinite-type structure are prospects for use as a matrix for the storage of nuclear waste (Orlova et al., 2011). Zaripov et al. (2009) and Ogorodnyk et al. (2007a) proved that caesium can be introduced into the cavity of a langbeinite framework that can be used for the immobilization of ${ }^{137} \mathrm{Cs}$ in an inert matrix for safe disposal.

A large number of compounds with a langbeinite framework based on a variety of different valence elements are known. Three major types of substitutions of the elements are known as well as their combinations. They are: metal substitution in octahedra, element substitution in anion tetrahedra, and substitution of ions in cavities. Among these compounds, potassium-containing langbeinites are the most studied (Ogorodnyk et al., 2006, 2007b,c; Norberg, 2002; Orlova et al., 2003). However, several reports concerning phosphate langbeinites with Rb^{+}in the cavities of the framework are known: $\mathrm{Rb}_{2} \mathrm{Fe} \mathrm{Zr}\left(\mathrm{PO}_{4}\right)_{3}$ (Trubach et al., 2004), $\mathrm{Rb}_{2} \mathrm{YbTi}\left(\mathrm{PO}_{4}\right)_{3}$ (Gustafsson et al., 2005) and $\mathrm{Rb}_{2} \mathrm{TiY}\left(\mathrm{PO}_{4}\right)_{3}$ (Gustafsson et al., 2006).

Herein, the structure of $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$, potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate) is reported.

2. Structural commentary

The asymmetric unit of $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$ consists of two mixed-occupied ($\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}$), two (Rb / K), one P and four oxygen positions (Fig. 1). The structure of the title

Figure 1
The asymmetric unit of $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$, showing displacement ellipsoids at the 50% probability level.
compound is built up from mixed $\left(\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}\right) \mathrm{O}_{6}$ octahedra and PO_{4} tetrahedra, which are connected via common O-atom vertices. Each octahedron is linked to six adjacent tetrahedra and reciprocally, each tetrahedron is connected to four neighboring octahedra into a three-dimensional rigid framework (Fig. 2).

The oxygen environment of the metal atoms in the $\left(\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}\right) 1 \mathrm{O}_{6}$ octahedra is slightly distorted, with $M-\mathrm{O}$ bonds of 1.940 (2) and 1.966 (2) \AA. These distances are close to the corresponding bond lengths in $\mathrm{K}_{2} \mathrm{Ti}_{2}\left(\mathrm{PO}_{4}\right)_{3}[d(\mathrm{Ti}-\mathrm{O})=$ 1.877 (10)-1.965 (10) \AA; Masse et al., 1972], which could be explained by the small occupancy of cobalt in the mixed $\left(\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}\right) 1$ [occupancy $\left.=0.1307(9)\right]$ and $\left(\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}\right) 2$ [occupancy $=0.162$ (3)] sites. It should be noted that $\left(\mathrm{Co} / \mathrm{Ti}^{\mathrm{IV}}\right) 2-\mathrm{O}$ distances $[1.949$ (2) and 1.969 (2) \AA] are slightly shorter than those in $\mathrm{K}_{2} \mathrm{Co}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ (Ogorodnyk et al., 2006).

The orthophosphate tetrahedra are also slightly distorted with $\mathrm{P}-\mathrm{O}$ bond lengths ranging from 1.525 (2) to 1.531 (2) Å. These distances are almost identical to the corresponding ones in $\mathrm{K}_{2} \mathrm{Co}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}[d(\mathrm{P}-\mathrm{O})=1.525(2)-1.529(9) \AA$; Ogorodnyk et al., 2006). A comparison of the corresponding interatomic distances for the octahedra and tetrahedra in $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$ and $\mathrm{K}_{2} \mathrm{Co}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ shows that partial substitution of K^{+}by Rb^{+}and decreasing the amount of cobalt slightly influences the distances in the polyhedra for $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$.

The K^{+}and Rb^{+}cations are located in large cavities of the three-dimensional framework in $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707^{-}}$ $\left(\mathrm{PO}_{4}\right)_{3}$. They are statistically distributed over two distinct sites in which they have partial occupancies of 0.540 (9) and 0.330 (18) for Rb 1 and K1, respectively, and 0.203 (8) and 0.514 (17) for Rb 2 and K 2 , respectively. For the determination of the $(\mathrm{Rb} / \mathrm{K}) 1$ and $(\mathrm{Rb} / \mathrm{K}) 2$ coordination numbers (CN), Voronoi-Dirichlet polyhedra (VDP) were built using the

Figure 2
Two-dimensional net and three-dimensional framework for $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$.

DIRICHLET program included in the TOPOS package (Blatov et al., 1995). Analysis of the solid-angle (Ω) distribution revealed twelve $(\mathrm{Rb} / \mathrm{K})-\mathrm{O}$ contacts for both the $(\mathrm{Rb} /$ $\mathrm{K}) 1$ and $(\mathrm{Rb} / \mathrm{K}) 2$ sites (cut-off distance of $4.0 \AA$, neglecting those corresponding to $\Omega<1.5 \%$; Blatov et al., 1998). The results of the construction of the Voronoi-Dirichlet polyhedra (Blatov et al., 1995) indicated that the coordination scheme for $(\mathrm{Rb} / \mathrm{K}) 1$ is described as $[9+3]$ [nine meaning 'ion-covalent' bonds are in the range 2.896 (2)-3.095 (2) \AA which have $\Omega>$ 5.0% and three $(\mathrm{Rb} / \mathrm{K}) 1-\mathrm{O}$ distances equal to $3.438(8) \AA$ with $\Omega=2.42 \%$]. The $(\mathrm{Rb} / \mathrm{K})-\mathrm{O}$ distances in the $[(\mathrm{Rb} /$ $\mathrm{K}) 2 \mathrm{O}_{12}$]-polyhedra are in the range 2.870 (2)-3.219 (2) \AA ($4.91 \%<\Omega<9.5 \%$).

The corresponding $\mathrm{K} 1-\mathrm{O}$ contacts in $\mathrm{K}_{2} \mathrm{Co}_{0.5} \mathrm{Ti}_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ (Ogorodnyk et al., 2006) are in the range 2.872 (2)-3.231 (3) \AA while the $\mathrm{K} 2-\mathrm{O}$ distances in the ${\mathrm{K} 2 \mathrm{O}_{12}}^{2}$ polyhedra are in the range 2.855 (2)-3.473 (3) \AA, slightly longer than those in $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$. These results indicate that the substitution of K^{+}cations by Rb^{+}cations in $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$ caused a decrease of the $(\mathrm{Rb} / \mathrm{K})-\mathrm{O}$ bond length. This fact confirms the rigidity of the framework and the suitability of the cavity dimensions to accommodate different sized ions whose size and nature insignificantly influence the framework.

3. Synthesis and crystallization

The title compound was prepared during crystallization of a self-flux in the $\mathrm{Rb}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{TiO}_{2}-\mathrm{CoO}$ system. The starting components $\mathrm{RbH}_{2} \mathrm{PO}_{4}(4.0 \mathrm{~g}), \mathrm{KPO}_{3}(2.4 \mathrm{~g}), \mathrm{TiO}_{2}$ $(0.532 \mathrm{~g})$ and $\mathrm{CoO}(0.50 \mathrm{~g})$ were ground in an agate mortar, placed in a platinum crucible and $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%, 0.42 \mathrm{~g})$ was added. The mixture was heated up to 1273 K . The melt was kept at this temperature for one h . After that, the temperature was decreased to 873 K at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The crystals of $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$ were separated from the rest flux by washing in hot water. The chemical composition of a single crystal was verified using EDX analysis. Analysis found: K 6.72, Rb 13.85, Co 3.74, Ti 16.86, P 19.96 and O $38.87 \mathrm{at} \%$,
while $\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$ requires $\mathrm{K} 6.86, \mathrm{Rb}$ 13.15, Co 3.60, Ti 17.06, P 19.36 and O $39.97 \mathrm{at} \%$.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The O-atom sites were determined from difference Fourier maps. It was assumed that both types of alkaline ions occupy cavity sites while the transition metals occupy framework sites. The occupancies were refined using linear combinations of free variables taking into account the total charge of the cell.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Blatov, V. A., Pogildyakova, L. V. \& Serezhkin, V. N. (1998). Z. Kristallogr. 213, 202-209.
Blatov, V. A., Shevchenko, A. P. \& Serenzhkin, V. N. (1995). Acta Cryst. A51, 909-916.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chawla, S., Ravishanker, Rajkumar, Khan, A. F. \& Kotnala, R. K. (2013). J. Lumin. 136, 328-333.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gustafsson, J. C. M., Norberg, S. T. \& Svensson, G. (2006). Acta Cryst. E62, i160-i162.
Gustafsson, J. C. M., Norberg, S. T., Svensson, G. \& Albertsson, J. (2005). Acta Cryst. C61, i9-i13.

Hikita, T., Sato, S., Sekiguchi, H. \& Ikeda, T. (1977). J. Phys. Soc. Jpn, 42, 1656-1659.
Masse, R., Durif, A., Guitel, J. C. \& Tordjman, I. (1972). Bull. Soc. Fr. Miner. Cristallogr. 95, 47-55.
Norberg, S. T. (2002). Acta Cryst. B58, 743-749.
Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. \& Domasevitch, K. V. (2007a). Acta Cryst. B63, 819827.

Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S. \& Shishkin, O. V. (2007b). Cryst. Res. Technol. 42, 1076-1081.
Ogorodnyk, I. V., Zatovsky, I. V. \& Slobodyanik, N. S. (2007c). Russ. J. Inorg. Chem. 52, 121-125.

Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. \& Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461-3466.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
Absolute structure parameter

$$
\begin{aligned}
& \mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3} \\
& 480.40 \\
& \mathrm{Cubic}, P 2_{1} 3 \\
& 293 \\
& 9.8527(1) \\
& 956.46(2) \\
& 4 \\
& \mathrm{Mo} K \alpha \\
& 6.63 \\
& 0.10 \times 0.07 \times 0.05
\end{aligned}
$$

Oxford Diffraction Xcalibur-3
Multi-scan (Blessing, 1995)
0.559, 0.734
$1414,1414,1312$
0.025
0.804
0.026, 0.051, 1.05

1414
67
3
0.37, -0.36

Flack (1983), 612 Friedel pairs
0.024 (10)

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvadó, M. A., García-Granda, S., Khainakov, S. A. \& García, J. R. (2003). J. Solid State Chem. 173, 314-318.

Orlova, A. I., Koryttseva, A. K. \& Loginova, E. E. (2011). Radiochemistry, 53, 51-62.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Trubach, I. G., Beskrovnyi, A. I., Orlova, A. I., Orlova, V. A. \& Kurazhkovskaya, V. S. (2004). Crystallogr. Rep. 49, 895-898.
Zaripov, A. R., Orlova, V. A., Petkov, V. I., Slyunchev, O. M., Galuzin, D. D. \& Rovnyi, S. I. (2009). Russ. J. Inorg. Chem. 54, 45-51.

Zhang, Z. J., Lin, X., Zhao, J. T. \& Zhang, G. B. (2013). Mater. Res. Bull. 48, 224-231.

supporting information

Acta Cryst. (2015). E71, 251-253 [doi:10.1107/S2056989015001826]
Crystal structure of langbeinite-related $\mathbf{R b}_{0.743} \mathrm{~K}_{0.845} \mathbf{C o}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$

Nataliia Yu. Strutynska, Marina A. Bondarenko, Ivan V. Ogorodnyk, Vyacheslav N. Baumer and Nikolay S. Slobodyanik

Computing details

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate)

Crystal data

$\mathrm{Rb}_{0.743} \mathrm{~K}_{0.845} \mathrm{Co}_{0.293} \mathrm{Ti}_{1.707}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{r}=480.40$
Cubic, $P 2_{1} 3$
Hall symbol: P 2ac 2ab 3
$a=9.8527$ (1) A
$V=956.46(2) \AA^{3}$
$Z=4$
$F(000)=920$

Data collection

Oxford Diffraction Xcalibur-3
diffractometer
Radiation source: fine focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.559, T_{\text {max }}=0.734$
$D_{\mathrm{x}}=3.336 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1414 reflections
$\theta=2.9-34.9^{\circ}$
$\mu=6.63 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Tetrahedron, dark red
$0.1 \times 0.07 \times 0.05 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.051$
$S=1.05$
1414 reflections
67 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> 1414 measured reflections
> 1414 independent reflections
> 1312 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.025$
> $\theta_{\max }=34.9^{\circ}, \theta_{\min }=2.9^{\circ}$
> $h=-10 \rightarrow 10$
> $k=0 \rightarrow 11$
> $l=1 \rightarrow 15$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0183 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.051$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.36$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008)

Extinction coefficient: 0.0026 (6)
Absolute structure: Flack (1983), 612 Friedel pairs
Absolute structure parameter: 0.024 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Rb1	$0.71155(4)$	$0.71155(4)$	$0.71155(4)$	$0.02169(18)$	$0.540(9)$
K1	$0.71155(4)$	$0.71155(4)$	$0.71155(4)$	$0.02169(18)$	$0.330(18)$
Rb2	$0.93045(5)$	$0.93045(5)$	$0.93045(5)$	$0.0199(3)$	$0.203(8)$
K2	$0.93045(5)$	$0.93045(5)$	$0.93045(5)$	$0.0199(3)$	$0.514(17)$
Ti1	$0.14135(4)$	$0.14135(4)$	$0.14135(4)$	$0.00760(12)$	$0.8693(9)$
Co1	$0.14135(4)$	$0.14135(4)$	$0.14135(4)$	$0.00760(12)$	$0.1307(9)$
Ti2	$0.41386(3)$	$0.41386(3)$	$0.41386(3)$	$0.00709(12)$	$0.838(3)$
Co2	$0.41386(3)$	$0.41386(3)$	$0.41386(3)$	$0.00709(12)$	$0.162(3)$
P1	$0.45604(5)$	$0.22826(5)$	$0.12582(5)$	$0.00682(10)$	
O1	$0.30739(16)$	$0.23395(16)$	$0.08086(17)$	$0.0141(3)$	
O2	$0.54329(18)$	$0.29756(17)$	$0.01814(17)$	$0.0179(3)$	
O3	$0.50157(16)$	$0.08190(16)$	$0.14744(18)$	$0.0168(3)$	
O4	$0.47835(17)$	$0.30686(19)$	$0.25786(18)$	$0.0190(4)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Rb1	$0.02169(18)$	$0.02169(18)$	$0.02169(18)$	$0.00120(13)$	$0.00120(13)$	$0.00120(13)$
K1	$0.02169(18)$	$0.02169(18)$	$0.02169(18)$	$0.00120(13)$	$0.00120(13)$	$0.00120(13)$
Rb2	$0.0199(3)$	$0.0199(3)$	$0.0199(3)$	$-0.00172(19)$	$-0.00172(19)$	$-0.00172(19)$
K2	$0.0199(3)$	$0.0199(3)$	$0.0199(3)$	$-0.00172(19)$	$-0.00172(19)$	$-0.00172(19)$
Ti1	$0.00760(12)$	$0.00760(12)$	$0.00760(12)$	$0.00051(11)$	$0.00051(11)$	$0.00051(11)$
Co1	$0.00760(12)$	$0.00760(12)$	$0.00760(12)$	$0.00051(11)$	$0.00051(11)$	$0.00051(11)$
Ti2	$0.00709(12)$	$0.00709(12)$	$0.00709(12)$	$-0.00033(11)$	$-0.00033(11)$	$-0.00033(11)$
Co2	$0.00709(12)$	$0.00709(12)$	$0.00709(12)$	$-0.00033(11)$	$-0.00033(11)$	$-0.00033(11)$
P1	$0.0059(2)$	$0.0076(2)$	$0.0070(2)$	$-0.00019(16)$	$0.00100(16)$	$-0.00054(17)$
O1	$0.0088(7)$	$0.0167(8)$	$0.0169(8)$	$0.0001(5)$	$-0.0032(6)$	$0.0021(6)$
O2	$0.0183(9)$	$0.0185(8)$	$0.0170(8)$	$0.0001(7)$	$0.0075(6)$	$0.0049(6)$
O3	$0.0160(8)$	$0.0130(8)$	$0.0214(8)$	$0.0064(6)$	$0.0022(6)$	$0.0034(6)$
O4	$0.0196(9)$	$0.0229(10)$	$0.0146(8)$	$-0.0027(7)$	$0.0001(7)$	$-0.0099(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Rb} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.8956(17)$	$\mathrm{Rb} 2-\mathrm{O} 4^{\mathrm{ix}}$	$3.219(2)$
$\mathrm{Rb} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.8956(17)$	$\mathrm{Rb} 2-\mathrm{O} 4^{\mathrm{viii}}$	$3.219(2)$
$\mathrm{Rb} 1-\mathrm{O} 1^{\mathrm{iii}}$	$2.8956(17)$	$\mathrm{Ti} 1-\mathrm{O} 2^{\mathrm{x}}$	$1.9404(17)$

$\mathrm{Rb1}-\mathrm{O} 2^{\text {iv }}$	3.0780 (19)
$\mathrm{Rb} 1-\mathrm{O} 2^{\text {v }}$	3.0780 (19)
$\mathrm{Rb} 1-\mathrm{O} 2^{\text {vi }}$	3.0780 (19)
$\mathrm{Rb} 1-\mathrm{O} 4^{\text {iv }}$	3.0945 (18)
$\mathrm{Rb1}-\mathrm{O}^{\text {vi }}$	3.0945 (18)
$\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {v }}$	3.0945 (18)
$\mathrm{Rb} 2-\mathrm{O}^{\text {iv }}$	2.8703 (18)
$\mathrm{Rb} 2-\mathrm{O}^{\text {vi }}$	2.8703 (18)
$\mathrm{Rb} 2-\mathrm{O} 3{ }^{\text {v }}$	2.8703 (18)
$\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {vii }}$	2.9452 (19)
$\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {viii }}$	2.9452 (19)
$\mathrm{Rb} 2-\mathrm{O} 2^{\text {ix }}$	2.9452 (19)
$\mathrm{Rb} 2-\mathrm{O} 4^{\text {iv }}$	3.028 (2)
$\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {vi }}$	3.028 (2)
$\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {v }}$	3.028 (2)
$\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {vii }}$	3.219 (2)

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Rbl}-\mathrm{O} 1^{\text {ii }}$	90.95 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Rb} 1-\mathrm{O} 1^{\text {iii }}$	90.95 (5)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Rb1}-\mathrm{O} 1^{\text {iii }}$	90.95 (5)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Rb} 1-\mathrm{O} 2^{\mathrm{iv}}$	145.70 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Rb} 1-\mathrm{O}^{2 \mathrm{iv}}$	82.60 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Rb} 1-\mathrm{O} 2^{\text {iv }}$	55.72 (4)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Rb} 1-\mathrm{O} 2^{\text {v }}$	55.72 (4)
$\mathrm{O} 1^{\text {ii- }} \mathrm{Rb} 1-\mathrm{O} 2^{\text {v }}$	145.70 (5)
$\mathrm{O} 1^{\text {iii- }} \mathrm{Rb} 1-\mathrm{O} 2^{\text {v }}$	82.60 (4)
$\mathrm{O} 2^{\mathrm{iv}}-\mathrm{Rbl}-\mathrm{O}^{\mathrm{v}}$	119.386 (9)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Rb} 1-\mathrm{O} 2^{\text {vi }}$	82.60 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Rb} 1-\mathrm{O} 2^{\text {vi }}$	55.72 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Rb} 1-\mathrm{O} 2^{\text {vi }}$	145.70 (5)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Rb} 1-\mathrm{O} 2^{\text {vi }}$	119.386 (9)
$\mathrm{O} 2^{\text {v }}-\mathrm{Rb} 1-\mathrm{O}^{\text {vi }}$	119.386 (9)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Rb} 1-\mathrm{O} 4^{\mathrm{iv}}$	165.33 (5)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Rb} 1-\mathrm{O}^{\text {iv }}$	82.87 (5)
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Rb} 1-\mathrm{O}^{\text {iv }}$	102.41 (5)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {iv }}$	46.75 (5)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {iv }}$	131.42 (5)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {iv }}$	82.92 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {vi }}$	82.87 (5)
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Rb} 1-\mathrm{O}^{\text {vi }}$	102.41 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {vi }}$	165.33 (5)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {vi }}$	131.42 (5)
$\mathrm{O} 2^{\mathrm{v}}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {vi }}$	82.92 (5)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {vi }}$	46.75 (5)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Rbl}-\mathrm{O}^{\text {vi }}$	85.47 (6)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Rbl}-\mathrm{O}^{\text {v }}$	102.41 (5)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Rb} 1-\mathrm{O} 4^{v}$	165.33 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Rb} 1-\mathrm{O}^{v}$	82.87 (5)

Til-O2 ${ }^{\text {xi }}$	1.9404 (17)
Ti1-O2 ${ }^{\text {xii }}$	1.9404 (17)
Ti1-O1 ${ }^{\text {xiii }}$	1.9657 (16)
Ti1-O1	1.9657 (16)
Ti1-O1 ${ }^{\text {xiv }}$	1.9657 (16)
Ti2-O3 ${ }^{\text {ii }}$	1.9494 (16)
Ti2-O3 ${ }^{\text {iii }}$	1.9494 (16)
Ti2-O3 ${ }^{\text {i }}$	1.9494 (16)
Ti2-O4 $4^{\text {xiii }}$	1.9691 (17)
Ti2-O4	1.9691 (17)
Ti2-O4 $4^{\text {xiv }}$	1.9691 (17)
$\mathrm{P} 1-\mathrm{O} 3$	1.5252 (17)
$\mathrm{P} 1-\mathrm{O} 2$	1.5266 (17)
P1-O4	1.5299 (17)
P1-O1	1.5312 (16)

94.29 (5)
87.83 (5)
87.83 (5)
86.01 (4)
55.94 (4)
157.18 (5)
46.55 (5)
86.90 (5)
101.29 (5)
53.03 (6)
104.695 (9)
137.38 (4)
55.94 (4)
157.18 (5)
86.01 (4)
86.90 (5)
101.29 (5)
46.55 (5)
104.695 (9)
137.38 (4)
53.03 (6)
115.47 (2)
157.18 (5)
86.01 (4)
55.94 (4)
101.29 (5)
46.55 (5)
86.90 (5)
137.38 (4)
53.03 (6)
104.695 (9)

$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {v }}$	82.92 (5)	$\mathrm{O} 4{ }^{\text {vii }}$ - $\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {viii }}$	115.47 (2)
$\mathrm{O} 2{ }^{v}-\mathrm{Rb} 1-\mathrm{O} 4{ }^{\text {v }}$	46.75 (5)	$\mathrm{O} 4{ }^{\text {ix }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {viii }}$	115.47 (2)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {v }}$	131.42 (5)	$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Til}-\mathrm{O} 2^{\text {xi }}$	90.14 (7)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Rb} 1-\mathrm{O} 4^{\text {v }}$	85.47 (6)	$\mathrm{O} 2^{\mathrm{x}}-\mathrm{Ti} 1-\mathrm{O} 2^{\mathrm{xii}}$	90.14 (7)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Rbl} 1-\mathrm{O} 4^{\text {v }}$	85.47 (6)	$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Til}-\mathrm{O} 2^{\text {xii }}$	90.14 (7)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 3{ }^{\text {vi }}$	101.27 (5)	$\mathrm{O} 2^{\mathrm{x}}-\mathrm{Ti} 1-\mathrm{O} 1^{\text {xiii }}$	91.43 (7)
$\mathrm{O}^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 3^{v}$	101.27 (5)	$\mathrm{O} 2^{\text {xi }}-\mathrm{Ti} 1-\mathrm{O} 1^{\text {xiii }}$	88.09 (7)
O^{vi} - $\mathrm{Rb} 2-\mathrm{O}^{\text {v }}$	101.27 (5)	$\mathrm{O} 2^{\text {xii }}$ - Ti 1 - $\mathrm{O}^{\text {xiii }}$	177.64 (7)
$\mathrm{O}^{\text {iv }}$ - $\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {vii }}$	99.30 (5)	$\mathrm{O} 2{ }^{\mathrm{x}}$-Ti1-O1	88.09 (7)
$\mathrm{O} 3{ }^{\text {vi}}-\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {vii }}$	96.75 (5)	$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Ti} 1-\mathrm{O} 1$	177.64 (7)
$\mathrm{O} 3^{\mathrm{v}}-\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {vii }}$	149.30 (5)	$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Ti} 1-\mathrm{O} 1$	91.43 (7)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {viii }}$	149.30 (5)	$\mathrm{O} 1^{\text {xiii-Til-O1 }}$	90.39 (7)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {viii }}$	99.30 (5)	$\mathrm{O} 2^{\mathrm{x}}-\mathrm{Ti} 1-\mathrm{O} 1^{\text {xiv }}$	177.64 (7)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Rb} 2-\mathrm{O} 2^{\text {viii }}$	96.75 (5)	$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Ti} 1-\mathrm{O} 1^{\text {xiv }}$	91.43 (7)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {viii }}$	55.61 (6)	$\mathrm{O} 2{ }^{\text {xii }}$-Ti1-O1 ${ }^{\text {xiv }}$	88.09 (7)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {ix }}$	96.75 (5)	$\mathrm{O} 1^{\text {xiii }}-\mathrm{Ti} 1-\mathrm{O} 1^{\text {xiv }}$	90.39 (7)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Rb} 2-\mathrm{O} 2^{\text {ix }}$	149.30 (5)	$\mathrm{O} 1-\mathrm{Ti} 1-\mathrm{O} 1^{\text {xiv }}$	90.39 (7)
$\mathrm{O} 3{ }^{\text {v }}-\mathrm{Rb} 2-\mathrm{O} 2^{\text {ix }}$	99.30 (5)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Ti} 2-\mathrm{O} 3{ }^{\text {iii }}$	91.87 (7)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Rb} 2-\mathrm{O} 2^{\text {ix }}$	55.61 (6)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Ti} 2-\mathrm{O}^{\text {i }}$	91.87 (7)
$\mathrm{O} 2{ }^{\text {viii- }} \mathrm{Rb} 2-\mathrm{O} 2{ }^{\text {ix }}$	55.61 (6)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ti} 2-\mathrm{O} 3^{\mathrm{i}}$	91.87 (7)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {iv }}$	49.64 (5)	$\mathrm{O} 3^{\text {iii }}$ - $\mathrm{Ti} 2-\mathrm{O} 4^{\text {xiii }}$	94.30 (7)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {iv }}$	52.65 (5)	O 3 iii- $\mathrm{Ti} 2-\mathrm{O} 4^{\text {xiii }}$	172.63 (8)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Rb} 2-\mathrm{O} 4^{\text {iv }}$	116.41 (6)	O 3 - $\mathrm{Ti} 2-\mathrm{O} 4^{\text {xiii }}$	83.90 (7)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Rb} 2-\mathrm{O} 4^{\text {iv }}$	94.29 (5)	$\mathrm{O} 3 \mathrm{ii}-\mathrm{Ti} 2-\mathrm{O} 4$	83.90 (7)
$\mathrm{O} 2{ }^{\text {viii- }} \mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {iv }}$	138.73 (5)	O3iii-Ti2-O4	94.30 (7)
$\mathrm{O} 2{ }^{\mathrm{ix}}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {iv }}$	133.42 (5)	O3--Ti2-O4	172.63 (8)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {vi }}$	116.41 (6)	O4 ${ }^{\text {xiii- }} \mathrm{Ti} 2-\mathrm{O} 4$	90.39 (7)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {vi }}$	49.64 (5)	$\mathrm{O} 3{ }^{\text {iii }}$ - $\mathrm{Ti} 2-\mathrm{O} 4^{\text {xiv }}$	172.63 (8)
$\mathrm{O} 3{ }^{v}-\mathrm{Rb} 2-\mathrm{O} 4^{\text {vi }}$	52.65 (5)	O3iil-Ti2-O4 ${ }^{\text {xiv }}$	83.90 (7)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Rb} 2-\mathrm{O} 4^{\text {vi }}$	133.42 (5)	$\mathrm{O} 3-\mathrm{Ti} 2-\mathrm{O} 4^{\text {xiv }}$	94.30 (7)
$\mathrm{O} 2{ }^{\text {viii- }} \mathrm{Rb} 2-\mathrm{O} 4^{\text {vi }}$	94.29 (5)	$\mathrm{O} 4{ }^{\text {xii }}-\mathrm{Ti} 2-\mathrm{O} 4^{\text {xiv }}$	90.39 (7)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {vi }}$	138.73 (5)	O4-Ti2-O4 $4^{\text {xiv }}$	90.39 (7)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {vi }}$	87.83 (5)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	110.75 (9)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {v }}$	52.65 (5)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	108.52 (11)
$\mathrm{O}^{\text {vi }}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {v }}$	116.41 (6)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	106.48 (10)
$\mathrm{O} 3^{v}-\mathrm{Rb} 2-\mathrm{O} 4{ }^{\text {v }}$	49.64 (5)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	110.87 (9)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Rb} 2-\mathrm{O} 4^{\mathrm{v}}$	138.73 (5)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	108.74 (10)
$\mathrm{O} 2^{\text {viii }}-\mathrm{Rb} 2-\mathrm{O} 4^{\text {v }}$	133.42 (5)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 1$	111.40 (10)

[^0]
[^0]: Symmetry codes: (i) $-z+1 / 2,-x+1, y+1 / 2$; (ii) $y+1 / 2,-z+1 / 2,-x+1$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $-x+3 / 2,-y+1, z+1 / 2$; (v) $z+1 / 2,-x+3 / 2,-y+1$; (vi) $-y+1, z+1 / 2,-x+3 / 2$; (vii) $-y+3 / 2,-z+1, x+1 / 2$; (viii) $-z+1, x+1 / 2,-y+3 / 2$; (ix) $x+1 / 2,-y+3 / 2,-z+1 ;$ (x) $-y+1 / 2,-z, x-1 / 2 ;($ (xi) $-z, x-1 / 2,-y+1 / 2$; (vii) $x-1 / 2,-y+1 / 2,-z$; (xiii) y, z, x; (xiv) z, x, y.

