metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m59-m60

Tetra­aqua­bis­­[2-(2-nitro­phen­yl)acetato-κO]cobalt(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Institute of Chemical and Biological Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 January 2015; accepted 5 February 2015; online 11 February 2015)

The mol­ecule of the title compound, [Co(C8H6NO4)2(H2O)4], is centrosymmetric. It is a cobalt(II) complex, bearing two (2-nitro­phen­yl)acetate and four aqua ligands. The coordination around the CoII atom is distorted octa­hedral, defined by four O atoms of water mol­ecules in the equatorial plane and by two carboxyl­ate O atoms at axial positions. The dihedral angles between the benzene ring and the acetate and nitro groups are 61.90 (10) and 19.21 (11)°, respectively. The water mol­ecules form O—H⋯O hydrogen bonds with the nitro and carboxyl­ate groups, leading to a layered structural arrangement parallel to (001).

1. Related literature

The title compound is structurally related to tetra­aqua­bis(acetato-κO)cobalt(II) (Sobolev et al., 2003[Sobolev, A. N., Miminoshvili, E. B., Miminoshvili, K. E. & Sakvarelidze, T. N. (2003). Acta Cryst. E59, m836-m837.]), tetra­aqua­bis­(2-nitro­phen­oxy­ethano­ato-κO)cobalt(II) dihydrate (Kennard et al., 1985[Kennard, C. H. L., Stewart, S. W., O'Reilly, E. J., Smith, G. & White, A. H. (1985). Polyhedron, 4, 697-705.]), tetra­aqua­bis­((2,4-di­chloro­phen­oxy)acetato-κO)cobalt(II) dihydrate (Tan et al., 2011[Tan, X.-W., Li, C.-H., Li, Y.-L. & Zhang, S.-H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 175-176.]), tetra­aqua­bis­[2-(6-amino-9H-purin-9-yl)acetato-κO]cobalt(II) (Mishra et al., 2011[Mishra, A. K., Kumar, J., Khanna, S. & Verma, S. (2011). Cryst. Growth Des. 11, 1623-1630.]) and tetra­aqua­bis­(3,5-di­nitro­benzoato-κO)cobalt(II) tetra­hydrate (Tahir et al., 1996[Tahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392-1394.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C8H6NO4)2(H2O)4]

  • Mr = 491.27

  • Monoclinic, P 21 /n

  • a = 5.4431 (3) Å

  • b = 6.4313 (4) Å

  • c = 28.5697 (15) Å

  • β = 92.762 (2)°

  • V = 998.96 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.835

  • 8913 measured reflections

  • 2156 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.04

  • 2156 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.82 (2) 2.00 (2) 2.7984 (16) 166 (2)
O5—H5B⋯O2ii 0.82 (2) 1.89 (2) 2.6797 (17) 161 (2)
O6—H6A⋯O2iii 0.78 (2) 1.93 (2) 2.6979 (17) 169 (2)
O6—H6B⋯O3 0.81 (2) 2.22 (2) 2.988 (2) 159 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Related literature top

The title compound is structurally related to tetraaquabis(acetato-κO)cobalt(II) (Sobolev et al., 2003), tetraaquabis(2-nitrophenoxyethanoato-κO)cobalt(II) dihydrate (Kennard et al., 1985), tetraaquabis((2,4-dichlorophenoxy)acetato-κO)cobalt(II) dihydrate (Tan et al., 2011), tetraaquabis[2-(6-amino-9H-purin-9-yl)acetato-κO]cobalt(II) (Mishra et al., 2011) and tetraaquabis(3,5-dinitrobenzoato-κO)cobalt(II) tetrahydrate (Tahir et al., 1996).

Experimental top

The sodium salt of (2-nitrophenyl)acetic acid was prepared by mixing aqueous solutions of (2-nitrophenyl)acetic acid and Na(HCO3) in the molar ratio 1:1. To this solution a 0.5 molar equivalent of cobalt(II) acetate was added and the mixture refluxed for 4 h. The resulting solution was evaporated for crystal growth. Light-orange prisms suitable for X-ray data collection were obtained after one week.

Refinement top

The coordinates of water H-atoms were refined freely, with Uiso(H) = 1.2Ueq(O). The other H-atoms were positioned geometrically (C—H = 0.93—0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. A partial packing diagram of the title compound showing the layered organisation of molecules held together by O—H···O interactions (dashed lines). H atoms not involved in hydrogen bonding are omitted for clarity.
Tetraaquabis[2-(2-nitrophenyl)acetato-κO]cobalt(II) top
Crystal data top
[Co(C8H6NO4)2(H2O)4]F(000) = 506
Mr = 491.27Dx = 1.633 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.4431 (3) ÅCell parameters from 2154 reflections
b = 6.4313 (4) Åθ = 2.9–27.0°
c = 28.5697 (15) ŵ = 0.93 mm1
β = 92.762 (2)°T = 296 K
V = 998.96 (10) Å3Prism, light-orange
Z = 20.32 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2156 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 2.9°
ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 88
Tmin = 0.758, Tmax = 0.835l = 3636
8913 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.3677P]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C8H6NO4)2(H2O)4]V = 998.96 (10) Å3
Mr = 491.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.4431 (3) ŵ = 0.93 mm1
b = 6.4313 (4) ÅT = 296 K
c = 28.5697 (15) Å0.32 × 0.24 × 0.20 mm
β = 92.762 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2156 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1937 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.835Rint = 0.026
8913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
2156 reflectionsΔρmin = 0.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00000.00000.02745 (10)
O10.78213 (19)0.21130 (18)0.03439 (4)0.0354 (3)
O21.0428 (2)0.45515 (17)0.06128 (4)0.0349 (3)
O30.9861 (3)0.1663 (2)0.13936 (6)0.0656 (4)
O41.2715 (3)0.2897 (3)0.18485 (7)0.0860 (6)
O50.7121 (2)0.21593 (19)0.00252 (5)0.0367 (3)
H5A0.572 (4)0.193 (3)0.0126 (7)0.044*
H5B0.761 (4)0.309 (3)0.0197 (7)0.044*
O61.1243 (2)0.1312 (2)0.06473 (5)0.0396 (3)
H6A1.089 (4)0.249 (4)0.0668 (7)0.047*
H6B1.076 (4)0.079 (4)0.0883 (8)0.047*
N11.0723 (3)0.3042 (2)0.16413 (5)0.0449 (4)
C10.8429 (3)0.3604 (2)0.06134 (5)0.0302 (3)
C20.6512 (3)0.4255 (4)0.09495 (7)0.0465 (5)
H2A0.52800.50760.07760.056*
H2B0.57020.30100.10560.056*
C30.7378 (3)0.5481 (3)0.13750 (6)0.0360 (4)
C40.6146 (4)0.7320 (3)0.14716 (7)0.0477 (5)
H40.48810.77620.12650.057*
C50.6733 (4)0.8505 (3)0.18614 (7)0.0501 (5)
H50.58230.96930.19200.060*
C60.8658 (4)0.7945 (3)0.21649 (7)0.0478 (5)
H60.90620.87530.24270.057*
C70.9977 (3)0.6180 (3)0.20765 (6)0.0419 (4)
H71.13120.58040.22740.050*
C80.9304 (3)0.4964 (2)0.16911 (6)0.0340 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01995 (16)0.02718 (16)0.03467 (18)0.00213 (11)0.00444 (11)0.00896 (12)
O10.0242 (5)0.0371 (6)0.0445 (7)0.0033 (5)0.0030 (5)0.0170 (5)
O20.0296 (6)0.0312 (6)0.0437 (7)0.0001 (5)0.0005 (5)0.0103 (5)
O30.0995 (13)0.0358 (8)0.0613 (9)0.0115 (8)0.0019 (9)0.0049 (7)
O40.0700 (11)0.0865 (13)0.0987 (14)0.0409 (10)0.0245 (10)0.0129 (11)
O50.0227 (6)0.0368 (6)0.0501 (7)0.0005 (5)0.0034 (5)0.0142 (6)
O60.0452 (7)0.0307 (6)0.0417 (7)0.0038 (5)0.0094 (6)0.0072 (5)
N10.0545 (10)0.0427 (9)0.0380 (8)0.0124 (7)0.0064 (7)0.0062 (7)
C10.0244 (8)0.0328 (8)0.0328 (8)0.0075 (6)0.0058 (6)0.0059 (6)
C20.0287 (9)0.0635 (12)0.0468 (11)0.0016 (8)0.0009 (8)0.0240 (9)
C30.0286 (9)0.0451 (9)0.0345 (9)0.0011 (7)0.0027 (7)0.0089 (7)
C40.0394 (10)0.0592 (12)0.0439 (10)0.0161 (9)0.0047 (8)0.0120 (9)
C50.0569 (12)0.0461 (11)0.0473 (11)0.0134 (9)0.0030 (9)0.0123 (9)
C60.0560 (12)0.0498 (11)0.0374 (10)0.0006 (9)0.0010 (8)0.0146 (8)
C70.0417 (10)0.0530 (11)0.0305 (8)0.0021 (8)0.0034 (7)0.0011 (8)
C80.0351 (9)0.0353 (9)0.0319 (8)0.0026 (7)0.0054 (7)0.0003 (7)
Geometric parameters (Å, º) top
Co1—O1i2.0810 (11)C1—C21.511 (2)
Co1—O12.0810 (11)C2—C31.505 (2)
Co1—O52.0925 (12)C2—H2A0.9700
Co1—O5i2.0925 (12)C2—H2B0.9700
Co1—O62.1141 (13)C3—C81.391 (2)
Co1—O6i2.1141 (13)C3—C41.394 (3)
O1—C11.2637 (18)C4—C51.374 (3)
O2—C11.2473 (19)C4—H40.9300
O3—N11.214 (2)C5—C61.376 (3)
O4—N11.213 (2)C5—H50.9300
O5—H5A0.82 (2)C6—C71.373 (3)
O5—H5B0.82 (2)C6—H60.9300
O6—H6A0.78 (2)C7—C81.385 (2)
O6—H6B0.81 (2)C7—H70.9300
N1—C81.468 (2)
O1i—Co1—O1180.0O2—C1—C2119.65 (14)
O1i—Co1—O589.61 (5)O1—C1—C2115.40 (14)
O1—Co1—O590.39 (5)C3—C2—C1117.33 (14)
O1i—Co1—O5i90.39 (5)C3—C2—H2A108.0
O1—Co1—O5i89.61 (5)C1—C2—H2A108.0
O5—Co1—O5i180.0C3—C2—H2B108.0
O1i—Co1—O689.23 (5)C1—C2—H2B108.0
O1—Co1—O690.77 (5)H2A—C2—H2B107.2
O5—Co1—O688.44 (5)C8—C3—C4115.41 (16)
O5i—Co1—O691.56 (5)C8—C3—C2126.60 (16)
O1i—Co1—O6i90.77 (5)C4—C3—C2117.98 (16)
O1—Co1—O6i89.23 (5)C5—C4—C3122.40 (18)
O5—Co1—O6i91.56 (5)C5—C4—H4118.8
O5i—Co1—O6i88.44 (5)C3—C4—H4118.8
O6—Co1—O6i180.00 (6)C4—C5—C6120.38 (18)
C1—O1—Co1130.14 (10)C4—C5—H5119.8
Co1—O5—H5A125.5 (15)C6—C5—H5119.8
Co1—O5—H5B103.7 (14)C7—C6—C5119.33 (17)
H5A—O5—H5B104 (2)C7—C6—H6120.3
Co1—O6—H6A112.4 (16)C5—C6—H6120.3
Co1—O6—H6B117.5 (16)C6—C7—C8119.51 (17)
H6A—O6—H6B104 (2)C6—C7—H7120.2
O4—N1—O3122.64 (18)C8—C7—H7120.2
O4—N1—C8118.61 (17)C7—C8—C3122.90 (16)
O3—N1—C8118.75 (16)C7—C8—N1115.63 (16)
O2—C1—O1124.94 (15)C3—C8—N1121.46 (15)
Co1—O1—C1—O225.0 (2)C6—C7—C8—C32.2 (3)
Co1—O1—C1—C2156.08 (13)C6—C7—C8—N1176.35 (17)
O2—C1—C2—C320.9 (3)C4—C3—C8—C70.1 (3)
O1—C1—C2—C3160.19 (17)C2—C3—C8—C7179.68 (18)
C1—C2—C3—C850.9 (3)C4—C3—C8—N1178.29 (16)
C1—C2—C3—C4129.5 (2)C2—C3—C8—N11.3 (3)
C8—C3—C4—C52.3 (3)O4—N1—C8—C719.3 (3)
C2—C3—C4—C5177.3 (2)O3—N1—C8—C7160.92 (17)
C3—C4—C5—C62.6 (3)O4—N1—C8—C3162.21 (19)
C4—C5—C6—C70.5 (3)O3—N1—C8—C317.6 (3)
C5—C6—C7—C81.8 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1ii0.82 (2)2.00 (2)2.7984 (16)166 (2)
O5—H5B···O2i0.82 (2)1.89 (2)2.6797 (17)161 (2)
O6—H6A···O2iii0.78 (2)1.93 (2)2.6979 (17)169 (2)
O6—H6B···O30.81 (2)2.22 (2)2.988 (2)159 (2)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.82 (2)2.00 (2)2.7984 (16)166 (2)
O5—H5B···O2ii0.82 (2)1.89 (2)2.6797 (17)161 (2)
O6—H6A···O2iii0.78 (2)1.93 (2)2.6979 (17)169 (2)
O6—H6B···O30.81 (2)2.22 (2)2.988 (2)159 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKennard, C. H. L., Stewart, S. W., O'Reilly, E. J., Smith, G. & White, A. H. (1985). Polyhedron, 4, 697–705.  CSD CrossRef CAS Web of Science Google Scholar
First citationMishra, A. K., Kumar, J., Khanna, S. & Verma, S. (2011). Cryst. Growth Des. 11, 1623–1630.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobolev, A. N., Miminoshvili, E. B., Miminoshvili, K. E. & Sakvarelidze, T. N. (2003). Acta Cryst. E59, m836–m837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392–1394.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTan, X.-W., Li, C.-H., Li, Y.-L. & Zhang, S.-H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 175–176.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages m59-m60
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds