

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 January 2015
Accepted 9 February 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; zinc coordination complex; luminescent properties; $\pi-\pi$ interactions

CCDC reference: 1048515
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and luminescent properties of [1-(biphenyl-4-yl)-1 H -imidazole- κN^{3}]dichloridozinc

Xiao-Xiao Liu and Yuan Wang*

Changchun University of Science \& Technology, School of Chemistry and Environmental Engineering, Changchun 130022, People's Republic of China. *Correspondence e-mail: ywt1982@163.com

The mononuclear title compound, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]$, was synthesized by reaction of zinc chloride and 1-(biphenyl-4-yl)- $1 H$-imidazole (bpi) under hydrothermal conditions. The $\mathrm{Zn}^{\text {II }}$ atom is tetrahedrally coordinated by the free imidazole N atoms of two bpi ligands and by two Cl atoms. The bpi ligands are not planar, with dihedral angles of 37.52 (14) and $42.45(14)^{\circ}$ between the phenyl rings and 37.13 (14) and 40.05 (14) ${ }^{\circ}$ between the phenyl rings and the attached imidazole rings, respectively. Mutual $\pi-\pi$ interactions, with a centroid-to-centroid distance of 3.751 (2) \AA between the phenyl and imidazole rings of neighbouring ligands, are present, leading to dimers that are arranged in rows parallel to [211].

1. Chemical context

Metal coordination polymers constructed from organic ligands and metal cations have received attention because of their structural diversity and interesting physical and chemical properties, including adsorption, molecular separation, heterogeneous catalysis and non-linear optics (Sumida et al., 2012; Colombo et al., 2012; Henke et al., 2012). The development of such materials for various applications is reliant on the functionalities and modulations of the inorganic central atoms and the organic linkers. Materials constructed from d^{10} metal ions can be promising photoactive candidates (Lan et al., 2009; Qin et al., 2014). For example, a series of zinc- and cadmium-based coordination polymers were reported to be luminescent sensors for the detection of small organic molecules (Yi et al., 2012; Wang et al., 2013). On the other hand, the choice of the organic ligands or linkers is important for the supramolecular arrangement.

Among the various organic ligands used for the construction of coordination polymers, nitrogen-donor species are dominant due to their strong affinities for binding metal atoms (Yang et al., 2013, 2014). In particular, imidazoles are of great

Figure 1
The molecular structure of compound (I). Displacement ellipsoids were drawn at the 30% probability level.
interest for the construction of zeolite imidazolate frameworks, which exhibit high stability and practical applications (Phan et al., 2010). By further modification of imidazole ligands, various compounds with different structural set-ups have been reported, including one-dimensional, two-dimensional and three-dimensional architectures (Kan et al., 2012). Recently, two one-dimensional imidazole-based zinc complexes were synthesized by using 1,4-di(1 H -imidazol-1yl)benzene (dib), and 1,3,5-tri(1H-imidazol-1-yl)benzene (tib) as ligands (Wang et al., 2014). To obtain further effects on the final structure by modification of the substituent of the imidazoles, 1-(biphenyl-4-yl)-1 H -imidazole (bpi) was chosen as ligand and reacted with Zn^{2+} ions in this work, yielding the title compound $\mathrm{ZnCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}$, (I). Apart from the structure determination, its photoluminescent property is also reported.

2. Structural commentary

As shown in Fig. 1, the asymmetric unit of (I) consists of one zinc(II) cation, two bpi ligands and two chlorine ligands. The

Figure 2
Excitation and emission spectra of compound (I) in the solid state.

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{N} 1$	$2.021(2)$	$\mathrm{Zn} 1-\mathrm{Cl} 1$	2.2258 (7)
$\mathrm{Zn} 1-\mathrm{N} 3$	$2.028(2)$	$\mathrm{Zn} 1-\mathrm{Cl} 2$	$2.2447(8)$

cation has a distorted tetrahedral coordination sphere defined by the free imidazole N atoms and two Cl atoms. The $\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{Cl}$ bond lengths (Table 1) are typical for tetrahedrally coordinated $\mathrm{Zn}^{\mathrm{II}}$. The dihedral angles between the two phenyl rings in the two bpi ligands are 37.52 (14) and $42.45(14)^{\circ}$, respectively, while the dihedral angles between the phenyl rings and the attached imidazole rings are 37.13 (14) and 40.05 (14) ${ }^{\circ}$.
$\mathrm{Zn}^{\mathrm{II}}$-based compounds with metal-organic framework structures are well-known for their luminescence properties. The photoluminescence spectrum of compound (I) in the solid state is shown in Fig. 2. On excitation at 278 nm , the emission band is centred at 350 nm . Compared to the free bpi ligand, which exhibits one main fluorescent emission band around 400 nm when excited at 271 nm , the emission band of complex (I) is about 50 nm hypochromatically shifted. Considering metal atoms with a d^{10} electron configuration and the bonding interactions with the ligand, such broad emission bands may be assigned to a ligand-to-ligand charge transfer (LLCT), admixing with metal-to-ligand (MLCT) and ligand-to-metal (LMCT) charge transfers (Gong et al., 2011).

3. Supramolecular features

As mentioned before, the imidazole-based ligands dib and tib, featuring two and three imidazole rings, respectively, can adopt different structural dimensionalities. The bpi ligand used in this study, however, has only one available N -donor, thus preventing the formation of a polymeric structure. Nevertheless, there are weak intermolecular $\pi-\pi$ stacking interactions between single molecules in the crystal packing. The terminal phenyl ring and the imidazole ring of a neighbouring ligand are tilted to each other by $11.72(17)^{\circ}$, with a centroid-to-centroid distance of 3.751 (2) \AA (Fig. 3).

Figure 3
View of the crystal structure along [010] emphasizing $\pi-\pi$ interactions (dotted lines and inset).

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
\(\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]\)
576.80
Triclinic, \(P \overline{1}\)
296
\(9.2410(6), 9.2595(5), 16.4106(10)\)
\(87.770(1), 88.819(1), 72.823(1)\)
\(1340.50(14)\)
2
\(\mathrm{Mo} \mathrm{K} \mathrm{\alpha}\)
1.14
\(0.40 \times 0.30 \times 0.30\)
[ZnCl ( ( C 15 H H12 N N ) 2 ]
576.80
Triclinic, P\overline{1}
296
9.2410 (6), 9.2595 (5), 16.4106 (10)
87.770 (1), 88.819 (1), 72.823 (1)
1340.50 (14)
2
1.14
0.40\times0.30 < 0.30
Bruker APEXII CCD area
    detector
Multi-scan (SADABS; Bruker,
    2008)
0.658,0.726
8564, 5308,4067
0.025
0.619
```

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

4. Synthesis and crystallization

All chemicals were purchased commercially and used without further purification. A mixture of $\mathrm{ZnCl}_{2}(81.6 \mathrm{mg}, 5 \mathrm{mmol})$, bpi ($130 \mathrm{mg}, 0.6 \mathrm{mmol}$), and de-ionized water (9 ml) was loaded into a 20 ml Teflon-lined stainless steel autoclave. The autoclave was sealed and heated at 423 K for 5 d , and then cooled to room temperature by switching off the furnace. Colourless block-shaped crystals were isolated, which were filtered off and washed with de-ionized water. The final product was dried at ambient temperature (yield 75% based on zinc). Analysis calculated ($\mathrm{wt} \%$) for $\mathrm{ZnCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}$: C, 62.47; H, 4.19; N, 9.71. Found: C, 62.45; H, 4.15; N, 9.79.

Elemental analyses of C, H, and N were conducted on a Perkin-Elmer 2400 elemental analyser. The photoluminescence (PL) excitation and emission spectra were
recorded with an F-7000 luminescence spectrometer equipped with a xenon lamp of 450 W as an excitation light source. The photomultiplier tube voltage was 400 V , the scan speed was $1200 \mathrm{~nm} \mathrm{~min}^{-1}$, both the excitation and the emission slit widths were 5.0 nm .

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., Barea, E. \& Navarro, J. A. R. (2012). J. Am. Chem. Soc. 134, 12830-12843.
Gong, Y., Li, J., Qin, J.-B., Wu, T., Cao, R. \& Li, J.-H. (2011). Cryst. Growth Des. 11, 1662-1674.
Henke, S., Schneemann, A., Wütscher, A. \& Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464-9474.
Kan, W. Q., Yang, J., Liu, Y. Y. \& Ma, J. F. (2012). CrystEngComm, 14, 6934-6945.
Lan, A., Li, K., Wu, H., Olson, D. H., Emge, T. J., Ki, W., Hong, M. \& Li, J. (2009). Angew. Chem. Int. Ed. 48, 2334-2338.
Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M. \& Yaghi, O. M. (2010). Acc. Chem. Res. 43, 58-67.

Qin, J. S., Zhang, S. R., Du, D. Y., Shen, P., Bao, S. J., Lan, Y. Q. \& Su, Z. M. (2014). Chem. Eur. J. 20, 5625-5630.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. \& Long, J. R. (2012). Chem. Rev. 112, 724-781.
Wang, H., Yang, X. Y., Ma, Y. Q., Cui, W. B., Li, Y. H., Tian, W. G., Yao, S., Gao, Y., Dang, S. \& Zhu, W. (2014). Inorg. Chim. Acta, 416, 63-68.
Wang, H., Yang, W. T. \& Sun, Z. M. (2013). Chem. Asian J. 8, 982-989.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, W. T., Yi, F. Y., Li, X. D., Wang, L., Dang, S. \& Sun, Z. M. (2013). RSC Adv. 3, 25065-25070.

Yang, W., Yi, F. Y., Tian, T., Tian, W. G. \& Sun, Z. M. (2014). Cryst. Growth Des. 14, 1366-1374.
Yi, F. Y., Yang, W. T. \& Sun, Z. M. (2012). J. Mater. Chem. 22, 2320123209.

supporting information

Crystal structure and luminescent properties of [1-(biphenyl-4-yl)-1H-imidazole- κN^{3}]dichloridozinc

Xiao-Xiao Liu and Yuan Wang

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[1-(Biphenyl-4-yl)-1 H -imidazole- $\kappa \mathrm{N}^{3}$]dichloridozinc

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=576.80$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=9.2410$ (6) A
$b=9.2595$ (5) \AA
$c=16.4106(10) \AA$
$\alpha=87.770(1)^{\circ}$
$\beta=88.819(1)^{\circ}$
$\gamma=72.823(1)^{\circ}$
$V=1340.50(14) \AA^{3}$
$Z=2$
\#Added by publCIF
_symmetry_space_group_name_hall '-P 1'
\#Added by publCIF
_audit_update_record
$D_{\mathrm{x}}=1.429 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2594 reflections
$\theta=2.3-24.3^{\circ}$
$\mu=1.14 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.40 \times 0.30 \times 0.30 \mathrm{~mm}$
$F(000)=592$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.658, T_{\text {max }}=0.726$
8564 measured reflections
5308 independent reflections
4067 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.1^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-20 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.091$
$S=1.00$
5308 reflections

334 parameters

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0389 P)^{2}+0.3283 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.014 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Zn1	$0.49124(3)$	$1.09677(3)$	$0.333749(18)$	$0.04334(11)$
N 3	$0.5776(2)$	$0.8683(2)$	$0.33926(13)$	$0.0451(5)$
N 1	$0.2746(2)$	$1.1586(2)$	$0.37469(13)$	$0.0472(5)$
N 2	$0.0780(2)$	$1.2196(2)$	$0.45740(13)$	$0.0452(5)$
N 4	$0.6993(2)$	$0.6477(2)$	$0.28944(12)$	$0.0418(5)$
C28	$0.6686(3)$	$0.7984(3)$	$0.28125(16)$	$0.0466(6)$
H28A	0.7072	0.8475	0.2395	0.056^{*}
C25	$0.7889(3)$	$0.5422(3)$	$0.23310(15)$	$0.0414(6)$
C10	$-0.0104(3)$	$1.2386(3)$	$0.53170(16)$	$0.0456(6)$
C7	$-0.1776(3)$	$1.2747(3)$	$0.67615(16)$	$0.0452(6)$
C22	$0.9495(3)$	$0.3553(3)$	$0.11331(15)$	$0.0420(6)$
C30	$0.6209(3)$	$0.6192(3)$	$0.35697(16)$	$0.0475(6)$
H30A	0.6190	0.5249	0.3778	0.057^{*}
C26	$0.7462(3)$	$0.4182(3)$	$0.21310(17)$	$0.0476(6)$
H26A	0.6641	0.3970	0.2391	0.057^{*}
C12	$-0.0612(3)$	$1.1433(3)$	$0.66213(17)$	$0.0506(7)$
H12A	-0.0385	1.0662	0.7021	0.061^{*}
C27	$0.8274(3)$	$0.3254(3)$	$0.15356(17)$	$0.0487(7)$
H27A	0.7994	0.2407	0.1401	0.058^{*}
C16	$1.0323(3)$	$0.2598(3)$	$0.0465(16)$	$0.0453(6)$
C24	$0.9140(3)$	$0.5714(3)$	$0.19650(16)$	$0.0483(7)$
H24A	0.9449	0.6530	0.2122	0.058^{*}
C23	$0.9918(3)$	$0.4791(3)$	$0.13708(17)$	$0.0477(6)$
H23A	1.0750	0.4999	0.1120	0.057^{*}
C6	$-0.3160(3)$	$1.4297(3)$	$0.79101(18)$	$0.0519(7)$
H6A	-0.2935	1.5135	0.7674	0.062^{*}
C29	$0.5470(3)$	$0.7554(3)$	$0.38738(16)$	$0.0492(6)$
H29A	0.4851	0.7704	0.4336	0.059^{*}
C11	$0.0216(3)$	$1.1242(3)$	$0.59019(17)$	$0.0523(7)$
H11A	0.0983	1.0349	0.5816	0.063^{*}
			0	

C1	$-0.2672(3)$	$1.2918(3)$	$0.75330(16)$	$0.0447(6)$
C14	$0.1475(3)$	$1.2263(3)$	$0.33028(18)$	$0.0524(7)$
H14A	0.1455	1.2434	0.2740	0.063^{*}
C8	$-0.2076(3)$	$1.3875(3)$	$0.61520(17)$	$0.0517(7)$
H8A	-0.2861	1.4759	0.6226	0.062^{*}
C9	$-0.1236(3)$	$1.3713(3)$	$0.54385(17)$	$0.0509(7)$
H9A	-0.1432	1.4493	0.5044	0.061^{*}
C2	$-0.3043(3)$	$1.1702(3)$	$0.78962(17)$	$0.0549(7)$
H2A	-0.2725	1.0767	0.7655	0.066^{*}
C17	$0.9543(4)$	$0.2104(3)$	$-0.01281(18)$	$0.0578(7)$
H17A	0.8490	0.2377	-0.0108	0.069^{*}
C15	$0.2278(3)$	$1.1556(3)$	$0.45106(17)$	$0.0511(7)$
H15A	0.2907	1.1144	0.4948	0.061^{*}
C5	$-0.3974(3)$	$1.4436(3)$	$0.86282(19)$	$0.0605(8)$
H5A	-0.4282	1.5365	0.8876	0.073^{*}
C4	$-0.4337(4)$	$1.3225(4)$	$0.89823(19)$	$0.0631(8)$
H4A	-0.4887	1.3327	0.9468	0.076^{*}
C21	$1.1894(3)$	$0.2188(3)$	$0.0417(2)$	$0.0629(8)$
H21A	1.2441	0.2516	0.0802	0.075^{*}
C13	$0.0260(3)$	$1.2647(3)$	$0.38006(17)$	$0.0550(7)$
H13A	-0.0737	1.3123	0.3650	0.066^{*}
C3	$-0.3876(4)$	$1.1852(3)$	$0.86102(19)$	$0.0648(8)$
H3A	-0.4127	1.1025	0.8842	0.078^{*}
C19	$1.1853(5)$	$0.0807(4)$	$-0.0781(2)$	$0.0785(11)$
H19A	1.2369	0.0203	-0.1197	0.094^{*}
C18	$1.0313(5)$	$0.1212(4)$	$-0.07452(19)$	$0.0727(10)$
H18A	0.9780	0.0887	-0.1138	0.087^{*}
C20	$1.2645(4)$	$0.1285(4)$	$-0.0208(2)$	$0.0775(11)$
H20A	1.3697	0.1002	-0.0237	0.093^{*}
C12	$0.62413(8)$	$1.20582(8)$	$0.41117(4)$	$0.05347(18)$
C11	$0.49053(9)$	$1.16111(8)$	$0.20162(4)$	$0.05715(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.04203(18)$	$0.03878(17)$	$0.04857(19)$	$-0.01084(13)$	$0.00502(13)$	$-0.00512(13)$
N 3	$0.0478(13)$	$0.0386(11)$	$0.0492(13)$	$-0.0136(10)$	$0.0045(10)$	$-0.0034(10)$
N 1	$0.0405(12)$	$0.0491(13)$	$0.0514(14)$	$-0.0122(10)$	$0.0002(10)$	$-0.0024(10)$
N 2	$0.0361(12)$	$0.0470(12)$	$0.0510(13)$	$-0.0098(10)$	$0.0007(10)$	$-0.0006(10)$
N 4	$0.0441(12)$	$0.0333(11)$	$0.0476(12)$	$-0.0112(9)$	$0.0013(10)$	$0.0004(9)$
C 28	$0.0508(16)$	$0.0366(13)$	$0.0524(16)$	$-0.0137(12)$	$0.0069(13)$	$0.0018(12)$
C 25	$0.0402(14)$	$0.0333(13)$	$0.0488(15)$	$-0.0083(11)$	$-0.0012(11)$	$0.0006(11)$
C 10	$0.0345(14)$	$0.0473(15)$	$0.0549(16)$	$-0.0118(12)$	$0.0042(12)$	$-0.0041(12)$
C7	$0.0384(14)$	$0.0457(15)$	$0.0540(16)$	$-0.0163(12)$	$0.0006(12)$	$-0.0039(12)$
C22	$0.0388(14)$	$0.0367(13)$	$0.0499(15)$	$-0.0105(11)$	$-0.0033(12)$	$0.0017(11)$
C30	$0.0550(16)$	$0.0392(14)$	$0.0508(16)$	$-0.0186(13)$	$0.0026(13)$	$0.0049(12)$
C26	$0.0426(15)$	$0.0400(14)$	$0.0636(18)$	$-0.0178(12)$	$0.0088(13)$	$-0.0035(12)$
C12	$0.0483(16)$	$0.0429(15)$	$0.0568(17)$	$-0.0083(13)$	$0.0007(13)$	$0.0026(12)$

C27	$0.0476(16)$	$0.0387(14)$	$0.0646(18)$	$-0.0195(12)$	$0.0011(13)$	$-0.0077(12)$
C16	$0.0488(16)$	$0.0374(13)$	$0.0482(15)$	$-0.0112(12)$	$0.0033(12)$	$0.0020(11)$
C24	$0.0478(16)$	$0.0431(14)$	$0.0598(17)$	$-0.0223(13)$	$-0.0003(13)$	$-0.0035(13)$
C23	$0.0400(14)$	$0.0460(15)$	$0.0603(17)$	$-0.0182(12)$	$0.0048(13)$	$-0.0004(13)$
C6	$0.0478(16)$	$0.0455(15)$	$0.0633(18)$	$-0.0151(13)$	$0.0034(14)$	$-0.0039(13)$
C29	$0.0498(16)$	$0.0513(16)$	$0.0484(16)$	$-0.0184(13)$	$0.0058(12)$	$-0.0016(12)$
C11	$0.0436(16)$	$0.0441(15)$	$0.0628(18)$	$-0.0031(13)$	$0.0034(13)$	$-0.0052(13)$
C1	$0.0380(14)$	$0.0466(15)$	$0.0510(16)$	$-0.0146(12)$	$-0.0003(12)$	$-0.0032(12)$
C14	$0.0519(17)$	$0.0507(16)$	$0.0526(16)$	$-0.0129(14)$	$-0.0004(14)$	$0.0039(13)$
C8	$0.0433(15)$	$0.0426(15)$	$0.0662(18)$	$-0.0085(12)$	$0.0074(14)$	$-0.0018(13)$
C9	$0.0437(15)$	$0.0459(15)$	$0.0603(18)$	$-0.0102(13)$	$0.0029(13)$	$0.0061(13)$
C2	$0.0579(18)$	$0.0512(16)$	$0.0600(18)$	$-0.0225(14)$	$0.0058(14)$	$-0.0088(14)$
C17	$0.0657(19)$	$0.0519(17)$	$0.0575(18)$	$-0.0206(15)$	$-0.0001(15)$	$0.0018(14)$
C15	$0.0357(14)$	$0.0621(17)$	$0.0521(17)$	$-0.0091(13)$	$-0.0019(12)$	$-0.0029(13)$
C5	$0.0566(18)$	$0.0575(18)$	$0.067(2)$	$-0.0145(15)$	$0.0041(15)$	$-0.0157(15)$
C4	$0.065(2)$	$0.072(2)$	$0.0553(18)$	$-0.0240(17)$	$0.0111(15)$	$-0.0064(16)$
C21	$0.0498(18)$	$0.0642(19)$	$0.070(2)$	$-0.0103(15)$	$0.0076(15)$	$0.0011(16)$
C13	$0.0379(15)$	$0.0604(18)$	$0.0594(18)$	$-0.0042(13)$	$-0.0067(13)$	$0.0069(14)$
C3	$0.072(2)$	$0.0609(19)$	$0.066(2)$	$-0.0288(17)$	$0.0101(17)$	$0.0021(15)$
C19	$0.116(3)$	$0.0500(19)$	$0.064(2)$	$-0.019(2)$	$0.038(2)$	$-0.0033(16)$
C18	$0.112(3)$	$0.0595(19)$	$0.0515(19)$	$-0.033(2)$	$0.0074(19)$	$-0.0057(15)$
C20	$0.066(2)$	$0.061(2)$	$0.092(3)$	$-0.0024(18)$	$0.033(2)$	$0.0075(19)$
C12	$0.0559(4)$	$0.0533(4)$	$0.0553(4)$	$-0.0217(3)$	$-0.0010(3)$	$-0.0073(3)$
C11	$0.0716(5)$	$0.0505(4)$	$0.0496(4)$	$-0.0188(4)$	$0.0034(3)$	$0.0002(3)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{N} 1$	$2.021(2)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.391(4)$
$\mathrm{Zn} 1-\mathrm{N} 3$	$2.028(2)$	$\mathrm{C} 24-\mathrm{C} 23$	$1.368(3)$
$\mathrm{Zn} 1-\mathrm{C} 11$	$2.2258(7)$	$\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	0.9300
$\mathrm{Zn} 1-\mathrm{C} 12$	$2.2447(8)$	$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	0.9300
$\mathrm{~N} 3-\mathrm{C} 28$	$1.314(3)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.374(4)$
$\mathrm{N} 3-\mathrm{C} 29$	$1.377(3)$	$\mathrm{C} 6-\mathrm{C} 1$	$1.388(4)$
$\mathrm{N} 1-\mathrm{C} 15$	$1.319(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{C} 14$	$1.367(3)$	$\mathrm{C} 29-\mathrm{H} 29 \mathrm{~A}$	0.9300
$\mathrm{~N} 2-\mathrm{C} 15$	$1.339(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9300
$\mathrm{~N} 2-\mathrm{C} 13$	$1.372(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.381(4)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.441(3)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.343(4)$
$\mathrm{N} 4-\mathrm{C} 28$	$1.341(3)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9300
$\mathrm{~N} 4-\mathrm{C} 30$	$1.371(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.380(4)$
$\mathrm{N} 4-\mathrm{C} 25$	$1.434(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9300
$\mathrm{C} 28-\mathrm{H} 28 \mathrm{~A}$	0.9300	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9300
$\mathrm{C} 25-\mathrm{C} 26$	$1.373(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.377(4)$
$\mathrm{C} 25-\mathrm{C} 24$	$1.384(3)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 10-\mathrm{C} 11$	$1.370(4)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.379(4)$
$\mathrm{C} 10-\mathrm{C} 9$	$1.376(3)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	0.9300
$\mathrm{C} 7-\mathrm{C} 12$	$1.389(3)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.388(4)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.367(4)$

C7- 1	1.486 (3)
C22-C27	1.388 (3)
C22-C23	1.388 (3)
C22-C16	1.486 (3)
C30-C29	1.353 (4)
C30-H30A	0.9300
C26-C27	1.382 (3)
C26-H26A	0.9300
C12-C11	1.382 (4)
C12-H12A	0.9300
C27-H27A	0.9300
C16-C21	1.390 (4)
N1-Zn1-N3	110.09 (9)
N1—Zn1-Cl1	108.12 (7)
N3-Zn1-Cl1	105.05 (6)
N1-Zn1-Cl2	107.94 (7)
N3-Zn1-Cl2	111.23 (7)
$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{Cl} 2$	114.33 (3)
C28-N3-C29	105.4 (2)
C28-N3-Zn1	120.15 (17)
C29-N3-Zn1	133.74 (17)
C15-N1-C14	105.6 (2)
C15-N1-Zn1	127.00 (18)
C14-N1-Zn1	127.06 (19)
C15-N2-C13	106.9 (2)
C15-N2-C10	126.2 (2)
C13-N2-C10	126.9 (2)
C28-N4-C30	106.8 (2)
C28-N4-C25	124.6 (2)
C30-N4-C25	128.4 (2)
N3-C28-N4	111.9 (2)
N3-C28-H28A	124.0
N4-C28-H28A	124.0
C26-C25-C24	120.8 (2)
C26-C25-N4	120.1 (2)
C24-C25-N4	119.0 (2)
C11-C10-C9	120.8 (2)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 2$	119.1 (2)
C9-C10-N2	120.0 (2)
C12-C7-C8	117.5 (2)
C12-C7-C1	120.8 (2)
C8-C7-C1	121.7 (2)
C27-C22-C23	117.6 (2)
C27-C22-C16	121.7 (2)
C23-C22-C16	120.6 (2)
C29-C30-N4	106.4 (2)
C29-C30-H30A	126.8

C5-H5A	0.9300
C4-C3	1.379 (4)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
C21-C20	1.388 (4)
C21-H21A	0.9300
C13-H13A	0.9300
C3-H3A	0.9300
C19-C18	1.361 (5)
C19-C20	1.366 (5)
C19-H19A	0.9300
C18-H18A	0.9300
C20-H20A	0.9300
C5-C6-C1	120.7 (3)
C5-C6-H6A	119.7
C1-C6-H6A	119.7
C30-C29-N3	109.4 (2)
C30-C29-H29A	125.3
N3-C29-H29A	125.3
C10-C11-C12	119.2 (2)
C10-C11-H11A	120.4
C12-C11-H11A	120.4
C2- $21-\mathrm{C} 6$	118.0 (2)
C2-C1-C7	120.7 (2)
C6-C1-C7	121.3 (2)
C13-C14-N1	109.8 (2)
C13-C14-H14A	125.1
N1-C14-H14A	125.1
C9-C8-C7	121.5 (2)
C9-C8-H8A	119.3
C7-C8-H8A	119.3
C10-C9-C8	119.3 (3)
C10-C9-H9A	120.3
C8-C9-H9A	120.3
C3-C2-C1	121.1 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.5
C18-C17-C16	120.7 (3)
C18-C17-H17A	119.6
C16-C17-H17A	119.6
N1-C15-N2	111.3 (2)
N1-C15-H15A	124.4
N2-C15-H15A	124.4
C4-C5-C6	120.8 (3)
C4-C5-H5A	119.6
C6-C5-H5A	119.6
C5-C4-C3	119.2 (3)
C5-C4-H4A	120.4

supporting information

$\mathrm{N} 4-\mathrm{C} 30-\mathrm{H} 30 \mathrm{~A}$	126.8
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27$	$118.8(2)$
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{H} 26 \mathrm{~A}$	120.6
$\mathrm{C} 27-\mathrm{C} 26-\mathrm{H} 26 \mathrm{~A}$	120.6
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$121.6(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	119.2
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	119.2
$\mathrm{C} 26-\mathrm{C} 27-\mathrm{C} 22$	$121.7(2)$
$\mathrm{C} 26-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}$	119.1
$\mathrm{C} 22-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}$	119.1
$\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 17$	$118.5(3)$
$\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 22$	$120.6(3)$
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 22$	$120.8(2)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$119.4(2)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	120.3
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	120.3
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$	$121.5(2)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	119.2
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	119.2

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.4
$\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 20$	$119.7(3)$
$\mathrm{C} 16-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	120.2
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	120.2
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{N} 2$	$106.4(2)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	126.8
$\mathrm{~N} 2-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	126.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$120.3(3)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{H} 19 \mathrm{~A}$	119.9
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{H} 19 \mathrm{~A}$	119.9
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 17$	$120.1(3)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{H} 18 \mathrm{~A}$	119.9
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18 \mathrm{~A}$	119.9
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$120.7(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	119.7
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	119.7

