data reports

open 👌 access

Crystal structure of ethyl 2",3-dioxo-7',7a'-dihydro-1'*H*,3*H*,3'*H*-dispiro-[benzo[*b*]thiophene-2,6'-pyrrolo[1,2c]thiazole-5',3"-indoline]-7'-carboxylate

M. P. Savithri,^a M. Suresh,^b R. Raghunathan,^b R. Raja^c and A. SubbiahPandi^c*

^aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India. *Correspondence e-mail: aspandian59@gmail.com

Received 16 January 2015; accepted 30 January 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{23}H_{20}N_2O_4S_2$, the central pyrrolidine ring adopts an envelope conformation with the spiro C atom, shared with the benzothiophene ring system, as the flap. The thiazole ring has a twisted conformation on the S–C bond, where the C atom is that closest to methine C atom. The mean planes of the benzothiophene and indoline ring systems are inclined to the mean plane of the central pyrrolidine ring by 82.75 (8) and 80.03 (8)°, respectively, and to each other by 61.49 (6)°. In the crystal, molecules are linked *via* pairs of N– $H \cdots O$ hydrogen bonds, forming inversion dimers with an $R_2^2(8)$ ring motif. The dimers are linked *via* C– $H \cdots O$ and C– $H \cdots N$ hydrogen bonds, forming a three-dimensional structure. The ethoxycarbonyl group is disordered over two orientations, with an occupancy ratio of 0.717 (12):0.283 (12).

Keywords: crystal structure; dispiro; benzothiophene; thiazole; pyrrolidine; indoline; hydrogen bonds; inversion dimers.

CCDC reference: 1046458

1. Related literature

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska *et al.* (2003); Peddi *et al.* (2004); Zapf *et al.* (2011); Stylianakis *et al.* (2003); Waldmann (1995); Suzuki *et al.* (1994); Huryn *et al.* (1991). For a related structure, see: Narayanan *et al.* (2013).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{23}H_{20}N_2O_4S_2\\ M_r = 452.53\\ \text{Monoclinic, } P2_1/c\\ a = 11.8894 \ (5) \text{ Å}\\ b = 10.2181 \ (4) \text{ Å}\\ c = 17.5044 \ (8) \text{ Å}\\ \beta = 97.991 \ (2)^{\circ} \end{array}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.906, T_{\rm max} = 0.919$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.088$ S = 0.983705 reflections 312 parameters 65 restraints $V = 2105.91 (15) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.29 mm⁻¹ T = 293 K 0.35 \times 0.30 \times 0.30 mm

19635 measured reflections 3706 independent reflections 3169 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccc} N2-H2\cdots O4^{i} & 0.87 \left(2\right) & 2.05 \left(2\right) & 2.9029 \left(18\right) & 169 \left(2\right) \\ C11-H11\cdots O3^{ii} & 0.93 & 2.47 & 3.215 \left(2\right) & 137 \\ C13-H13\cdots N1^{iii} & 0.93 & 2.60 & 3.505 \left(2\right) & 165 \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$\begin{array}{c} N2-H2\cdots O4^{i}\\ C11-H11\cdots O3^{ii}\\ C13-H13\cdots N1^{iii} \end{array}$	0.87 (2) 0.93 0.93	2.05 (2) 2.47 2.60	2.9029 (18) 3.215 (2) 3.505 (2)	169 (2) 137 165

Symmetry codes: (i) -x, -y, -z + 1; (ii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5067).

References

- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Curr. Org. Synth. 1, 64-74. Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. &
- Velmurugan, D. (2013). Acta Cryst. E69, 023–024.
 Obniska, J., Pawłowski, M., Kołaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.

- Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). *Bioorg. Med. Chem. Lett.* 13, 1699–1703.

Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). *Tetrahedron Lett.* **35**, 6119–6122. Waldmann, H. (1995). *Synlett*, pp. 133–141.

Zapf, C. W., Bloom, J. D., Li, Z., Dushin, R. G., Nittoli, T., Otteng, M., Nikitenko, A., Golas, J. M., Liu, H., Lucas, J., Boschelli, F., Vogan, E., Olland, A., Johnson, M. & Levin, J. I. (2011). *Bioorg. Med. Chem. Lett.* 21, 4602–4607.

supporting information

Acta Cryst. (2015). E71, o148-o149 [doi:10.1107/S2056989015002030]

Crystal structure of ethyl 2'',3-dioxo-7',7a'-dihydro-1'H,3H,3'H-dispiro-[benzo[b]thiophene-2,6'-pyrrolo[1,2-c]thiazole-5',3''-indoline]-7'-carboxylate

M. P. Savithri, M. Suresh, R. Raghunathan, R. Raja and A. SubbiahPandi

S1. Comment

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonists (Obniska *et al.*, 2003; Peddi *et al.*, 2004). These derivatives possess anticancer (Zapf *et al.*, 2011) and anti-influenza virus (Stylianakis *et al.*, 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki *et al.*, 1994; Huryn *et al.*, 1991). In view of these importance and in continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

The molecular structure of the title compound as illustrated in Fig. 1. The bond lengths and angles are within normal ranges and comparable to those found in a related structure (Narayanan *et al.*, 2013). Terminal atoms C1, C2, O2 in the ethyl carboxylate group are disordered over two positions [C1/C1A, C2/C2A & O2/O2A] with a site-occupancy ratio of 0.716 (12) : 0.284 (12). The sum of the angles at N1 and N2 [340.95° and 359.96°, respectively] of the pyrrolidine and indole rings are in accordance with sp³ and sp² hybridization.

The central pyrrolidine ring (N1/C4-C7) forms dihedral angles of 82.0 (1)° and 80.9 (1)°, respectively, with pyrrolidine ring (N2/C6/C15-C16/C21) of indole ring system and the benzene ring (C9-C16) of benzothiophene ring system. The central pyrrolidine ring has an envelope conformation with atom C7 as the flap [puckering parameters of $q_2 = 0.4574$ (2)Å, $\varphi_2 = 293.2$ (2)°]. The thiophene ring (S1/C7-C9/C14) adopts twisted conformation on bond S1-C7 [puckering parameters of $q_2 = 0.1294$ (2)Å, $\varphi_2 = 16.8$ (8)°]. The five membered thiozole ring (N1/S2/C5/C22,C23) adopts twisted conformation on C23-S2 [puckering parameters of $q_2 = 0.4675$ (2) Å, $\varphi_2 = 164.4$ (2)°].

In the crystal, molecules are linked via C-H···O, C-H···N, N-H···O intermolecular hydrogen bonds (Table 1 and Fig. 2). The C11-H11···O3 inter-molecular interactions form a dimer with graphset motif $R_2^2(12)$ and N2-H2···O4 hydrogen bonds connect molecules to form inversion dimers, with an $R_2^2(8)$ ring motif (Fig. 2). C13-H13···N1 hydrogen bonds form a linear chain along the *a* axis. This combination of C-H···O, C-H···N and N-H···O hydrogen bonds gives a three-dimensional structure.

S2. Experimental

A reaction mixture of (*E*)-ethyl 2-(3-oxobenzo[b]thiophen-2(3H)-ylidene) acetate (1.0 mmol), isatin (1.1 mmol) and thiazolidine-4-carboxylic acid (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction monitored by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane (2×50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration the organic solvent was evaporated under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as an eluent to give a colourless solid. The product was dissolved in chloroform (3 ml) and heated for two minutes. The solution was then subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for X-ray crystallographic studies.

S3. Refinement

Atoms C1, C2 and O2 are disordered over two positions (C1A/C1B, C2A/C2B & O2/O2A) with a refined occupancy ratio of 0.716 (12) : 0.284 (12). The O-C and C-C distances of the disordered atoms were restrained to be equal. The displacement parameters of the disordered atoms were restrained to be equal for bonded atoms. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically and allowed to ride on their parent C atoms: C-H = 0.93-0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed lines represent the bonds involving the minor component of the disordered ethyl carboxylate unit.

Figure 2

The molecular packing of the title compound viewed along the *b* axis. Dashed lines show the C—H…N, C—H…O and C —H…N hydrogen bonds (Table 1).

2",3-Dioxo-7',7a'-dihydro-1'H,3H,3'H-dispiro[benzo[b]thiophene-2,6'-pyrrolo[1,2-c]thiazole-5',3"-indoline]-7'-carboxylate

Crystal data	
$C_{23}H_{20}N_2O_4S_2$	F(000) = 944
$M_r = 452.53$	$D_{\rm x} = 1.427 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3706 reflections
a = 11.8894 (5) Å	$\theta = 2.3 - 25.0^{\circ}$
b = 10.2181 (4) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 17.5044 (8) Å	T = 293 K
$\beta = 97.991 \ (2)^{\circ}$	Block, colourless
$V = 2105.91 (15) Å^3$	$0.35 \times 0.30 \times 0.30$ mm
Z = 4	
Data collection	
Bruker Kappa APEXII CCD	19635 measured reflections
diffractometer	3706 independent reflections
Radiation source: fine-focus sealed tube	3169 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
ω and φ scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2004)	$k = -12 \rightarrow 11$
$T_{\min} = 0.906, \ T_{\max} = 0.919$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 0.98	H atoms treated by a mixture of independent
3705 reflections	and constrained refinement
312 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 1.0594P]$
65 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C3	0.22511 (16)	-0.15734 (19)	0.81332 (11)	0.0408 (4)	
C4	0.22481 (14)	-0.12481 (18)	0.72929 (10)	0.0342 (4)	
H4	0.1500	-0.1486	0.7019	0.041*	
C5	0.31386 (14)	-0.19721 (18)	0.69063 (10)	0.0354 (4)	
H5	0.3821	-0.2098	0.7283	0.042*	
C6	0.26623 (13)	0.00729 (17)	0.62479 (9)	0.0298 (4)	
C7	0.24619 (13)	0.02012 (17)	0.71114 (9)	0.0314 (4)	
C8	0.15041 (14)	0.11732 (18)	0.72277 (10)	0.0343 (4)	
C9	0.19513 (13)	0.23396 (18)	0.76473 (10)	0.0336 (4)	
C10	0.13286 (15)	0.3444 (2)	0.77968 (11)	0.0437 (5)	
H10	0.0549	0.3473	0.7640	0.052*	
C11	0.18760 (17)	0.4486 (2)	0.81770 (13)	0.0501 (5)	
H11	0.1467	0.5223	0.8285	0.060*	
C12	0.30442 (17)	0.4440 (2)	0.84011 (12)	0.0475 (5)	
H12	0.3411	0.5158	0.8650	0.057*	
C13	0.36685 (15)	0.33556 (19)	0.82629 (11)	0.0393 (4)	
H13	0.4450	0.3338	0.8414	0.047*	
C14	0.31142 (13)	0.22884 (17)	0.78951 (9)	0.0319 (4)	
C15	0.14879 (13)	-0.01360 (18)	0.57169 (9)	0.0334 (4)	
C16	0.22851 (14)	0.17108 (17)	0.52915 (10)	0.0331 (4)	
C17	0.24522 (16)	0.27754 (19)	0.48425 (11)	0.0415 (4)	
H17	0.1892	0.3057	0.4453	0.050*	
C18	0.34843 (18)	0.34133 (19)	0.49905 (12)	0.0461 (5)	
H18	0.3620	0.4140	0.4697	0.055*	

C19	0.43177 (17)	0.29921 (19)	0.55657 (12)	0.0451 (5)	
H19	0.5004	0.3441	0.5658	0.054*	
C20	0.41404 (15)	0.19029 (18)	0.60081 (11)	0.0381 (4)	
H20	0.4710	0.1606	0.6386	0.046*	
C21	0.31061 (13)	0.12661 (17)	0.58786 (10)	0.0309 (4)	
C22	0.35408 (17)	-0.17203 (19)	0.55696 (11)	0.0422 (4)	
H22A	0.4206	-0.1392	0.5368	0.051*	
H22B	0.2879	-0.1571	0.5189	0.051*	
N1	0.34078 (11)	-0.10643 (14)	0.62958 (8)	0.0313 (3)	
N2	0.13369 (12)	0.08759 (15)	0.52250 (9)	0.0373 (4)	
O1	0.28776 (14)	-0.23233 (15)	0.84987 (8)	0.0601 (4)	
O3	0.05293 (10)	0.09693 (14)	0.69704 (9)	0.0510 (4)	
O4	0.08550 (10)	-0.10764 (13)	0.57322 (7)	0.0430 (3)	
S1	0.37513 (3)	0.07922 (4)	0.77110 (3)	0.03457 (13)	
S2	0.36970 (5)	-0.34399 (5)	0.57908 (3)	0.05123 (16)	
C23	0.27897 (18)	-0.3280 (2)	0.65305 (13)	0.0504 (5)	
H23A	0.1995	-0.3274	0.6308	0.061*	
H23B	0.2917	-0.3989	0.6901	0.061*	
C1	-0.0015 (4)	-0.0975 (10)	0.9230 (3)	0.100 (2)	0.717 (12)
H1A	-0.0235	-0.1289	0.9704	0.149*	0.717 (12)
H1B	-0.0522	-0.1320	0.8803	0.149*	0.717 (12)
H1C	-0.0050	-0.0036	0.9220	0.149*	0.717 (12)
C2	0.1165 (5)	-0.1407 (8)	0.9171 (3)	0.0663 (17)	0.717 (12)
H2A	0.1212	-0.2354	0.9163	0.080*	0.717 (12)
H2B	0.1689	-0.1080	0.9603	0.080*	0.717 (12)
O2	0.1435 (9)	-0.0828 (9)	0.8414 (5)	0.059 (2)	0.717 (12)
C1A	0.0427 (18)	-0.1791 (17)	0.9270 (6)	0.085 (5)	0.283 (12)
H1A1	0.0230	-0.1767	0.9784	0.128*	0.283 (12)
H1A2	0.0661	-0.2661	0.9157	0.128*	0.283 (12)
H1A3	-0.0221	-0.1546	0.8908	0.128*	0.283 (12)
C2A	0.1380 (12)	-0.0854 (14)	0.9211 (8)	0.053 (3)	0.283 (12)
H2A1	0.1182	0.0052	0.9290	0.063*	0.283 (12)
H2A2	0.2080	-0.1085	0.9537	0.063*	0.283 (12)
O2A	0.1378 (19)	-0.120 (2)	0.8381 (10)	0.043 (3)	0.283 (12)
H2	0.0730 (15)	0.098 (2)	0.4891 (11)	0.051 (6)*	

Atomic displacement parameters $(Å^2)$

-						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.0357 (10)	0.0462 (11)	0.0390 (10)	-0.0027 (9)	-0.0008 (8)	0.0047 (9)
C4	0.0275 (8)	0.0386 (10)	0.0346 (9)	-0.0026 (7)	-0.0020 (7)	0.0035 (8)
C5	0.0308 (9)	0.0369 (10)	0.0369 (9)	-0.0002 (7)	-0.0010 (7)	0.0034 (8)
C6	0.0220 (8)	0.0339 (9)	0.0318 (9)	-0.0008 (7)	-0.0020 (6)	0.0000(7)
C7	0.0209 (8)	0.0383 (10)	0.0330 (9)	-0.0002 (7)	-0.0032 (6)	-0.0002 (7)
C8	0.0235 (8)	0.0453 (10)	0.0335 (9)	0.0022 (7)	0.0016 (7)	0.0056 (8)
C9	0.0252 (8)	0.0411 (10)	0.0342 (9)	0.0037 (7)	0.0031 (7)	0.0033 (8)
C10	0.0270 (9)	0.0511 (12)	0.0526 (12)	0.0096 (8)	0.0035 (8)	0.0030 (9)
C11	0.0440 (11)	0.0426 (12)	0.0634 (13)	0.0125 (9)	0.0062 (10)	-0.0036 (10)

C12	0.0441 (11)	0.0392 (11)	0.0577 (12)	-0.0006 (9)	0.0015 (9)	-0.0070 (9)
C13	0.0291 (9)	0.0442 (11)	0.0432 (10)	0.0019 (8)	-0.0003 (8)	-0.0012 (9)
C14	0.0261 (8)	0.0375 (10)	0.0317 (8)	0.0034 (7)	0.0029 (7)	0.0027 (7)
C15	0.0257 (8)	0.0401 (10)	0.0325 (9)	0.0000 (7)	-0.0026 (7)	0.0007 (8)
C16	0.0326 (9)	0.0353 (10)	0.0314 (9)	0.0011 (7)	0.0041 (7)	-0.0025 (7)
C17	0.0473 (11)	0.0392 (11)	0.0377 (10)	0.0032 (8)	0.0049 (8)	0.0039 (8)
C18	0.0599 (12)	0.0340 (10)	0.0472 (11)	-0.0048 (9)	0.0168 (10)	0.0008 (9)
C19	0.0435 (11)	0.0407 (11)	0.0533 (12)	-0.0121 (9)	0.0148 (9)	-0.0078 (9)
C20	0.0298 (9)	0.0409 (10)	0.0433 (10)	-0.0028 (8)	0.0044 (7)	-0.0043 (8)
C21	0.0273 (8)	0.0317 (9)	0.0336 (9)	0.0007 (7)	0.0041 (7)	-0.0029 (7)
C22	0.0456 (11)	0.0405 (11)	0.0394 (10)	0.0036 (8)	0.0019 (8)	-0.0043 (8)
N1	0.0280 (7)	0.0332 (8)	0.0317 (7)	0.0019 (6)	0.0004 (6)	-0.0010 (6)
N2	0.0284 (8)	0.0437 (9)	0.0362 (8)	-0.0021 (6)	-0.0078 (6)	0.0061 (7)
01	0.0696 (10)	0.0639 (10)	0.0447 (8)	0.0189 (8)	0.0010 (7)	0.0148 (7)
03	0.0220 (6)	0.0628 (9)	0.0652 (9)	0.0014 (6)	-0.0046 (6)	-0.0071 (7)
O4	0.0315 (6)	0.0463 (8)	0.0463 (8)	-0.0113 (6)	-0.0115 (5)	0.0067 (6)
S1	0.0218 (2)	0.0417 (3)	0.0377 (2)	0.00479 (17)	-0.00465 (17)	-0.00587 (19)
S2	0.0606 (3)	0.0380 (3)	0.0542 (3)	0.0045 (2)	0.0047 (2)	-0.0082 (2)
C23	0.0546 (12)	0.0383 (11)	0.0580 (13)	-0.0051 (9)	0.0065 (10)	0.0005 (10)
C1	0.090 (3)	0.137 (6)	0.082 (3)	-0.018 (4)	0.047 (3)	-0.029 (4)
C2	0.068 (3)	0.093 (5)	0.041 (2)	-0.007 (3)	0.020 (2)	0.013 (3)
O2	0.060 (3)	0.076 (5)	0.0464 (19)	0.021 (3)	0.0200 (16)	0.014 (2)
C1A	0.123 (13)	0.102 (10)	0.039 (5)	-0.060 (9)	0.036 (6)	-0.012 (6)
C2A	0.062 (6)	0.050 (6)	0.046 (5)	-0.012 (5)	0.012 (4)	0.008 (5)
O2A	0.036 (4)	0.060 (8)	0.033 (4)	0.015 (5)	0.006 (3)	0.017 (4)

Geometric parameters (Å, °)

<u>C3–01</u>	1.191 (2)	C16—C21	1.392 (2)
C3—O2A	1.24 (2)	C16—N2	1.406 (2)
C3—O2	1.376 (10)	C17—C18	1.382 (3)
C3—C4	1.508 (2)	C17—H17	0.9300
C4—C5	1.525 (2)	C18—C19	1.380 (3)
C4—C7	1.543 (2)	C18—H18	0.9300
C4—H4	0.9800	C19—C20	1.389 (3)
C5—N1	1.483 (2)	С19—Н19	0.9300
C5—C23	1.522 (3)	C20—C21	1.382 (2)
С5—Н5	0.9800	С20—Н20	0.9300
C6—N1	1.457 (2)	C22—N1	1.465 (2)
C6—C21	1.509 (2)	C22—S2	1.803 (2)
C6—C7	1.568 (2)	C22—H22A	0.9700
C6—C15	1.581 (2)	C22—H22B	0.9700
С7—С8	1.546 (2)	N2—H2	0.869 (15)
C7—S1	1.8355 (16)	S2—C23	1.804 (2)
C8—O3	1.202 (2)	C23—H23A	0.9700
C8—C9	1.461 (3)	С23—Н23В	0.9700
C9—C14	1.391 (2)	C1—C2	1.488 (6)
C9—C10	1.394 (3)	C1—H1A	0.9600

C10—C11	1.372 (3)	C1—H1B	0.9600
C10—H10	0.9300	C1—H1C	0.9600
C11—C12	1.391 (3)	C2—O2	1.526 (9)
C11—H11	0.9300	C2—H2A	0.9700
C12—C13	1.373 (3)	C2—H2B	0.9700
C12—H12	0.9300	C1A—C2A	1.499 (9)
C13—C14	1.386 (3)	C1A—H1A1	0.9600
С13—Н13	0.9300	C1A—H1A2	0.9600
C14—S1	1.7558 (17)	C1A—H1A3	0.9600
C15-04	1.223 (2)	C2A - O2A	1.497 (17)
C15—N2	1 342 (2)	C2A—H2A1	0.9700
C16-C17	1.373(3)	$C^2A - H^2A^2$	0.9700
010-017	1.575 (5)	C2//_112/12	0.9700
O1—C3—O2A	120.0 (9)	С18—С17—Н17	121.2
O1—C3—O2	125.7 (4)	C19—C18—C17	121.24 (18)
O2A—C3—O2	16.2 (13)	C19—C18—H18	119.4
O1—C3—C4	125.62 (18)	C17—C18—H18	119.4
O2A—C3—C4	112.7 (8)	C18—C19—C20	120.51 (17)
O2—C3—C4	108.7 (4)	С18—С19—Н19	119.7
$C_{3}-C_{4}-C_{5}$	114 74 (15)	C20-C19-H19	119 7
C3—C4—C7	115.75 (15)	$C_{21} - C_{20} - C_{19}$	119.12 (17)
C5—C4—C7	103.29 (13)	C21—C20—H20	120.4
C3-C4-H4	107.5	C19 - C20 - H20	120.4
$C_5 - C_4 - H_4$	107.5	C_{20} C_{21} C_{16}	120.1 118.96(17)
C7 - C4 - H4	107.5	$C_{20} = C_{21} = C_{10}$	131.79(16)
N1_C5_C23	107.5	C_{16} C_{21} C_{6}	109.21(14)
N1 = C5 = C25	104.42(14)	N1 C22 S2	109.21(14) 106.25(13)
11 - 03 - 04	104.42(14) 116.08(15)	N1 = C22 = 52 N1 = C22 = H22A	110.25 (15)
N1 C5 H5	100.0	N1 = C22 = 1122 A S2 C22 H22A	110.5
11 - 03 - 115	109.0	N1 C22 H22R	110.5
$C_{23} = C_{3} = H_{5}$	109.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.5
N1 C6 C21	115.02 (13)	32 - C22 - H22B	10.5
N1C6C7	113.02(13) 100.60(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.7 116.05(12)
N1 = C0 = C7	100.00(12) 117.02(14)	C6 N1 $C5$	110.93(13)
$C_2 = C_0 = C_7$	117.02(14) 114.01(12)	$C_0 = N_1 = C_3$	110.46(13)
N1 - C0 - C13	114.01(15) 100.06(12)	C_{22} N_{1} C_{3}	113.32(14)
$C_{21} = C_{0} = C_{13}$	100.90(13) 100.75(12)	C15 N2 U2	112.30(14)
$C/-C_0$	109.75(12)	C15-N2-H2	123.3(14)
C4 - C/ - C8	116.36 (14)	C16— $N2$ — $H2$	124.3 (14)
C4 - C/ - C6	99.77 (13)	C14 = S1 = C7	92.53 (8)
	113.21 (13)	C22—S2—C23	90.69 (9)
C4—C/—S1	110.27 (11)	C5—C23—S2	103.62 (13)
C8—C7—S1	106.58 (12)	С5—С23—Н23А	111.0
C6—C7—S1	110.61 (11)	S2—C23—H23A	111.0
O3—C8—C9	126.48 (17)	С5—С23—Н23В	111.0
O3—C8—C7	121.94 (17)	S2—C23—H23B	111.0
C9—C8—C7	111.54 (13)	H23A—C23—H23B	109.0
C14—C9—C10	120.18 (17)	C2—C1—H1A	109.5
C14—C9—C8	113.73 (15)	C2C1H1B	109.6

С10—С9—С8	126.09 (15)	H1A—C1—H1B	109.5
C11—C10—C9	119.42 (17)	C2—C1—H1C	109.3
C11—C10—H10	120.3	H1A—C1—H1C	109.5
С9—С10—Н10	120.3	H1B—C1—H1C	109.5
C10—C11—C12	119.88 (18)	C1—C2—O2	105.0 (7)
C10—C11—H11	120.1	C1—C2—H2A	110.6
C12—C11—H11	120.1	O2—C2—H2A	110.7
C13—C12—C11	121.40 (19)	C1—C2—H2B	110.8
C13—C12—H12	119.3	O2—C2—H2B	110.8
C11—C12—H12	119.3	H2A—C2—H2B	108.8
C12—C13—C14	118.87 (16)	C3—O2—C2	109.9 (7)
C12—C13—H13	120.6	C2A—C1A—H1A1	109.5
C14—C13—H13	120.6	C2A—C1A—H1A2	109.8
C13—C14—C9	120.21 (16)	H1A1—C1A—H1A2	109.5
C13—C14—S1	125.52 (13)	C2A—C1A—H1A3	109.1
C9—C14—S1	114.26 (13)	H1A1—C1A—H1A3	109.5
Q4—C15—N2	126.28 (15)	H1A2—C1A—H1A3	109.5
04	126.10 (15)	O2A—C2A—C1A	90.8 (14)
N2—C15—C6	107.56 (14)	O2A—C2A—H2A1	113.6
C17—C16—C21	122.63 (16)	C1A—C2A—H2A1	113.9
C17—C16—N2	127.72 (16)	O2A—C2A—H2A2	113.4
C21—C16—N2	109.58 (15)	C1A—C2A—H2A2	113.1
C16—C17—C18	117.51 (17)	H2A1— $C2A$ — $H2A2$	110.8
C16—C17—H17	121.2	$C_3 = O_2 A = C_2 A$	121.6 (16)
		00 0211 0211	12110 (10)
O1—C3—C4—C5	0.2 (3)	C7—C6—C15—N2	118.46 (16)
O2A—C3—C4—C5	-165.0 (11)	C21—C16—C17—C18	0.1 (3)
O2—C3—C4—C5	178.2 (5)	N2-C16-C17-C18	-176.61 (17)
O1—C3—C4—C7	-120.0 (2)	C16—C17—C18—C19	0.3 (3)
O2A—C3—C4—C7	74.8 (11)	C17—C18—C19—C20	0.5 (3)
O2—C3—C4—C7	58.0 (5)	C18—C19—C20—C21	-1.7 (3)
C3—C4—C5—N1	-150.45 (14)	C19—C20—C21—C16	2.0 (3)
C7—C4—C5—N1	-23.56 (16)	C19—C20—C21—C6	179.27 (17)
C3—C4—C5—C23	90.12 (19)	C17—C16—C21—C20	-1.2 (3)
C7—C4—C5—C23	-142.99 (16)	N2-C16-C21-C20	175.96 (15)
C3—C4—C7—C8	-69.85 (19)	C17—C16—C21—C6	-179.05 (16)
C5—C4—C7—C8	163.90 (14)	N2-C16-C21-C6	-1.86 (19)
C3—C4—C7—C6	168.03 (14)	N1—C6—C21—C20	-49.8 (2)
C5—C4—C7—C6	41.78 (14)	C7—C6—C21—C20	68.0 (2)
C3—C4—C7—S1	51.64 (17)	C15—C6—C21—C20	-173.01 (18)
C5—C4—C7—S1	-74.60 (14)	N1—C6—C21—C16	127.64 (15)
N1—C6—C7—C4	-44.39 (14)	C7—C6—C21—C16	-114.60 (15)
C21—C6—C7—C4	-169.73 (13)	C15—C6—C21—C16	4.43 (17)
C15—C6—C7—C4	76.07 (15)	C21—C6—N1—C22	-69.72 (19)
N1—C6—C7—C8	-168.73 (13)	C7—C6—N1—C22	163.60 (14)
C21—C6—C7—C8	65.93 (18)	C15—C6—N1—C22	46.2 (2)
C15—C6—C7—C8	-48.27 (18)	C21—C6—N1—C5	158.38 (13)
N1—C6—C7—S1	71.74 (13)	C7—C6—N1—C5	31.70 (15)
	~ /		· · · ·

C21—C6—C7—S1	-53.60 (16)	C15—C6—N1—C5	-85.67 (16)
C15—C6—C7—S1	-167.80 (11)	S2—C22—N1—C6	-145.63 (12)
C4—C7—C8—O3	-48.7 (2)	S2—C22—N1—C5	-15.15 (17)
C6—C7—C8—O3	66.1 (2)	C23—C5—N1—C6	119.60 (16)
S1—C7—C8—O3	-172.12 (15)	C4—C5—N1—C6	-5.64 (17)
C4—C7—C8—C9	133.65 (15)	C23—C5—N1—C22	-14.04 (19)
C6—C7—C8—C9	-111.60 (16)	C4—C5—N1—C22	-139.28 (14)
S1—C7—C8—C9	10.22 (17)	O4—C15—N2—C16	-172.24 (17)
O3—C8—C9—C14	178.35 (18)	C6-C15-N2-C16	5.08 (19)
C7—C8—C9—C14	-4.1 (2)	C17—C16—N2—C15	174.80 (18)
O3—C8—C9—C10	-2.6 (3)	C21—C16—N2—C15	-2.2 (2)
C7—C8—C9—C10	174.91 (17)	C13—C14—S1—C7	-171.66 (16)
C14—C9—C10—C11	1.2 (3)	C9—C14—S1—C7	9.31 (14)
C8—C9—C10—C11	-177.76 (18)	C4—C7—S1—C14	-137.86 (12)
C9—C10—C11—C12	0.7 (3)	C8—C7—S1—C14	-10.72 (12)
C10-C11-C12-C13	-1.2 (3)	C6—C7—S1—C14	112.74 (12)
C11—C12—C13—C14	-0.3 (3)	N1—C22—S2—C23	31.91 (14)
C12—C13—C14—C9	2.3 (3)	N1—C5—C23—S2	36.32 (17)
C12—C13—C14—S1	-176.71 (15)	C4—C5—C23—S2	153.75 (13)
C10-C9-C14-C13	-2.7 (3)	C22—S2—C23—C5	-39.29 (14)
C8—C9—C14—C13	176.35 (16)	O1—C3—O2—C2	-19.0 (10)
C10-C9-C14-S1	176.34 (14)	O2A—C3—O2—C2	56 (4)
C8—C9—C14—S1	-4.56 (19)	C4—C3—O2—C2	163.0 (6)
N1—C6—C15—O4	47.7 (2)	C1—C2—O2—C3	-154.3 (7)
C21—C6—C15—O4	171.64 (17)	O1—C3—O2A—C2A	42 (2)
C7—C6—C15—O4	-64.2 (2)	O2—C3—O2A—C2A	-73 (4)
N1-C6-C15-N2	-129.59 (15)	C4—C3—O2A—C2A	-151.8 (15)
C21—C6—C15—N2	-5.69 (17)	C1A-C2A-O2A-C3	-126.0 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N2—H2···O4 ⁱ	0.87 (2)	2.05 (2)	2.9029 (18)	169 (2)
C11—H11…O3 ⁱⁱ	0.93	2.47	3.215 (2)	137
C13—H13…N1 ⁱⁱⁱ	0.93	2.60	3.505 (2)	165

Symmetry codes: (i) -x, -y, -z+1; (ii) -x, y+1/2, -z+3/2; (iii) -x+1, y+1/2, -z+3/2.