

open 🖯 access

Crystal structure of diaqua[5,10,15,20tetrakis(4-bromophenyl)porphyrinato- $\kappa^4 N$ Imagnesium

Nesrine Amiri,^a* Soumaya Nasri,^a Thierry Roisnel,^b Gérard Simonneaux^c and Habib Nasri^a

^aDépartement de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, ^bCentre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS–Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and ^cInstitute of Sciences Chimiques of Rennes, Ingénierie Chimique et Molécules pour le vivant, UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France. *Correspondence e-mail: nesamiri@gmail.com

Received 11 February 2015; accepted 23 February 2015

Edited by M. Weil, Vienna University of Technology, Austria

The title compound, $[Mg(C_{44}H_{24}Br_4N_4)(H_2O)_2]$ or $[Mg(TBrPP)(H_2O)_2]$, where TBrPP is the 5,10,15,20-tetrakis(4-bromophenyl)porphyrinato ligand, was obtained unintentionally as a by-product of the reaction of the [Mg(TBrPP)] complex with an excess of dimethylglyoxime in dichloromethane. The entire molecule exhibits point group symmetry 4/m. In the asymmetric unit, except for two C atoms of the phenyl ring, all other atoms lie on special positions. The Mg^{II} atom is situated at a site with symmetry 4/m, while the N and the C atoms of the porphyrin macrocycle, as well as two C atoms of the phenyl ring and the Br atom lie in the mirror plane containing the porphyrin core. The H atoms of the axially bonded water molecule are incompatible with the fourfold rotation axis and are disordered over two sites. In the crystal, molecules are packed in rows along [001]. Weak intermolecular C-H··· π and C-H···Br interactions, as well as O-H···Br hydrogen bonds, stabilize the crystal packing.

Keywords: crystal structure; magnesium porphyrin complex; O—H···Br hydrogen bonds; C—H···Br interactions; C—H··· π interactions.

CCDC reference: 1050856

1. Related literature

For general background to magnesium porphyrin species and their applications, see: Ghosh *et al.* (2010). For the synthesis of the $[Mg^{II}(TPP)(H_2O)]$ complex (TPP is the 5,10,15,20-tetraphenylporphyrinate ligand), see: Timkovich & Tulinsky (1969). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), there are six magnesium porphyrin structures with aqua ligands deposited. Four from these structures are monoaqua species, derived from [Mg(TOMePP)(H₂O)] (TOMePP is the 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinate ligand; Yang & Jacobson, 1991) and one is a diaqua derivative, [Mg(TPP)(H₂O)₂]·(18-C-6) where 18-C-6 is 18-crown-6 ether (Ezzayani *et al.*, 2013). For the related porphyrin species [Mg(TPP)(4-pic)₂] (4-pic = 4-picoline) and [Mg(TPP)(H₂O)], see: McKee *et al.* (1984) and Ong *et al.* (1986), respectively. The H atom position of the aqua axial ligand was calculated with the program *CALC-OH* (Nardelli, 1999).

2. Experimental

2.1. Crystal data

$$\begin{split} & [\mathrm{Mg}(\mathrm{C}_{44}\mathrm{H}_{24}\mathrm{Br}_4\mathrm{N}_4)(\mathrm{H}_2\mathrm{O})_2] \\ & M_r = 988.65 \\ & \mathrm{Tetragonal}, \ I4/m \\ & a = 14.8313 \ (10) \ \mathrm{\mathring{A}} \\ & c = 9.3966 \ (8) \ \mathrm{\mathring{A}} \\ & V = 2066.9 \ (2) \ \mathrm{\mathring{A}}^3 \end{split}$$

Z = 2Mo K α radiation $\mu = 3.95 \text{ mm}^{-1}$ T = 150 K $0.37 \times 0.27 \times 0.14 \text{ mm}$

2.2. Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{min} = 0.409, T_{max} = 0.575$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.073$ S = 1.061248 reflections 81 parameters 4471 measured reflections 1248 independent reflections 940 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.034$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geor	metry (Å, °).

Cg1 is the centroid of the N1/C1-C4 pyrrole ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \text{C13}{-}\text{H13}{\cdots}\text{Cg1}^{\text{i}}\\ \text{O1}{-}\text{H1}\text{O1}{\cdots}\text{Br1}^{\text{ii}}\\ \text{C2}{-}\text{H2}{\cdots}\text{Br1}^{\text{iii}} \end{array}$	0.95	2.74	3.615 (3)	153
	1.10 (5)	2.69 (5)	3.741 (3)	159 (4)
	0.95	2.97	3.914 (3)	175 (1)

Symmetry codes: (i) y, -x, -z; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2}$; (iii) y, -x, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5127).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ezzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114–m115.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ghosh, A., Mobin, S. M., Fröhlich, R., Butcher, R. J., Maity, D. K. & Ravikanth, M. (2010). *Inorg. Chem.* **49**, 8287–8297.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.
- McKee, V., Choon, O. C. & Rodley, G. A. (1984). *Inorg. Chem.* 23, 4242–4248. Nardelli, M. (1999). *J. Appl. Cryst.* 32, 563–571.
- Ong, C. C., McKee, V. & Rodley, G. A. (1986). *Inorg. Chim. Acta*, **123**, L11–L14.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Timkovich, R. & Tulinsky, A. (1969). J. Am. Chem. Soc. 91, 4430-4432.
- Yang, S. & Jacobson, R. A. (1991). Inorg. Chim. Acta, 190, 129-134.

supporting information

Acta Cryst. (2015). E71, m73-m74 [doi:10.1107/S2056989015003722]

Crystal structure of diaqua[5,10,15,20-tetrakis(4-bromophenyl)porphyrinato- $\kappa^4 N$]magnesium

Nesrine Amiri, Soumaya Nasri, Thierry Roisnel, Gérard Simonneaux and Habib Nasri

S1. Synthesis and crystallization

To a solution of [Mg(TBrPP)] (15 mg, 0.015 mmol) in dichloromethane (10 ml) was added an excess of dimethylglyoxime (50 mg, 0.431 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution gradually changed from purple to blue–purple. Black coloured crystals of the title complex were obtained by diffusion of *n*-hexane through the dichloromethane solution. The two water molecules coordinating to the magnesium atom most probably originated from the undistilled dichloromethane solvent.

S2. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom position of the axially bonded aqua ligand was calculated with the CALC-OH program (Nardelli, 1999). The molecular symmetry of the water molecule is not compatible with the fourfold axis, hence the occupancy of this H atom was fixed to 0.5.

Figure 1

A view of the molecular structure of $[Mg(C_{44}H_{24}N_4Br_4)(H_2O)_2]$ showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

A portion of the crystal packing of the title complex, viewed down [001], showing C—H $\cdots\pi$ interactions (dotted lightblue lines) and C—H \cdots Br and O—H \cdots Br hydrogen bonds (dashed pink lines).

Diaqua[5,10,15,20-tetrakis(4-bromophenyl)porphyrinato- $\kappa^4 N$]magnesium

Crystal data	
$[Mg(C_{44}H_{24}Br_4N_4)(H_2O)_2]$ $M_r = 988.65$ Tetragonal, $I4/m$ Hall symbol: -I 4 a = 14.8313 (10) Å c = 9.3966 (8) Å $V = 2066.9 (2) \text{ Å}^3$ Z = 2 E(200) = 0.76	$D_x = 1.589 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1411 reflections $\theta = 2.6-26.9^{\circ}$ $\mu = 3.95 \text{ mm}^{-1}$ T = 150 K Prism, black $0.37 \times 0.27 \times 0.14 \text{ mm}$
Data collection	
Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{min} = 0.409, T_{max} = 0.575$ 4471 measured reflections	1248 independent reflections 940 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.8^{\circ}$ $h = -14 \rightarrow 19$ $k = -18 \rightarrow 18$ $l = -5 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.073$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
1248 reflections	and constrained refinement
81 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0364P)^2 + 0.9155P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.009$
direct methods	$\Delta ho_{ m max} = 0.50 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mg	0.5	0.5	0.5	0.0248 (5)	
01	0.5	0.5	0.2636 (4)	0.0376 (9)	
H1O1	0.473 (4)	0.560 (3)	0.210 (6)	0.045*	0.5
N1	0.46158 (17)	0.36592 (17)	0.5	0.0192 (6)	
C1	0.3751 (2)	0.3337 (2)	0.5	0.0183 (7)	
C2	0.3771 (2)	0.2366 (2)	0.5	0.0195 (7)	
H2	0.3262	0.1977	0.5	0.023*	
C3	0.4643 (2)	0.2109 (2)	0.5	0.0219 (7)	
Н3	0.4865	0.1508	0.5	0.026*	
C4	0.5177 (2)	0.2931 (2)	0.5	0.0196 (7)	
C5	0.2966 (2)	0.3872 (2)	0.5	0.0179 (7)	
C11	0.2081 (2)	0.33768 (19)	0.5	0.0192 (7)	
C12	0.16663 (16)	0.31403 (16)	0.6263 (3)	0.0307 (6)	
H12	0.1942	0.3299	0.714	0.037*	
C13	0.08517 (16)	0.26732 (17)	0.6273 (3)	0.0324 (6)	
H13	0.0572	0.2512	0.7146	0.039*	
C14	0.0463 (2)	0.2451 (2)	0.5	0.0229 (7)	
Br1	-0.06342 (2)	0.17805 (2)	0.5	0.03531 (15)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Mg	0.0142 (7)	0.0142 (7)	0.0461 (16)	0	0	0
01	0.0376 (13)	0.0376 (13)	0.038 (2)	0	0	0

Br1	0.01523 (19)	0.0223 (2)	0.0684 (3)	-0.00419 (14)	0	0
C14	0.0158 (16)	0.0129 (16)	0.040(2)	-0.0010 (12)	0	0
C13	0.0295 (14)	0.0356 (15)	0.0321 (15)	-0.0096 (11)	0.0095 (12)	-0.0013 (12)
C12	0.0260 (13)	0.0389 (15)	0.0272 (14)	-0.0117 (11)	0.0002 (11)	-0.0054 (12)
C11	0.0166 (16)	0.0114 (15)	0.0296 (19)	0.0002 (12)	0	0
C5	0.0164 (16)	0.0165 (16)	0.0209 (18)	-0.0009 (13)	0	0
C4	0.0186 (16)	0.0167 (16)	0.0234 (18)	-0.0014 (13)	0	0
C3	0.0246 (17)	0.0137 (15)	0.0274 (19)	0.0007 (13)	0	0
C2	0.0199 (16)	0.0152 (15)	0.0233 (18)	-0.0031 (12)	0	0
C1	0.0169 (16)	0.0150 (16)	0.0231 (18)	-0.0024 (12)	0	0
N1	0.0124 (13)	0.0162 (14)	0.0290 (16)	-0.0007 (10)	0	0

Geometric parameters (Å, °)

Mg—N1 ⁱ	2.069 (2)	C3—C4	1.454 (4)
Mg—N1	2.069 (2)	С3—Н3	0.95
Mg—N1 ⁱⁱ	2.069 (2)	C4—C5 ⁱⁱⁱ	1.412 (4)
Mg—N1 ⁱⁱⁱ	2.069 (2)	C5—C4 ⁱ	1.412 (4)
Mg—O1 ⁱⁱ	2.221 (4)	C5—C11	1.504 (4)
Mg—O1	2.221 (4)	C11—C12	1.382 (3)
01—H101	1.10(5)	C11-C12 ^{iv}	1.382 (3)
N1—C4	1.363 (4)	C12—C13	1.393 (3)
N1—C1	1.368 (4)	C12—H12	0.95
C1—C5	1.409 (4)	C13—C14	1.369 (3)
C1—C2	1.440 (4)	C13—H13	0.95
C2—C3	1.348 (4)	C14—C13 ^{iv}	1.369 (3)
C2—H2	0.95	C14—Br1	1.906 (3)
N1 ⁱ —Mg—N1	89.998 (2)	N1—C4—C3	109.4 (3)
N1—Mg—N1 ⁱⁱ	180.00 (14)	C5 ⁱⁱⁱ —C4—C3	125.1 (3)
01 ⁱⁱ —Mg—O1	180	C1—C5—C4 ⁱ	126.4 (3)
Mg—01—H101	117 (3)	C1—C5—C11	116.5 (3)
C4—N1—C1	107.1 (2)	C4 ⁱ —C5—C11	117.1 (3)
C4—N1—Mg	126.4 (2)	C12—C11—C12 ^{iv}	118.3 (3)
C1—N1—Mg	126.5 (2)	C12—C11—C5	120.85 (15)
N1—C1—C5	125.3 (3)	C12 ^{iv} —C11—C5	120.85 (15)
N1—C1—C2	109.3 (3)	C11—C12—C13	121.3 (2)
C5—C1—C2	125.5 (3)	C11—C12—H12	119.4
C3—C2—C1	107.6 (3)	C13—C12—H12	119.4
C3—C2—H2	126.2	C14—C13—C12	118.7 (2)
C1—C2—H2	126.2	C14—C13—H13	120.7
C2—C3—C4	106.6 (3)	C12—C13—H13	120.7
С2—С3—Н3	126.7	C13—C14—C13 ^{iv}	121.9 (3)
С4—С3—Н3	126.7	C13—C14—Br1	119.04 (15)
N1-C4-C5 ⁱⁱⁱ	125.5 (3)	C13 ^{iv} —C14—Br1	119.05 (15)
N1 ⁱ —Mg—N1—C4	180	C1—N1—C4—C3	0
N1 ⁱⁱⁱ —Mg—N1—C4	0	Mg—N1—C4—C3	180

01 ⁱⁱ —Mg—N1—C4	-90	$\begin{array}{c} C2-C3-C4-N1\\ C2-C3-C4-C5^{iii}\\ N1-C1-C5-C4^{i}\\ C2-C1-C5-C4^{i}\\ N1-C1-C5-C4^{i}\\ \end{array}$	0
01—Mg—N1—C4	90		180
N1 ⁱ —Mg—N1—C1	0		0
N1 ⁱⁱⁱ —Mg—N1—C1	180		180
01 ⁱⁱ —Mg—N1—C1	90		180
01—Mg—N1—C1	-90	$\begin{array}{c} C2-C1-C5-C11\\ C1-C5-C11-C12\\ C4^{i}-C5-C11-C12\\ \end{array}$	0
C4—N1—C1—C5	180		89.7 (3)
Mg—N1—C1—C5	0		-90.3 (3)
C4—N1—C1—C2	0	$C1-C5-C11-C12^{iv}$ $C4^{i}-C5-C11-C12^{iv}$ $C12^{iv}-C11-C12-C13$ $C5-C11-C12-C13$	-89.7 (3)
Mg—N1—C1—C2	180		90.3 (3)
N1—C1—C2—C3	0		0.2 (5)
C5—C1—C2—C3	180		-179.3 (2)
C1-C2-C3-C4	0	C11—C12—C13—C14	-0.1 (4)
C1-N1-C4-C5 ⁱⁱⁱ	180	C12—C13—C14—C13 ^{iv}	0.1 (5)
Mg-N1-C4-C5 ⁱⁱⁱ	0	C12—C13—C14—Br1	178.2 (2)

Symmetry codes: (i) *y*, -*x*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*y*+1, *x*, *z*; (iv) *x*, *y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C4 pyrrole ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C13—H13…Cg1 ^v	0.95	2.74	3.615 (3)	153
O1—H1O1···Br1 ^{vi}	1.10 (5)	2.69 (5)	3.741 (3)	159 (4)
C2—H2···Br1 ^{vii}	0.95	2.97	3.914 (3)	175 (1)

Symmetry codes: (v) *y*, -*x*, -*z*; (vi) *x*+1/2, *y*+1/2, *z*-1/2; (vii) *y*, -*x*, *z*.