inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure study of a cobaltoan dolomite from Kolwezi, Democratic Republic of Congo

CROSSMARK_Color_square_no_text.svg

aEarth Sciences Department, Pisa University, Via S. Maria 53, I-56126, Pisa, Italy
*Correspondence e-mail: natale.perchiazzi@unipi.it

Edited by I. D. Brown, McMaster University, Canada (Received 4 February 2015; accepted 13 February 2015; online 21 February 2015)

A structural study has been undertaken on a cobaltoan dolomite, with chemical formula CaMg0.83Co0.17(CO3)2 (cal­cium magnesium cobalt dicarbonate), from Kolwezi, Democratic Republic of Congo. Pale-pink euhedral cobaltoan dolomite was associated with kolwezite [(Cu1.33Co0.67)(CO3)(OH)2] and cobaltoan malachite [(Cu,Co)2(CO3)(OH)2]. A crystal with a Co:Mg ratio of 1:5.6 (SEM/EDAX measurement), twinned on (11 -2 0) was used for crystal structural refinement. The refinement of the structural model of Reeder & Wenk [Am. Mineral. (1983[Reeder, R. J. & Wenk, H. R. (1983). Am. Mineral. 68, 769-776.]), 68, 769–776; Ca at site 3a with site symmetry -3; Mg site at site 3b with site symmetry -3; C at site 6c with site symmetry 3; O at site 18f with site symmetry 1] showed that Co is totally incorporated in the Mg site, with refined occupancy Mg0.83Co0.17, which compares with Mg0.85Co0.15 from chemical data. The Co substitution reflects in the expansion of the cell volume, with a pronounced increasing of the c cell parameter.

1. Related literature

For general background, see: Barton et al. (2015[Barton, I., Yang, H. & Barton, M. D. (2015). Can. Mineral.. In the press.]); Pertlik (1986[Pertlik, F. (1986). Acta Cryst. C42, 4-5.]). For isotypic structures, see: Reeder & Wenk (1983[Reeder, R. J. & Wenk, H. R. (1983). Am. Mineral. 68, 769-776.]). For kolwezite, see: Deliens & Piret (1980[Deliens, M. & Piret, P. (1980). Bull. Mineral. 103, 179-184.]).

2. Experimental

2.1. Crystal data

  • CaMg0.83Co0.17(CO3)2

  • Mr = 190.38

  • Trigonal, [R \overline 3]

  • a = 4.8158 (1) Å

  • c = 16.0488 (6) Å

  • V = 322.34 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 295 K

  • 0.20 × 0.15 × 0.12 mm

2.2. Data collection

  • Bruker SMART Breeze CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.621, Tmax = 0.746

  • 738 measured reflections

  • 258 independent reflections

  • 257 reflections with I > 2σ(I)

  • Rint = 0.010

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.059

  • S = 0.96

  • 258 reflections

  • 20 parameters

  • 1 restraint

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Ca1—O1i 2.3833 (10)
(Mg1/Co1)—O1ii 2.0923 (9)
C1—O1 1.2853 (9)
Symmetry codes: (i) [-x+y+{\script{1\over 3}}, -x+{\script{2\over 3}}, z-{\script{1\over 3}}]; (ii) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: CrystalMaker (CrystalMaker, 2010[CrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

Cobaltoan dolomite was picked from a kolwezite sample from Kolwezi (inventory number RC 3987) kindly provided us by H. Goethals, Royal Belgian Institute for Natural Sciences, Brussels. Pale pink euhedral cobaltoan dolomite was associated with kolwezite and cobaltoan malachite. All these minerals occur in the supergene zones of Cu—Co sulfide ore deposits,originating from the alteration of primary sulphides such as carrollite,Cu(Co,Ni)2As4

Refinement top

During the refinement, the twinning according to the (1120) common law was detected and accounted for, with a refined BASF parameter of 0.798. The sum of Co and Mg occupancies in Mg site was constrained to be equal to 1, no other constraint was applied.

Related literature top

For general background, see: Barton et al. (2015); Pertlik (1986). For isostructural/isotypic structures, see: Reeder & Wenk (1983). For kolwezite, see: Deliens & Piret (1980).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008, 2015) and WinGX (Farrugia, 2012); molecular graphics: CrystalMaker (CrystalMaker, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Micro photograph of the cobaltoan dolomite specimen, where pale pink cobaltoan dolomite is associated with pale green cobaltoan malachite.
[Figure 2] Fig. 2. The crystal structure of cobaltoan dolomite, in a projection along [100], slightly tilted by 5° about along the x Cartesian rotation axis. Ca-centered octahedra are cyan, whereas Mg-centered octahedra are yellow; carbon and oxygen atoms are represented as green and red spheres, respectively.
[Figure 3] Fig. 3. Coordination polyhedra in cobaltoan dolomite. Displacement ellipsoids are drawn at the 50% probability.
Calcium magnesium cobalt dicarbonate top
Crystal data top
CaMg0.83Co0.17(CO3)2F(000) = 284
Mr = 190.38Dx = 2.930 Mg m3
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
a = 4.8158 (1) ŵ = 2.17 mm1
c = 16.0488 (6) ÅT = 295 K
V = 322.34 (2) Å3Cleavage rhombohedron, pale pink
Z = 30.2 × 0.15 × 0.12 mm
Data collection top
Bruker SMART Breeze CCD
diffractometer
257 reflections with I > 2σ(I)
ω scansRint = 0.010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 32.4°, θmin = 3.8°
Tmin = 0.621, Tmax = 0.746h = 73
258 measured reflectionsk = 07
738 independent reflectionsl = 2323
Refinement top
Refinement on F220 parameters
Least-squares matrix: full1 restraint
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.562P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 0.96Δρmax = 0.46 e Å3
258 reflectionsΔρmin = 0.32 e Å3
Crystal data top
CaMg0.83Co0.17(CO3)2Z = 3
Mr = 190.38Mo Kα radiation
Trigonal, R3µ = 2.17 mm1
a = 4.8158 (1) ÅT = 295 K
c = 16.0488 (6) Å0.2 × 0.15 × 0.12 mm
V = 322.34 (2) Å3
Data collection top
Bruker SMART Breeze CCD
diffractometer
738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
257 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.746Rint = 0.010
258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01920 parameters
wR(F2) = 0.0591 restraint
S = 0.96Δρmax = 0.46 e Å3
258 reflectionsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.00000.00000.00000.01249 (17)
Mg10.00000.00000.50000.0104 (3)0.828 (4)
Co10.00000.00000.50000.0104 (3)0.172 (4)
C10.00000.00000.24297 (12)0.0106 (4)
O10.2482 (2)0.0341 (2)0.24403 (6)0.0143 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0121 (2)0.0121 (2)0.0133 (3)0.00605 (10)0.0000.000
Mg10.0091 (3)0.0091 (3)0.0130 (4)0.00456 (15)0.0000.000
Co10.0091 (3)0.0091 (3)0.0130 (4)0.00456 (15)0.0000.000
C10.0103 (5)0.0103 (5)0.0112 (8)0.0051 (3)0.0000.000
O10.0117 (4)0.0156 (4)0.0183 (4)0.0088 (3)0.0024 (3)0.0033 (3)
Geometric parameters (Å, º) top
Ca1—O1i2.3833 (10)Mg1—O1ix2.0923 (9)
Ca1—O1ii2.3833 (10)Mg1—O1x2.0923 (9)
Ca1—O1iii2.3833 (10)Mg1—O1xi2.0923 (9)
Ca1—O1iv2.3833 (10)Mg1—O1xii2.0923 (9)
Ca1—O1v2.3833 (10)C1—O11.2853 (9)
Ca1—O1vi2.3833 (10)C1—O1xiii1.2853 (9)
Mg1—O1vii2.0923 (9)C1—O1xiv1.2853 (9)
Mg1—O1viii2.0923 (9)C1—Ca1xv3.1359 (9)
O1i—Ca1—O1ii180.00 (5)O1viii—Mg1—O1ix91.62 (4)
O1i—Ca1—O1iii92.43 (3)O1vii—Mg1—O1x91.62 (4)
O1ii—Ca1—O1iii87.57 (3)O1viii—Mg1—O1x88.38 (4)
O1i—Ca1—O1iv87.57 (3)O1ix—Mg1—O1x180.0
O1ii—Ca1—O1iv92.43 (3)O1vii—Mg1—O1xi91.62 (4)
O1iii—Ca1—O1iv180.00 (4)O1viii—Mg1—O1xi88.38 (4)
O1i—Ca1—O1v87.57 (3)O1ix—Mg1—O1xi91.62 (4)
O1ii—Ca1—O1v92.43 (3)O1x—Mg1—O1xi88.38 (4)
O1iii—Ca1—O1v92.43 (3)O1vii—Mg1—O1xii88.38 (4)
O1iv—Ca1—O1v87.57 (3)O1viii—Mg1—O1xii91.62 (4)
O1i—Ca1—O1vi92.43 (3)O1ix—Mg1—O1xii88.38 (4)
O1ii—Ca1—O1vi87.57 (3)O1x—Mg1—O1xii91.62 (4)
O1iii—Ca1—O1vi87.57 (3)O1xi—Mg1—O1xii180.00 (4)
O1iv—Ca1—O1vi92.43 (3)O1—C1—O1xiii119.984 (5)
O1v—Ca1—O1vi180.00 (8)O1—C1—O1xiv119.983 (5)
O1vii—Mg1—O1viii180.0O1xiii—C1—O1xiv119.981 (5)
O1vii—Mg1—O1ix88.38 (4)
Symmetry codes: (i) x+y+1/3, x+2/3, z1/3; (ii) xy1/3, x2/3, z+1/3; (iii) x+2/3, y+1/3, z+1/3; (iv) x2/3, y1/3, z1/3; (v) y+1/3, xy1/3, z1/3; (vi) y1/3, x+y+1/3, z+1/3; (vii) x+y+2/3, x+1/3, z+1/3; (viii) xy2/3, x1/3, z+2/3; (ix) y1/3, xy2/3, z+1/3; (x) y+1/3, x+y+2/3, z+2/3; (xi) x+1/3, y1/3, z+2/3; (xii) x1/3, y+1/3, z+1/3; (xiii) x+y, x, z; (xiv) y, xy, z; (xv) x+2/3, y+1/3, z+1/3.
Selected bond lengths (Å) top
Ca1—O1i2.3833 (10)Mg1—O1ix2.0923 (9)
Ca1—O1ii2.3833 (10)Mg1—O1x2.0923 (9)
Ca1—O1iii2.3833 (10)Mg1—O1xi2.0923 (9)
Ca1—O1iv2.3833 (10)Mg1—O1xii2.0923 (9)
Ca1—O1v2.3833 (10)C1—O11.2853 (9)
Ca1—O1vi2.3833 (10)C1—O1xiii1.2853 (9)
Mg1—O1vii2.0923 (9)C1—O1xiv1.2853 (9)
Mg1—O1viii2.0923 (9)
Symmetry codes: (i) x+y+1/3, x+2/3, z1/3; (ii) xy1/3, x2/3, z+1/3; (iii) x+2/3, y+1/3, z+1/3; (iv) x2/3, y1/3, z1/3; (v) y+1/3, xy1/3, z1/3; (vi) y1/3, x+y+1/3, z+1/3; (vii) x+y+2/3, x+1/3, z+1/3; (viii) xy2/3, x1/3, z+2/3; (ix) y1/3, xy2/3, z+1/3; (x) y+1/3, x+y+2/3, z+2/3; (xi) x+1/3, y1/3, z+2/3; (xii) x1/3, y+1/3, z+1/3; (xiii) x+y, x, z; (xiv) y, xy, z.
 

Acknowledgements

Dr H. Goethals, Royal Belgian Institute for Natural Sciences, is kindly acknowledged for providing the mineral sample.

References

First citationBarton, I., Yang, H. & Barton, M. D. (2015). Can. Mineral.. In the press.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationDeliens, M. & Piret, P. (1980). Bull. Mineral. 103, 179–184.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPertlik, F. (1986). Acta Cryst. C42, 4–5.  CrossRef CAS IUCr Journals Google Scholar
First citationReeder, R. J. & Wenk, H. R. (1983). Am. Mineral. 68, 769–776.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds