# Crystal structure of 4,6-diamino-2-(methylsulfanyl)pyridine-3-carbonitrile 

Shaaban K. Mohamed, ${ }^{\text {a,b }}$ Kyle S. Knight, ${ }^{\text {c }}$ Mehmet Akkurt, ${ }^{\text {d }}$ Bahgat R. M. Hussein ${ }^{e}$ and Mustafa R. Albayati ${ }^{\text {f }}$ *<br>${ }^{\text {a }}$ Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ${ }^{\mathbf{b}}$ Chemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, ${ }^{\text {c Department of Chemistry, The University of }}$ Tennessee at Chattanooga, Chattanooga, TN 37403, USA, d Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {e}}$ Chemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ${ }^{\text {f Kirkuk }}$ University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 3 February 2015; accepted 13 February 2015

Edited by H. Ishida, Okayama University, Japan

The title pyrimidine derivative, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$, is essentially planar, with a maximum deviation of 0.029 (2) $\AA$ from the mean plane of the non-H atoms. In the crystal, molecules are linked by an intermolecular bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond between the cyano N atom and the two amino groups, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond between the two amino groups and a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, forming a three-dimensional network.

Keywords: crystal structure; 4,6-diamino-2-(methylsulfanyl)pyridine-3carbonitrile; multifunctional pyridines.

CCDC reference: 1049335

## 1. Related literature

For the abundance of pyridines in pharmaceuticals and natural products, see: Zhang et al. (2010). For various applications of pyridine-containing compounds, see: Murata et al. (2003). For the use of polyfunctional pyridines in preparing a variety of heterocyclic compounds, see: Al-Haiza et al. (2003). For the synthesis of the title compound, see: Abu-Shanab (1999). For a similar structure, see: Mohamed et al. (2014).


## 2. Experimental

2.1. Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=180.23$

$$
Z=4
$$

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.0863$ (7) $\AA$
$b=12.698$ (2) $\AA$

$$
T=200 \mathrm{~K}
$$

$c=13.069$ (2) $\AA$

$$
V=844.1(2) \AA^{3}
$$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.33 \mathrm{~mm}^{-1}
\end{aligned}
$$

$$
0.40 \times 0.09 \times 0.05 \mathrm{~mm}
$$

### 2.2. Data collection

Bruker SMART X2S benchtop diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.833, T_{\text {max }}=0.984$
9083 measured reflections 1487 independent reflections 1353 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

### 2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.062$
H atoms treated by a mixture of
$S=1.06$
1487 reflections
122 parameters 6 restraints

Hatoms treated by a mixture of independent and constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983)
Absolute structure parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 3^{\text {i }}$ | 0.86 (3) | 2.43 (3) | 3.225 (4) | 155 (3) |
| $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 4^{\text {ii }}$ | 0.86 (2) | 2.26 (3) | 3.083 (4) | 161 (3) |
| $\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 4^{\text {iii }}$ | 0.85 (2) | 2.31 (2) | 3.128 (3) | 161 (2) |
| $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{Cg} 1^{\text {iv }}$ | 0.98 | 2.77 | 3.552 (4) | 137 |
| Symmetry codes: $x-\frac{1}{2},-y+\frac{3}{2},-z+2$ | $\begin{align*} & -x+\frac{3}{2},  \tag{iii}\\ & +1, y, \end{align*}$ | $z-\frac{1}{2} ;$ | $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$ |  |

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

## Acknowledgements

The authors would like express their gratitude to the University of Tennessee for providing the X-ray data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5390).

## References

Abu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430-431.
Al-Haiza, M. A., Mostafa1, M. S. \& El-Kady, M. Y. (2003). Molecules, 8, $275-$ 286.

Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. \& Albayati, M. R. (2014). Acta Cryst. E70, o993-o994.

Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. \& Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913-918.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Zhang, X., Li, D., Fan, X., Wang, X., Li, X., Qu, G. \& Wang, J. (2010). Mol. Divers. 14, 159-167.

## supporting information

# Crystal structure of 4,6-diamino-2-(methylsulfanyl)pyridine-3-carbonitrile 

Shaaban K. Mohamed, Kyle S. Knight, Mehmet Akkurt, Bahgat R. M. Hussein and Mustafa R. Albayati

## S1. Comment

The pyridine ring is a core structure in a number of pharmaceuticals and natural products (Zhang et al., 2010). 2-Amino-3-cyanopyridines have been identified as IKK- $\beta$ inhibitors (Murata et al., 2003). Besides this, they are important and useful intermediates in preparing variety of heterocyclic compounds (Al-Haiza et al., 2003). Such findings and following to our on-going study on synthesis of bio-active heterocyclic molecules we report in this study the synthesis and crystal structure determination of the title compound.
The molecule of the title compound, Fig. 1, is a tetra-substituted pyrimidine derivative, which is essentially planar with C7-S1-C5-C4, C3-C2-C1-N2, N3-C3-C4-C5 and C6-C4-C3-C2 torsion angles being 180.0 (2), 179.9 (2), 179.0 (2) and $179.7(2)^{\circ}$, respectively. All bond lengths and bond angles are normal and comparable to those observed in a similar structure (Mohamed et al., 2014). In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction feature in the crystal packing (Table 1, Fig. 2).

## S2. Experimental

The title compound was prepared according to the reported method (Abu-Shanab, 1999). Crystals of the product were obtained in a good yield (77\%) and were suitable for X-ray diffraction (M.p. 426-428 K).

## S3. Refinement

H-atoms attached to carbon were placed in calculated positions ( $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ ) and refined as riding with $U_{\text {iso }}(\mathrm{H})$ $=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The H atoms attached to N 2 and N 3 were found in a difference Fourier map and their positions were refined with bond length and angle restraints of $\mathrm{N}-\mathrm{H}=0.86(1)$ and $\mathrm{H} \cdots \mathrm{H}=1.40(3) \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$.


Figure 1
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the $50 \%$ probability level.


Figure 2
The hydrogen bonding (dashed lines) and packing of the title compound viewed down the $a$ axis.

## 4,6-Diamino-2-(methylsulfanyl)pyridine-3-carbonitrile

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=180.23$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.0863(7) \AA$
$b=12.698(2) \AA$
$c=13.069(2) \AA$
$V=844.1(2) \AA^{3}$
$Z=4$
$F(000)=376$
$D_{\mathrm{x}}=1.418 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3713 reflections
$\theta=2.2-25.0^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Needle, yellow
$0.40 \times 0.09 \times 0.05 \mathrm{~mm}$

## Data collection

Bruker SMART X2S benchtop
diffractometer
Radiation source: XOS X-beam microfocus source
Doubly curved silicon crystal monochromator
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.833, T_{\text {max }}=0.984$

9083 measured reflections
1487 independent reflections
1353 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-15 \rightarrow 12$
$l=-15 \rightarrow 15$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.062$
$S=1.06$
1487 reflections
122 parameters
6 restraints
Hydrogen site location: mixed

## Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on $F^{2}$ for ALL reflections except those flagged by the user for potential systematic errors. Weighted $R$-factors $w R$ and all goodnesses of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - $R$-factor-obs etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| S1 | $1.05518(13)$ | $0.80355(6)$ | $0.72687(5)$ | $0.0304(2)$ |
| N1 | $0.8883(4)$ | $0.62615(18)$ | $0.63890(15)$ | $0.0256(7)$ |
| N2 | $0.7653(6)$ | $0.4785(2)$ | $0.55086(19)$ | $0.0410(9)$ |
| N3 | $0.3276(4)$ | $0.5616(2)$ | $0.86570(18)$ | $0.0282(7)$ |
| N4 | $0.6450(4)$ | $0.7998(2)$ | $0.94969(16)$ | $0.0322(7)$ |
| C1 | $0.7297(5)$ | $0.5407(2)$ | $0.6340(2)$ | $0.0277(8)$ |
| C2 | $0.5369(5)$ | $0.5181(2)$ | $0.70666(18)$ | $0.0268(8)$ |
| C3 | $0.5066(4)$ | $0.5834(2)$ | $0.79017(17)$ | $0.0222(8)$ |
| C4 | $0.6745(5)$ | $0.67178(19)$ | $0.79768(17)$ | $0.0217(8)$ |
| C5 | $0.8576(4)$ | $0.6892(2)$ | $0.71847(18)$ | $0.0238(7)$ |
| C6 | $0.6581(5)$ | $0.7431(2)$ | $0.88141(19)$ | $0.0242(8)$ |
| C7 | $1.2520(6)$ | $0.7927(3)$ | $0.6128(2)$ | $0.0387(10)$ |
| H2 | 0.42720 | 0.45820 | 0.69870 | $0.0320^{*}$ |
| H2A | $0.894(5)$ | $0.487(3)$ | $0.509(2)$ | $0.0620^{*}$ |
| H2B | $0.682(6)$ | $0.4202(18)$ | $0.545(3)$ | $0.0620^{*}$ |
| H3A | $0.210(5)$ | $0.5167(19)$ | $0.849(2)$ | $0.0420^{*}$ |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| H3B | $0.286(6)$ | $0.6117(17)$ | $0.9060(19)$ | $0.0420^{*}$ |
| H7A | 1.32830 | 0.72190 | 0.60900 | $0.0580^{*}$ |
| H7B | 1.39330 | 0.84510 | 0.61490 | $0.0580^{*}$ |
| H7C | 1.14140 | 0.80510 | 0.55260 | $0.0580^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0274(3)$ | $0.0303(4)$ | $0.0334(3)$ | $-0.0054(3)$ | $0.0014(3)$ | $-0.0023(3)$ |
| N1 | $0.0259(13)$ | $0.0261(12)$ | $0.0249(11)$ | $0.0002(10)$ | $0.0014(9)$ | $-0.0017(10)$ |
| N2 | $0.0562(18)$ | $0.0331(16)$ | $0.0338(14)$ | $-0.0117(13)$ | $0.0185(12)$ | $-0.0121(12)$ |
| N3 | $0.0290(13)$ | $0.0291(13)$ | $0.0266(12)$ | $-0.0026(11)$ | $0.0033(10)$ | $-0.0050(10)$ |
| N4 | $0.0355(12)$ | $0.0340(14)$ | $0.0270(11)$ | $-0.0016(12)$ | $-0.0010(10)$ | $-0.0054(12)$ |
| C1 | $0.0328(15)$ | $0.0254(15)$ | $0.0248(13)$ | $0.0026(12)$ | $0.0010(11)$ | $-0.0012(12)$ |
| C2 | $0.0305(14)$ | $0.0224(14)$ | $0.0275(13)$ | $-0.0049(12)$ | $0.0014(12)$ | $-0.0042(11)$ |
| C3 | $0.0222(15)$ | $0.0245(14)$ | $0.0200(12)$ | $0.0035(10)$ | $-0.0029(10)$ | $0.0026(11)$ |
| C4 | $0.0213(12)$ | $0.0242(15)$ | $0.0195(12)$ | $0.0044(10)$ | $-0.0036(9)$ | $-0.0002(10)$ |
| C5 | $0.0207(12)$ | $0.0268(13)$ | $0.0240(11)$ | $0.0031(11)$ | $-0.0051(10)$ | $0.0041(13)$ |
| C6 | $0.0207(12)$ | $0.0261(14)$ | $0.0258(14)$ | $0.0003(11)$ | $-0.0032(11)$ | $0.0034(12)$ |
| C7 | $0.0364(15)$ | $0.045(2)$ | $0.0347(15)$ | $-0.0091(15)$ | $0.0057(12)$ | $0.0038(15)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| S1-C5 | 1.769 (3) | N2-H2B | 0.86 (2) |
| :---: | :---: | :---: | :---: |
| S1-C7 | 1.801 (3) | N3-H3A | 0.86 (2) |
| N1-C1 | 1.354 (3) | C3-C4 | 1.414 (3) |
| N1-C5 | 1.322 (3) | N3-H3B | 0.85 (2) |
| N2-C1 | 1.355 (4) | C4-C5 | 1.410 (3) |
| N3-C3 | 1.371 (3) | C4-C6 | 1.423 (3) |
| N4-C6 | 1.149 (3) | C2-H2 | 0.9500 |
| C1-C2 | 1.395 (4) | C7-H7A | 0.9800 |
| C2-C3 | 1.379 (3) | C7-H7B | 0.9800 |
| N2-H2A | 0.86 (3) | C7-H7C | 0.9800 |
| C5-S1-C7 | 101.63 (14) | C5-C4-C6 | 120.2 (2) |
| C1-N1-C5 | 116.9 (2) | C3-C4-C5 | 118.2 (2) |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ | 115.2 (2) | C3-C4-C6 | 121.6 (2) |
| N1-C1-C2 | 123.5 (2) | N1-C5-C4 | 124.1 (2) |
| N2-C1-C2 | 121.3 (2) | S1-C5-N1 | 118.61 (17) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 119.6 (2) | S1-C5-C4 | 117.28 (18) |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$ | 123 (2) | N4-C6-C4 | 179.3 (3) |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 121 (3) | C1-C2-H2 | 120.00 |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 115 (3) | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$ | 120.00 |
| N3-C3-C2 | 121.5 (2) | S1-C7-H7A | 109.00 |
| N3-C3-C4 | 120.8 (2) | S1-C7-H7B | 109.00 |
| C2-C3-C4 | 117.7 (2) | S1-C7-H7C | 109.00 |
| $\mathrm{C} 3-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$ | 114.6 (18) | H7A-C7-H7B | 109.00 |
| C3-N3-H3B | 117.3 (18) | H7A-C7-H7C | 110.00 |


| $\mathrm{H} 3 \mathrm{~A}-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$ | $119(3)$ | $\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$ | 110.00 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$ | $180.0(2)$ | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$ | $-177.1(2)$ |
| $\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 5-\mathrm{N} 1$ | $0.9(4)$ | $\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $179.0(2)$ |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$ | $-178.60(18)$ | $\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$ | $-2.3(4)$ |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{S} 1$ | $1.2(4)$ | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $1.5(3)$ |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | $179.4(2)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4-\mathrm{C} 6$ | $-179.7(2)$ |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ | N 1 | $-2.3(4)$ |  |
| $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $-179.9(2)$ | $\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$ | $-1.6(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $-1.8(4)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$ | $179.0(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $177.24(18)$ |  |  |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D — \mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{~N} 3^{\mathrm{i}}$ | $0.86(3)$ | $2.43(3)$ | $3.225(4)$ | $155(3)$ |
| $\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{~N} 4^{\text {ii }}$ | $0.86(2)$ | $2.26(3)$ | $3.083(4)$ | $161(3)$ |
| $\mathrm{N} 3 — \mathrm{H} 3 B \cdots \mathrm{~N} 4^{\text {iii }}$ | $0.85(2)$ | $2.31(2)$ | $3.128(3)$ | $161(2)$ |
| $\mathrm{C} 7 — \mathrm{H} 7 A \cdots C g 1^{\text {iv }}$ | 0.98 | 2.77 | $3.552(4)$ | 137 |

Symmetry codes: (i) $-x+3 / 2,-y+1, z-1 / 2$; (ii) $-x+1, y-1 / 2,-z+3 / 2$; (iii) $x-1 / 2,-y+3 / 2,-z+2$; (iv) $x+1, y, z$.

