

Reçu le 27 janvier 2015 Accepté le 16 février 2015

Édité par P. Roussel, ENSCL, France

Keywords: crystal structure; aluminium; manganese; molybdate; solid-state methods; physicochemical properties

CCDC reference: 1049452

Supporting information: this article has supporting information at journals.iucr.org/e

Synthèse et structure cristalline d'un matériau noir $AgMn^{II}_{3}(Mn^{III}_{0,26}Al_{0,74})(MoO_4)_5$

Chahira Bouzidi, Wafa Frigui et Mohamed Faouzi Zid*

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisie. *Correspondence e-mail: frigui.wafa@gmail.com

A new silver aluminium trimanganese pentamolybdate {silver(I) trimanganese (II) aluminium pentakis[tetraoxidomolybdate(VI)]}, AgMn^{II}₃- (Mn^{III}_{0.26}Al_{0.74})(MoO₄)₅, has been synthesized using solid-state methods. The structure is composed of M_2O_{10} dimers, M_3O_{14} (M = Mn, Al) trimers and MoO₄ tetrahedra sharing corners and forming three types of layers A, B and B'. The sequence of the constituting layers is A-BB'-A-BB', with B' obtained from B by inversion symmetry, forming a three-dimensional structure with large channels in which the positionally disordered and partially occupied Ag⁺ ions reside. The Mn^{III} and Al^{III} atoms share the same site, M. AgMn^{II}₃(Mn^{III}_{0.26}Al_{0.74})(MoO₄)₅ is isotypic with the NaMg₃X(MoO₄)₅ (X = Al, In) family and with NaFe₄(MoO₄)₅. A comparative structural description is provided between the structure of the title compound and those of related phases containing dimers, trimers and tetramers.

1. Contexte chimique

Les matériaux inorganiques à charpentes ouvertes formées d'octaèdres et de tétraèdres ont un champ prometteur pour nombreuses applications: conduction ionique (Amine *et al.*, 2000; Padhi *et al.*, 1997; Li *et al.*, 2002) et propriétés magnétiques (Choi & Hong, 2005).

Représentation de l'unité asymétrique dans $AgMn^{II}_{3}(Mn^{III}_{0.26}Al_{0.74})$ -(MoO₄)₅. Les éllipsoïdes ont été définis avec 50% de probabilité. [Code de symétrie: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z + 2; (vi) -x + 1, -y + 2, -z + 1; (vii) x + 1, y - 1, z; (viii) x, y - 1, z; (ix) x, y, z + 1; (x) x, y + 1, z + 1.]

OPEN ACCESS

research communications

Figure 2 Projection de la structure de $AgMn^{II}_{3}(Mn^{III}_{0.26}Al_{0.74})(MoO_4)_5$, selon *c*.

Dans le but de synthétiser un matériau de formulation analogue à NaMg₃Al(MoO₄)₅ (Hermanowicz *et al.*, 2006) présentant des propriétés physiques intéressantes, nous avons exploré le système Ag₂O-MnO-Al₂O₃-MoO₃. C'est dans ce cadre, que nous avons pu synthétisé une nouvelle phase, par réaction à l'état solide, de formulation AgMn^{II}₃(Mn^{III}_{0.26}Al_{0.74})(MoO₄)₅.

2. Commentaire structurelle

Dans la charpente anionique, les octaèdres $M1O_6$, $M2O_6$ et $M4O_6$ (M = Mn, Al) partagent deux arêtes pour former un trimère de type M_3O_{14} . Par contre l'octaèdre $M3O_6$ se lie avec son homologue par mise en commun d'une arête pour conduire à un dimère $M3_2O_{10}$. La jonction des dimères et des trimères, réalisée par mise en commun de sommets avec les tétraèdres MoO_4 , conduit à une structure tridimensionnelle.

L'unité asymétrique est construite par un trimère M_3O_{14} (M = Mn/Al), un octaèdre $M3O_6$ (M3 = Mn3/Al3) et cinq tétraèdres MoO₄ liés par mise en commun des sommets. La compensation de charge est assurée par les ions Ag⁺ repartit statistiquement sur trois sites proches (Fig. 1). Un examen rigoureux de la charpente anionique tridimensionnelle révèle

qu'elle est construite d'un assemblage de couches disposées parallèlement au plan (001) et sont reliées par formation des ponts mixtes Mo-O-M (Fig. 2). En effet, on distingue deux types de couches A et B. Les couches de type A sont formées par les dimères $M3_2O_{10}$ et les tétraèdres Mo $3O_4$ liés par partage de sommets (Fig. 3). Par contre, les couches de type B sont construites par les trimères M_3O_{14} et les tétraèdres Mo $1O_4$, Mo $2O_4$, Mo $4O_4$ et Mo $5O_4$ connectés par partage de

Figure 4 Représentation de couches de type *B*, selon [001], dans $AgMn^{II}_{3}$ - $(Mn^{III}_{0.26}Al_{0.74})(MoO_4)_5$.

Figure 5

Représentation des doubles couches BB', montrant leur jonction selon a.

sommets (Fig. 4). Ces couches (type *B*) sont connectées à des autres centrosymétriques et adjacentes notées *B'*, par formation des ponts mixtes de types Mo1-O-M et Mo5-O-M (*M* = Mn, Al), pour donner des bicouches *BB'* (Fig. 5). Il en résulte une disposition alternée des différentes couches de type A-BB'-A-BB', regroupées par formation de ponts de type Mo2-O-M, Mo4-O-M et Mo3-O-M ce qui

Environnement du tétraèdre Mo_2O_4 mettant en évidence le groupement molybdyl ($Mo-O_1$).

Tableau 1
Longueurs des liaisons sélectionnées (Å).

-			
Mo1-O14 ⁱ	1.729 (4)	Mn2-O14	2.084 (4)
Mo1-O18	1.737 (4)	Mn2-O13	2.096 (3)
Mo1-O12	1.747 (4)	Mn2-O1	2.121 (3)
Mo1-O20	1.796 (3)	Mn2-O20	2.148 (3)
Mo2-O6 ⁱⁱ	1.717 (4)	Mn2-O9	2.164 (4)
Mo2-O19	1.749 (3)	Mn3-O4	2.037 (4)
Mo2-O15 ⁱⁱⁱ	1.758 (4)	Mn3-O17	2.043 (4)
Mo2-O9	1.819 (3)	Mn3-O19 ^{ix}	2.079 (4)
Mo3-O17 ^{iv}	1.737 (4)	Mn3-O10	2.105 (4)
Mo3-O10 ^v	1.748 (3)	Mn3-O16 ⁱ	2.126 (4)
Mo3-O3 ⁱ	1.751 (4)	Mn3-O16 ^x	2.160 (4)
Mo3-O16 ⁱ	1.795 (3)	Mn4–O3	1.985 (4)
Mo4-O4	1.732 (4)	Mn4-O5 ⁱⁱ	2.016 (4)
Mo4-O5 ⁱ	1.744 (4)	Mn4-O1	2.035 (3)
Mo4-O2 ^{vi}	1.765 (3)	Mn4-O15	2.036 (4)
Mo4-O8 ⁱ	1.792 (4)	Mn4-O8	2.068 (4)
Mo5-O11 ^{vii}	1.721 (3)	Mn4-O9	2.131 (4)
Mo5-O7	1.721 (3)	Ag1-O8	2.242 (4)
Mo5-O13 ^{viii}	1.781 (3)	Ag1-O2	2.260 (4)
Mo5-O1	1.808 (3)	Ag1-06	2.275 (4)
Mn1-O12 ⁱⁱⁱ	2.094 (4)	Ag2-O6	2.255 (9)
Mn1-O11	2.114 (3)	Ag2-O8	2.388 (13)
Mn1-O20	2.150 (3)	Ag2-O2	2.514 (12)
$Mn1 - O7^{i}$	2.158 (4)	Ag3-O6	2.245 (5)
Mn1-O2	2.161 (3)	Ag3-08	2.519 (5)
Mn1-O13	2.188 (3)	Ag3-O19	2.539 (5)
Mn2-O18 ⁱⁱ	2.059 (4)	-	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z + 2; (vi) -x + 1, -y + 2, -z + 1; (vii) x + 1, y - 1, z; (viii) x, y - 1, z; (ix) x, y, z + 1; (x) x, y + 1, z; (ix) x, y, z + 1; (x) x, y + 1, z + 1.

conduit à une structure tridimensionnelle possédant des canaux où logent les atomes d'argent mais excentrés (Fig. 2). Il est à signaler que le quatrième sommet dans chaque tétraèdre $Mo2O_4$, restant libre, forme un groupement molybdyl (Mo $-O_L$) et pointe vers le canal où résident les cations Ag⁺ (Fig. 6).

Dans chacun des tétraèdres, on relève des distances moyennes, d(Mo-O) de l'ordre de 1,768 (2) Å (Tableau 1), semblables à celles observées dans la bibliographie (Solodovnikov *et al.*, 1997; Sarapulova *et al.*, 2009; Ennajeh *et al.*, 2013). D'autre part, les distances moyennes, d(M-O) dans les octaèdres MO_6 (M = Mn, Al) s'avèrent une moyenne entre celles $d(Mn^{II}-O)$ et d(Al-O) rencontrées dans la littérature (Moring & Kostiner, 1986; Hatert, 2006). En effet, on remarque aussi qu'elles varient en fonction du taux d'occupation de l'aluminium dans les sites.

Les distances interatomiques Ag-O varient de 2,242 (4) à 2,539 (6) Å, ce qui est conforme à celles observées dans de nombreux composés retrouvés dans la bibliographie (Kacimi *et al.*, 2005; Balsanova *et al.*, 2009).

De plus, le calcul des valences de liaison (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des cations suivants: Ag1 (1,13), Ag2 (0,91), Ag3 (0,79), Mo1 (5,88), Mo2 (6,00), Mo3 (6,01), Mo4 (6,09), Mo5 (6,00) et en incluant les taux d'occupation des sites M, on trouve que la somme des différentes valeurs calculées (+9,04): Mn1/Al1 (2,004), Mn2/Al2 (2,38), Mn3/Al3 (2,05), Mn4/Al4 (2,60), confirme bien la charge globale (+9) apportée par les ions Mn et Al dans la formule AgMn^{II}₃(Mn^{III}_{0,26}Al_{0,74})(MoO₄)₅.

research communications

Représentation d'une couche, selon *a*, dans Na₂FeMn₂(PO₄)₃ montrant la disposition des dimères M_2O_{12} (M = Mn, Fe).

3. Enquête de base de données

Un examen bibliographie montre que la phase synthétisée est isostructurale à celles de formulation NaFe₄(MoO₄)₅ (Muessig *et al.*, 2003), NaMg₃Al(MoO₄)₅ (Hermanowicz *et al.*, 2006) et NaMg₃In(MoO₄)₅ (Klevtsova *et al.*, 1993). La recherche de structures présentant des aspects communs avec celle de AgMn^{II}₃(Mn^{III}_{0,26}Al_{0,74})(MoO₄)₅, nous a conduit à la famille des alluaudites et plus précisément le composé Na₂FeMn₂(PO₄)₃ (Daidouh *et al.*, 2002) possédant des dimères dans les couches. Une différence nette dans la disposition des

Figure 8 Projection de la structure de $K_2Co_2Mo_3O_{12}$, selon *b*, mettant en évidence les tétramères Co_4O_{18} .

Projection de la structure de $RbMn_6(As_2O_7)_2(As_3O_{10})$, montrant les chaînes d'octaèdres MnO_6 disposées en zigzag.

dimères a été observée. En effet, dans Na₂FeMn₂(PO₄)₃ les dimères M_2O_{12} (M = Mn, Fe) sont disposés d'une façon perpendiculaire (Fig. 7), contrairement à notre structure où ils sont parallèles les uns aux autres (Fig. 3). La comparaison de notre structure avec le matériau K₂Co₂Mo₃O₁₂ (Engel *et al.*, 2009) montre une différence nette dans l'arrangement des octaèdres. En effet, dans K₂Co₂Mo₃O₁₂ les octaèdres CoO₆ partagent trois arêtes pour former les tétramères Co₄O₁₈. Ces derniers sont interconnectés les uns aux autres moyennant les tétraèdres MoO₄ par mise en commun des sommets afin de conduire à une structure tridimensionnelle possédant des canaux où résident les cations K⁺ (Fig. 8).

De plus, la comparaison de la structure étudiée avec celle du composé $RbMn_6(As_2O_7)_2(As_3O_{10})$ (Ayed *et al.*, 2004) montre que dans cette dernière les octaèdres MnO_6 se connectent entre eux, toujours, par mise en commun d'arêtes pour former des chaînes d'octaèdres disposées en zigzag. Ces dernières sont liées aux tétraèdres AsO_4 pour donner une structure tridimensionnelle (Fig. 9).

Figure 10 Spectre d'analyse qualitative et morphologie d'un cristal de $AgMn^{II}_{3}$ - $(Mn^{III}_{0.26}Al_{0.74})(MoO_4)_5$.

4. Synthèse et cristallisation

Afin de trouver une nouvelle phase de formulation analogue à NaMg₃Al(MoO₄)₅, nous avons pu synthétiser le matériau AgMn^{II}₃(Mn^{III}_{0,26}Al_{0,74})(MoO₄)₅. Les réactifs, Al₂O₃ (Fluka, 06285), AgNO₃ (Fluka, 85230), C₉H₉MnO₆·2H₂O (Fluka, 63538) et (NH₄)₂Mo₄O₁₃ (Fluka, 69858) sont pris dans les proportions Al:Ag:Mn:Mo égales à 1:1:3:5 dans un creuset en porcelaine. Le mélange finement broyé, est préchauffe dans un four jusqu'à 623 K en vue d'éliminer les composés volatils. Il est ensuite porté jusqu'à une température de synthèse proche de celle de la fusion à 1143 K. Le produit est alors abandonné à cette température pendant 4 semaines pour favoriser la germination et la croissance des cristaux. Le résidu final a subi en premier lieu un refroidissement lent (5°/12 h) jusqu'à 1043 K puis rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur noir, ont été séparés du flux par l'eau chaude. Une analyse qualitative au MEB de marque FEI et de type Quanta 200 confirme la présence des différents éléments chimiques attendus: Mo, Mn, Ag, Al et l'oxygène (Fig. 10).

5. Affinement

Détails de donnés crystallines, collection de donnés et affinement sont résumés dans le Tableau 2. La structure a été résolu par la méthode directe SHELXS97 (Sheldrick, 2008), partant de la formule AgAlMn₃Mo₅O₂₀ similaire au composé isotype NaAlMg₃Mo₅O₂₀. Un examen de la Fourier différence montre des anomalies autour des ions Mn²⁺ et Ag⁺. L'affinement, et en se basant sur les facteurs géométrique, a été mené d'une part avec les taux d'occupation variables pour Mn et Al occupant statiquement les mêmes positions et ayant les mêmes ellipsoïdes utilisant les deux fonctions EXYZ et EADP autorisées par SHELXL97 (Sheldrick, 2008), et d'autre part en considérant que l'ion Ag⁺ est reparti sur trois positions proches dans la structure. En effet, l'affinement de tous les paramètres variables conduit à des ellipsoïdes bien définis. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont situées respectivement à 0,73 Å de Mo1 et à 0,85 Å de Mo1. Il en résulte, la composition chimique finale, $Ag_{0.986}Mn^{II}_{3}(Mn^{III}_{0.261}Al_{0.739})(MoO_4)_5$ du nouveau matériau obtenu.

Tableau 2Détails expérimentaux.

Données crystallines	
Formule chimique	AgAl _{0.74} Mn _{3.26} Mo ₅ O ₂₀
M _r	1106.64
Système cristallin, groupe d'espace	Triclinique, P1
Température (K)	298
a, b, c (Å)	6.9596 (6), 7.0326 (7), 17.909 (6)
α, β, γ (°)	87.654 (6), 87.442 (6), 79.299 (7)
$V(Å^3)$	860.0 (3)
Ζ	2
Type de rayonnement	Μο Κα
$\mu (\mathrm{mm}^{-1})$	7.08
Taille des cristaux (mm)	$0.28 \times 0.21 \times 0.21$
Collection de données	
Diffractomètre	Enraf-Nonius CAD-4
Correction d'absorption	ψ scan (North <i>et al.</i> , 1968)
T_{\min}, T_{\max}	0.153, 0.263
Nombre de réflexions mesurées,	5479, 3736, 3470
indépendantes et observées	
$[I > 2\sigma(I)]$	
R _{int}	0.015
Affinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.064, 1.23
Nombre de réflexions	3736
Nombre de paramètres	291
Nombre de restraints	1
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	1.00, -1.06

Programmes informatiques: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 et SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2001) et WinGX (Farrugia, 2012).

Remerciements

Les auteurs remercient le Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la technologie de la Tunisie pour le financement du laboratoire LMC (code LR01ES11).

Références

- Amine, K., Yasuda, H. & Yamachi, M. (2000). Electrochem. Solid-State Lett. 3, 178–179.
- Ayed, B., Abbdallah, A. H. & Hadded, A. (2004). Acta Cryst. E60, i52–i54.
- Balsanova, L., Mikhailova, D., Senyshyn, A., Trots, D., Fuess, H., Lottermoser, W. & Ehrenberg, H. (2009). Solid State Sci. 11, 1137– 1143.
- Brandenburg, K. & Putz, H. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Choi, S. & Hong, S. T. (2005). Mater. Res. Bull. 40, 1787-1795.
- Daidouh, A., Durio, C., Pico, C., Veiga, M. L., Chouaibi, N. & Ouassini, A. (2002). Solid State Sci. 4, 541–548.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Engel, J. M., Ahsbahs, H., Fuess, H. & Ehrenberg, H. (2009). Acta Cryst. B65, 29–35.
- Ennajeh, I., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i54-i55.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hatert, F. (2006). Acta Cryst. C62, i1-i2.
- Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685–695.

research communications

- Kacimi, M., Ziyad, M. & Hatert, F. (2005). *Mater. Res. Bull.* 40, 682–693.
- Klevtsova, R. F., Vasiliev, A. D., Kozhevnikova, N. M., Glinskaya, L. A., Kruglik, A. I. & Kotova, I. Yu. (1993). J. Struct. Chem. 34, 147–151.
- Li, G., Azuma, H. & Tohda, M. (2002). *Electrochem. Solid-State Lett.* **5**, A135–A137.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Moring, J. & Kostiner, E. (1986). J. Solid State Chem. 61, 379-383.
- Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B**59**, 611–616.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997). J. Electrochem. Soc. 144, 1188–1194.
- Sarapulova, A., Mikhailova, D., Senyshyn, A. & Ehrenberg, H. (2009). J. Solid State Chem. 182, 3262–3268.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Solodovnikov, S. F., Klevtsova, R. F., Glinskaya, L. A., Solodovnikova, Z. A., Zolotova, E. S. & Klevtsov, P. V. (1997). J. Struct. Chem. 38, 426–433.

supporting information

Acta Cryst. (2015). E71, 299-304 [doi:10.1107/S2056989015003345]

Synthèse et structure cristalline d'un matériau noir Ag $Mn^{II}_{3}(Mn^{III}_{0,26}AI_{0,74})$ (MoO₄)₅

Chahira Bouzidi, Wafa Frigui et Mohamed Faouzi Zid

Computing details

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Silver(I) trimanganese(II) aluminium pentakis[tetraoxidomolybdate(VI)]

Crystal	data
---------	------

AgAl_{0.74}Mn_{3.26}Mo₅O₂₀ $M_r = 1106.64$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.9596 (6) Å b = 7.0326 (7) Å c = 17.909 (6) Å $\alpha = 87.654$ (6)° $\beta = 87.442$ (6)° $\gamma = 79.299$ (7)° V = 860.0 (3) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.153, T_{\max} = 0.263$ 5479 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.064$ S = 1.233736 reflections Z = 2 F(000) = 1016 $D_x = 4.274 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 7.08 \text{ mm}^{-1}$ T = 298 K Prism, black $0.28 \times 0.21 \times 0.21 \text{ mm}$

3736 independent reflections 3470 reflections with I > 2/s(I) $R_{int} = 0.015$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 3$ $k = -8 \rightarrow 8$ $I = -22 \rightarrow 22$ 2 standard reflections every 120 min intensity decay: 1.1%

291 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0222P)^{2} + 3.8945P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.00 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -1.06 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4} Extinction coefficient: 0.00248 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	0.25717 (6)	0.44969 (5)	0.41400 (2)	0.01218 (10)	
Mo2	0.81551 (6)	0.77839 (6)	0.18950 (2)	0.01421 (10)	
Mo3	0.22876 (6)	0.69185 (5)	0.97314 (2)	0.01166 (10)	
Mo4	0.71529 (6)	0.82667 (5)	0.78655 (2)	0.01120 (10)	
Mo5	0.77290 (5)	0.06208 (5)	0.403892 (19)	0.00848 (9)	
Mn1	0.32746 (10)	0.91577 (9)	0.38513 (4)	0.0093 (2)	0.957 (7)
Al1	0.32746 (10)	0.91577 (9)	0.38513 (4)	0.0093 (2)	0.043 (7)
Mn2	0.72939 (10)	0.57389 (10)	0.37410 (4)	0.0081 (2)	0.846 (7)
Al2	0.72939 (10)	0.57389 (10)	0.37410 (4)	0.0081 (2)	0.154 (7)
Mn3	0.68693 (10)	0.82604 (10)	0.99326 (4)	0.0088 (2)	0.804 (7)
A13	0.68693 (10)	0.82604 (10)	0.99326 (4)	0.0088 (2)	0.196 (7)
Mn4	0.75043 (12)	0.30015 (11)	0.23276 (4)	0.0092 (3)	0.654 (7)
Al4	0.75043 (12)	0.30015 (11)	0.23276 (4)	0.0092 (3)	0.346 (7)
Ag1	0.3550 (4)	0.6550 (3)	0.2181 (4)	0.0373 (9)	0.448 (9)
Ag2	0.3820 (17)	0.6607 (11)	0.1843 (13)	0.0373 (9)	0.219 (12)
Ag3	0.3870 (5)	0.6554 (7)	0.1610 (5)	0.0401 (12)	0.319 (12)
01	0.7352 (5)	0.2824 (5)	0.34651 (18)	0.0153 (6)	
O2	0.3399 (5)	0.9515 (5)	0.26468 (19)	0.0190 (7)	
03	0.7466 (6)	0.3498 (6)	0.1229 (2)	0.0279 (8)	
O4	0.6928 (6)	0.8788 (5)	0.8806 (2)	0.0249 (8)	
05	0.0428 (6)	0.2814 (5)	0.2342 (2)	0.0266 (8)	
O6	0.0586 (5)	0.7080 (6)	0.1646 (2)	0.0311 (9)	
07	0.7079 (6)	0.1205 (5)	0.49512 (19)	0.0228 (8)	
08	0.4491 (6)	0.3332 (5)	0.23101 (19)	0.0241 (8)	
09	0.7330 (5)	0.5994 (5)	0.25324 (19)	0.0214 (7)	
O10	0.7026 (5)	0.5284 (5)	0.9776 (2)	0.0231 (8)	
O11	0.0187 (5)	0.9658 (5)	0.3959 (2)	0.0240 (8)	
O12	0.3428 (6)	0.2095 (5)	0.3903 (2)	0.0316 (9)	
O13	0.6472 (5)	0.8752 (5)	0.38069 (17)	0.0137 (6)	
O14	0.7538 (6)	0.5391 (6)	0.4896 (2)	0.0287 (9)	
O15	0.7832 (6)	0.0068 (6)	0.2296 (2)	0.0299 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

O16	0.6236 (5)	0.1365 (5)	0.00392 (19)	0.0195 (7)
017	0.9851 (6)	0.7876 (5)	0.9945 (2)	0.0263 (8)
018	0.0299 (6)	0.5324 (6)	0.3763 (2)	0.0293 (9)
019	0.6781 (5)	0.7961 (5)	0.1093 (2)	0.0224 (7)
O20	0.4161 (5)	0.6075 (4)	0.37703 (18)	0.0150 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0156 (2)	0.00828 (18)	0.01359 (19)	-0.00554 (14)	0.00493 (14)	-0.00176 (13)
Mo2	0.01091 (19)	0.0149 (2)	0.0168 (2)	-0.00313 (14)	-0.00111 (14)	0.00465 (14)
Mo3	0.01408 (19)	0.01035 (18)	0.01164 (18)	-0.00514 (14)	-0.00041 (14)	-0.00018 (13)
Mo4	0.0158 (2)	0.00772 (18)	0.00939 (18)	-0.00068 (14)	-0.00021 (14)	0.00003 (13)
Mo5	0.00941 (18)	0.00634 (17)	0.01008 (17)	-0.00234 (13)	-0.00227 (13)	0.00120 (12)
Mn1	0.0082 (4)	0.0068 (3)	0.0124 (4)	-0.0005 (2)	-0.0006 (2)	0.0000 (2)
Al1	0.0082 (4)	0.0068 (3)	0.0124 (4)	-0.0005 (2)	-0.0006 (2)	0.0000 (2)
Mn2	0.0091 (4)	0.0064 (4)	0.0086 (4)	-0.0006 (2)	-0.0008 (2)	-0.0017 (2)
A12	0.0091 (4)	0.0064 (4)	0.0086 (4)	-0.0006 (2)	-0.0008 (2)	-0.0017 (2)
Mn3	0.0090 (4)	0.0088 (4)	0.0081 (4)	-0.0002 (3)	-0.0013 (3)	-0.0004 (2)
A13	0.0090 (4)	0.0088 (4)	0.0081 (4)	-0.0002 (3)	-0.0013 (3)	-0.0004 (2)
Mn4	0.0113 (4)	0.0088 (4)	0.0075 (4)	-0.0018 (3)	-0.0011 (3)	-0.0001 (3)
Al4	0.0113 (4)	0.0088 (4)	0.0075 (4)	-0.0018 (3)	-0.0011 (3)	-0.0001 (3)
Ag1	0.0319 (7)	0.0167 (4)	0.063 (3)	0.0045 (4)	-0.0262 (11)	-0.0094 (9)
Ag2	0.0319 (7)	0.0167 (4)	0.063 (3)	0.0045 (4)	-0.0262 (11)	-0.0094 (9)
Ag3	0.0132 (9)	0.0420 (12)	0.066 (3)	-0.0084 (8)	-0.0072 (12)	0.0112 (15)
01	0.0124 (16)	0.0129 (15)	0.0192 (16)	0.0002 (12)	0.0003 (12)	0.0038 (12)
O2	0.0251 (19)	0.0132 (16)	0.0193 (17)	-0.0043 (14)	-0.0077 (14)	0.0028 (13)
O3	0.040 (2)	0.028 (2)	0.0196 (18)	-0.0153 (17)	0.0037 (16)	-0.0047 (15)
O4	0.031 (2)	0.0255 (19)	0.0175 (17)	-0.0027 (16)	0.0008 (15)	-0.0025 (14)
O5	0.029 (2)	0.0179 (18)	0.028 (2)	0.0061 (15)	0.0028 (16)	-0.0030 (14)
06	0.0146 (18)	0.046 (2)	0.032 (2)	-0.0043 (17)	-0.0017 (15)	0.0070 (18)
O7	0.032 (2)	0.0220 (18)	0.0149 (16)	-0.0058 (15)	-0.0025 (14)	-0.0046 (13)
08	0.038 (2)	0.0165 (17)	0.0195 (17)	-0.0078 (16)	-0.0091 (16)	0.0015 (13)
09	0.0174 (17)	0.0231 (18)	0.0203 (17)	0.0022 (14)	0.0034 (14)	0.0061 (14)
O10	0.0252 (19)	0.0178 (17)	0.0265 (19)	-0.0058 (15)	-0.0009 (15)	0.0062 (14)
011	0.0108 (16)	0.0208 (18)	0.040 (2)	-0.0014 (14)	-0.0033 (15)	0.0025 (15)
O12	0.040 (2)	0.0141 (18)	0.041 (2)	-0.0119 (17)	0.0188 (19)	-0.0061 (16)
O13	0.0128 (15)	0.0137 (15)	0.0161 (15)	-0.0055 (12)	-0.0028 (12)	-0.0011 (12)
O14	0.035 (2)	0.030 (2)	0.0214 (19)	-0.0086 (17)	0.0069 (16)	0.0020 (15)
O15	0.036 (2)	0.031 (2)	0.027 (2)	-0.0183 (18)	0.0042 (17)	-0.0018 (16)
O16	0.0214 (18)	0.0188 (17)	0.0201 (17)	-0.0073 (14)	-0.0041 (14)	-0.0011 (13)
O17	0.0239 (19)	0.0243 (19)	0.031 (2)	-0.0053 (15)	0.0024 (16)	-0.0056 (15)
O18	0.025 (2)	0.035 (2)	0.030 (2)	-0.0130 (17)	-0.0031 (16)	-0.0034 (17)
O19	0.0211 (18)	0.0210 (18)	0.0237 (18)	-0.0004 (14)	-0.0059 (14)	0.0037 (14)
O20	0.0166 (16)	0.0100 (15)	0.0190 (16)	-0.0052 (12)	0.0052 (13)	-0.0014 (12)

Geometric parameters (Å, °)

Mo1—O14 ⁱ	1.729 (4)	Mn2—O14	2.084 (4)
Mo1-018	1.737 (4)	Mn2—O13	2.096 (3)
Mo1-012	1.747 (4)	Mn2—O1	2.121 (3)
Mo1—O20	1.796 (3)	Mn2—O20	2.148 (3)
Mo2—O6 ⁱⁱ	1.717 (4)	Mn2—O9	2.164 (4)
Mo2—O19	1.749 (3)	Mn3—O4	2.037 (4)
Mo2—O15 ⁱⁱⁱ	1.758 (4)	Mn3—O17	2.043 (4)
Mo2—O9	1.819 (3)	Mn3—019 ^{ix}	2.079 (4)
Mo3—O17 ^{iv}	1.737 (4)	Mn3—O10	2.105 (4)
Mo3-010 ^v	1.748 (3)	Mn3—O16 ⁱ	2.126 (4)
Mo3—O3 ⁱ	1.751 (4)	Mn3—O16 ^x	2.160 (4)
Mo3-016 ⁱ	1.795 (3)	Mn4—O3	1.985 (4)
Mo4—O4	1.732 (4)	Mn4—O5 ⁱⁱ	2.016 (4)
Mo4—O5 ⁱ	1.744 (4)	Mn4—O1	2.035 (3)
Mo4—O2 ^{vi}	1.765 (3)	Mn4—O15	2.036 (4)
Mo4—O8 ⁱ	1.792 (4)	Mn4—O8	2.068 (4)
Mo5—O11 ^{vii}	1.721 (3)	Mn4—O9	2.131 (4)
Mo5—O7	1.721 (3)	Ag1—O8	2.242 (4)
Mo5—O13 ^{viii}	1.781 (3)	Ag1—O2	2.260 (4)
Mo5—O1	1.808 (3)	Ag1—O6	2.275 (4)
Mn1—O12 ⁱⁱⁱ	2.094 (4)	Ag2—O6	2.255 (9)
Mn1-011	2.114 (3)	Ag2—O8	2.388 (13)
Mn1	2.150 (3)	Ag2—O2	2.514 (12)
Mn1—O7 ⁱ	2.158 (4)	Ag3—O6	2.245 (5)
Mn1—O2	2.161 (3)	Ag3—O8	2.519 (5)
Mn1—013	2.188 (3)	Ag3—O19	2.539 (5)
Mn2—O18 ⁱⁱ	2.059 (4)		
O14 ⁱ —Mo1—O18	111.70 (19)	O18 ⁱⁱ —Mn2—O14	82.33 (16)
O14 ⁱ —Mo1—O12	108.36 (19)	O18 ⁱⁱ —Mn2—O13	102.64 (14)
O18-Mo1-O12	109.8 (2)	O14—Mn2—O13	92.00 (14)
O14 ⁱ —Mo1—O20	108.31 (17)	O18 ⁱⁱ —Mn2—O1	92.34 (14)
O18—Mo1—O20	106.71 (17)	O14—Mn2—O1	99.75 (14)
O12-Mo1-O20	111.94 (16)	O13—Mn2—O1	162.10 (13)
O6 ⁱⁱ —Mo2—O19	108.91 (18)	O18 ⁱⁱ —Mn2—O20	176.97 (15)
O6 ⁱⁱ —Mo2—O15 ⁱⁱⁱ	108.5 (2)	O14—Mn2—O20	95.05 (14)
O19—Mo2—O15 ⁱⁱⁱ	109.26 (18)	O13—Mn2—O20	78.92 (12)
O6 ⁱⁱ —Mo2—O9	110.68 (17)	O1—Mn2—O20	86.59 (12)
O19—Mo2—O9	107.76 (17)	O18 ⁱⁱ —Mn2—O9	92.49 (15)
O15 ⁱⁱⁱ —Mo2—O9	111.71 (17)	O14—Mn2—O9	174.66 (15)
O17 ^{iv} —Mo3—O10 ^v	109.76 (18)	O13—Mn2—O9	90.38 (13)
O17 ^{iv} —Mo3—O3 ⁱ	108.24 (19)	O1—Mn2—O9	79.10 (13)
O10 ^v —Mo3—O3 ⁱ	108.81 (18)	O20—Mn2—O9	90.10 (13)
O17 ^{iv} —Mo3—O16 ⁱ	108.86 (17)	O4—Mn3—O17	91.18 (16)
O10 ^v —Mo3—O16 ⁱ	111.28 (17)	O4—Mn3—O19 ^{ix}	175.38 (15)
O3 ⁱ —Mo3—O16 ⁱ	109.85 (17)	O17—Mn3—O19 ^{ix}	89.07 (15)

O4-Mo4-O5 ⁱ	108.56 (18)	O4—Mn3—O10	90.76 (15)
O4-Mo4-O2 ^{vi}	107.37 (17)	O17—Mn3—O10	90.68 (15)
O5 ⁱ —Mo4—O2 ^{vi}	109.08 (17)	O19 ^{ix} —Mn3—O10	93.85 (14)
O4Mo4O8 ⁱ	108.28 (18)	O4—Mn3—O16 ⁱ	90.86 (15)
O5 ⁱ —Mo4—O8 ⁱ	111.05 (18)	O17—Mn3—O16 ⁱ	177.96 (15)
$O2^{vi}$ —Mo4— $O8^i$	112.35 (16)	O19 ^{ix} —Mn3—O16 ⁱ	88.90 (14)
O11 ^{vii} —Mo5—O7	110.10 (18)	O10—Mn3—O16 ⁱ	89.19 (14)
O11 ^{vii} —Mo5—O13 ^{viii}	106.33 (16)	O4—Mn3—O16 ^x	86.67 (14)
O7—Mo5—O13 ^{viii}	107.66 (16)	O17—Mn3—O16 ^x	98.08 (15)
O11 ^{vii} —Mo5—O1	106.51 (16)	O19 ^{ix} —Mn3—O16 ^x	88.73 (14)
O7—Mo5—O1	108.46 (16)	O10—Mn3—O16 ^x	170.92 (14)
O13 ^{viii} —Mo5—O1	117.65 (15)	O16 ⁱ —Mn3—O16 ^x	82.15 (14)
O12 ⁱⁱⁱ —Mn1—O11	93.79 (15)	O3—Mn4—O5 ⁱⁱ	92.68 (16)
O12 ⁱⁱⁱ —Mn1—O20	160.75 (15)	O3—Mn4—O1	173.03 (15)
O11—Mn1—O20	105.45 (14)	O5 ⁱⁱ —Mn4—O1	90.22 (14)
$O12^{iii}$ —Mn1— $O7^{i}$	93.35 (15)	O3—Mn4—O15	96.33 (16)
O11—Mn1—O7 ⁱ	80.40 (15)	O5 ⁱⁱ —Mn4—O15	90.79 (16)
O20-Mn1-O7 ⁱ	89.60 (13)	O1—Mn4—O15	89.96 (14)
O12 ⁱⁱⁱ —Mn1—O2	87.80 (15)	O3—Mn4—O8	86.84 (16)
O11—Mn1—O2	95.43 (14)	O5 ⁱⁱ —Mn4—O8	177.36 (15)
O20—Mn1—O2	90.66 (12)	O1—Mn4—O8	89.97 (14)
O7 ⁱ —Mn1—O2	175.73 (14)	O15—Mn4—O8	91.84 (16)
O12 ⁱⁱⁱ —Mn1—O13	83.87 (15)	O3—Mn4—O9	92.11 (15)
O11—Mn1—O13	176.15 (14)	O5 ⁱⁱ —Mn4—O9	85.77 (14)
O20—Mn1—O13	76.89 (12)	O1—Mn4—O9	81.78 (13)
O7 ⁱ —Mn1—O13	96.66 (13)	O15—Mn4—O9	171.03 (15)
O2—Mn1—O13	87.56 (13)	O8—Mn4—O9	91.65 (14)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+2; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) *x*+1, *y*-1, *z*; (viii) *x*, *y*-1, *z*; (ix) *x*, *y*, *z*+1; (x) *x*, *y*+1, *z*+1.