data reports

OPEN d ACCESS

Crystal structure of ethyl 6-methyl-2-oxo-4-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate

J. J. Novina,^a G. Vasuki,^b* M. Suresh^c and M. Syed Ali Padusha^c

^aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, ^bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and ^cPG & Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli-20, India. *Correspondence e-mail: vasuki.arasi@yahoo.com

Received 10 February 2015; accepted 20 February 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title compound, $C_{17}H_{22}N_2O_6$, the dihydropyrimidine ring adopts a flattened boat conformation. The dihedral angle between the benzene ring and the mean plane of the dihydropyrimidine ring is $75.25 (6)^{\circ}$. In the crystal, molecules are linked via pairs of N-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(8)$ ring motif which are linked through $N-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds. These, together with $\pi - \pi$ ring interactions [centroid–centroid distance = 3.7965 (10) Å], give an overall three-dimensional structure.

Keywords: crystal structure; pyrimidine; hydrogen bonds; centrosymmetric dimer.

CCDC reference: 1050728

1. Related literature

For general background and the biological activity of dihydropyrimidinones, see: Jawale et al. (2011); Beşoluk et al. (2010); Karade et al. (2007).

2. Experimental

2.1. Crystal data

$\gamma = 105.498 \ (1)^{\circ}$
$V = 886.40 (4) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 K
$0.20 \times 0.15 \times 0.10 \text{ mm}$

2.2. Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\rm min}=0.970,\;T_{\rm max}=0.995$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.154$ S = 1.063659 reflections 228 parameters

13060 measured reflections 3659 independent reflections 3009 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$

l restraint
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdots O6^{i}$	0.86	2.01	2.867 (2)	171
$N2-H2N\cdots O4^{ii}$	0.86	2.39	3.1331 (19)	145
C8−H8A···O1 ⁱⁱⁱ	0.96	2.46	3.325 (3)	149
$C9-H9A\cdotsO1^{iv}$	0.96	2.56	3.491 (3)	163
Symmetry codes:	(i) $-x, -y +$	1, -z + 1; (i	i) $-x + 1, -y + 1$	-z + 2; (iii)
x + 1, y + 1, z + 1; (iv) -x + 1, -y +	-1, -z + 1.		

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2327).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Beşoluk, S., Küçükislamoğlu, M., Zengin, M., Arslan, M. & Nebioğlu, M. (2010). Turk. J. Chem. 34, 411–416.
- Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Jawale, D. V., Pratap, U. R., Mulay, A. A., Mali, J. R. & Mane, R. A. (2011). J. Chem. Sci. 123, 645–655.
- Karade, H. N., Sathe, M. & Kaushik, M. P. (2007). Molecules, 12, 1341–1351.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o206-o207 [doi:10.1107/S2056989015003576]

Crystal structure of ethyl 6-methyl-2-oxo-4-(3,4,5-trimethoxyphenyl)-1,2,3,4tetrahydropyrimidine-5-carboxylate

J. J. Novina, G. Vasuki, M. Suresh and M. Syed Ali Padusha

S1. Comment

Dihydropyrimidinones (DHPMs) occupy a special place in the areas of natural and synthetic organic chemistry, because of their therapeutic and pharmacological properties. The dihydropyrimidinone scaffold has emerged as an integral backbone for several drugs used as calcium channel blockers as well as anti-hypertensive and anti-cancer agents. DHPMs also exhibit anti-diabetic activity (Jawale *et al.*, 2011). Furthermore, the 2-oxodihydropyrimidine-5-carboxylate core unit is also found in many marine natural products, including the batzelladine alkaloids, which were found to be potent HIV gp-120-CD4 inhibitors (Karade *et al.*, 2007; Beşoluk *et al.*, 2010). Because of this background and in order to obtain detailed information on its molecular conformation, the X-ray structure of the title compound, C₁₇H₂₂N₂O₂ has been determined and is presented herein.

In the racemic title compound (Fig. 1) the dihydropyrimidone ring adopts a flattened boat conformation with the atom C13 and N2 deviating by -0.1218 (11) and 0.1432 (12) Å, respectively from the least squares plane defined by the remaining atoms N1/C11/C12/C14 in the ring. The puckering parameters are $q^2 = 0.207$ Å, $q^3 = -0.074$ Å, Q = 0.220 Å, $\Theta = 109.7^{\circ}$ and $\Phi = 35.0^{\circ}$. The C1—C6 benzene ring is twisted with respect to the dihydropyrimidinone ring, with an inter-ring dihedral angle of 75.25 (9)°. The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [torsion angle C12—C15—O2—C16 = -177.55 (20)°]. The methoxy two substituent groups at C3 and C5 are almost coplanar with the benzene ring [torsion angles C2—C3—O3—C7 = 7.7 (3)° and C6—C5—O5—C9 = -5.1 (3)°] whereas the central group at C4 deviates significantly from the benzene plane [C3—C4—O4—C8 = 102.7 (2)°].

In the crystal, molecules are linked *via* a pair of N—H···O hydrogen bonds (Table 1) forming a centrosymmetric cyclic dimer with an $R_2^2(8)$ ring motif. The inter-dimer N2—H···O3ⁱⁱ and N2—H···O4ⁱⁱ interactions constitute a bifurcated association generating an asymmetric $R_1^2(5)$ ring motif. The one-dimensional chain structures extend across [101] (Fig. 2) while the crystal structure is further stabilized by weak C—H···O hydrogen bonds and by π – π stacking interactions between inversion-related benzene rings [ring centroid–centroid distance = 3.7965 (10)Å] (Fig. 3), giving an overall three-dimensional structure.

S2. Experimental

A mixture of ethyl acetoacetate (0.13 ml, 1 mmol), 3,4,5-trimethoxybenzaldehyde (0.196 g, 1 mmol), and urea (0.18 g, 3 mmol) in ethanol (5 ml) was heated under reflux in the presence of cerium chloride heptahydrate (25%) for 1 h (monitored by TLC). After the completion of the reaction, the reaction mixture was cooled to room temperature and poured onto crushed ice and stirred for 5–10 min. The solid was separated and filtered under suction, washed with ice-cold water (50 ml) and then recrystallized from hot ethanol to afford the pure product [m.p. 445 K; yield 96%].

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances fixed in the range 0.93–0.97 Å and N—H = 0.86 Å with $U_{iso}(H) = 1.5U_{eq}(CH_3)$ and $1.2U_{eq}(CH_2, CH, NH)$.

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Cystal packing of the title compound viewed along the *a* axis. Hydrogen bonds are shown as dashed lines (Table 1). For clarity only the H atoms participating in these interactions are shown.

Figure 3

A view showing the π - π interactions. The H atoms are omitted for the sake of clarity.

Ethyl 6-methyl-2-oxo-4-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Z = 2

F(000) = 372

 $\theta = 1.0-26.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.15 \times 0.10$ mm

 $\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

13060 measured reflections 3659 independent reflections 3009 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.020$

 $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

 $D_{\rm x} = 1.313 {\rm ~Mg} {\rm ~m}^{-3}$ Melting point: 445 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3659 reflections

Crystal data

 $C_{17}H_{22}N_2O_6$ $M_r = 350.37$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.1447 (3) Å b = 10.1919 (2) Å c = 10.8724 (2) Å a = 117.882 (1)° $\beta = 101.371$ (1)° $\gamma = 105.498$ (1)° V = 886.40 (4) Å³

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.970, \ T_{\max} = 0.995$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.154$	$w = 1/[\sigma^2(F_o^2) + (0.0769P)^2 + 0.2863P]$
S = 1.06	where $P = (F_0^2 + 2F_c^2)/3$
3659 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
228 parameters	$\Delta \rho_{\rm max} = 0.60 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.023 (4)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.37112 (18)	0.3299 (2)	0.72474 (17)	0.0394 (4)

C2	0.44867 (19)	0.2873 (2)	0.80886 (18)	0.0410 (4)
H2	0.4009	0.1946	0.8073	0.049*
C3	0.59827 (19)	0.3837 (2)	0.89570 (18)	0.0415 (4)
C4	0.66902 (18)	0.5242 (2)	0.90186 (18)	0.0429 (4)
C5	0.5914 (2)	0.5645 (2)	0.8146 (2)	0.0477 (4)
C6	0.4429 (2)	0.4661 (2)	0.7249 (2)	0.0466 (4)
H6	0.3916	0.4918	0.6647	0.056*
C7	0.6280 (3)	0.2077 (3)	0.9753 (3)	0.0698 (6)
H7A	0.7016	0.2040	1.0427	0.105*
H7B	0.5992	0.1174	0.8743	0.105*
H7C	0.5433	0.2011	1.0028	0.105*
C8	0.9201 (2)	0.6153 (3)	0.9346 (2)	0.0652 (6)
H8A	1.0172	0.6907	1.0103	0.098*
H8B	0.9011	0.6404	0.8599	0.098*
H8C	0.9141	0.5062	0.8882	0.098*
С9	0.5979 (3)	0.7486 (3)	0.7382 (4)	0.0828 (8)
H9A	0.6640	0.8501	0.7591	0.124*
H9B	0.5124	0.7596	0.7590	0.124*
H9C	0.5679	0.6647	0.6343	0.124*
C10	0.0111 (2)	0.1030 (3)	0.2264 (2)	0.0599 (5)
H10A	-0.0726	0.1254	0.2006	0.090*
H10B	-0.0203	-0.0123	0.1806	0.090*
H10C	0.0824	0.1408	0.1908	0.090*
C11	0.07976(19)	0.1893 (2)	0.39399 (19)	0.0445 (4)
C12	0.15090 (18)	0.1416 (2)	0.47179 (19)	0.0425 (4)
C13	0.20307 (18)	0.2357(2)	0.64192(18)	0.0410 (4)
H13	0.1699	0.1573	0.6694	0.049*
C14	0.0864(2)	0.4142(2)	0.62100 (19)	0.0455(4)
C15	0.1840(2)	-0.0008(2)	0.3951(2)	0.0496(4)
C16	0.2722(3)	-0.1808(3)	0.3991(2) 0.4190(3)	0.0833(8)
H16A	0.3437	-0.1572	0.3764	0.100*
H16R	0.1855	-0.2781	0.3388	0.100*
C17	0.3362 (5)	-0.2078(4)	0.5344(4)	0.1101 (13)
H17A	0.3634	-0.2977	0.4898	0.179*
H17R	0.2647	-0.2321	0.5754	0.179*
H17C	0.4223	-0.1113	0.6131	0.179*
N1	0.4223	0.33131 (10)	0.47041 (16)	0.179 0.0507 (4)
HIN	0.0304	0.35131 (19)	0.4205	0.0507 (4)
N2	0.13307 (16)	0.3099 0.34018 (10)	0.4203	0.001
H2N	0.13307 (10)	0.3761	0.09555 (10)	0.054*
01	0.1210 0.1753(2)	-0.07004(10)	0.7700	0.034
02	0.1755(2) 0.23206(16)	-0.04531(16)	0.20018(17) 0.48721(16)	0.0744(3)
03	0.23200(10) 0.68614(15)	0.0+331(10) 0.35473(16)	0.70721(10) 0.08300(14)	0.0009 (4)
04	0.00014(13) 0.81300(14)	0.55775(10)	1 00212 (14)	0.0337(4)
05	0.01300(14) 0.67016(17)	0.02000 (10)	0.8201(14)	0.0372(4)
05	0.07010(17)	0.70070(19) 0.53607(19)	0.029 + (2) 0.68120 (15)	0.0717(3)
00	0.00100(17)	0.55097 (10)	0.00137 (13)	0.0370 (4)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0405 (8)	0.0409 (8)	0.0349 (8)	0.0214 (7)	0.0128 (7)	0.0178 (7)
C2	0.0455 (9)	0.0391 (8)	0.0371 (8)	0.0222 (7)	0.0126 (7)	0.0189 (7)
C3	0.0465 (9)	0.0450 (9)	0.0316 (8)	0.0272 (7)	0.0116 (7)	0.0170 (7)
C4	0.0390 (8)	0.0457 (9)	0.0338 (8)	0.0192 (7)	0.0105 (6)	0.0153 (7)
C5	0.0468 (9)	0.0465 (9)	0.0505 (10)	0.0197 (8)	0.0179 (8)	0.0273 (8)
C6	0.0450 (9)	0.0532 (10)	0.0487 (10)	0.0246 (8)	0.0138 (8)	0.0324 (8)
C7	0.0782 (15)	0.0662 (13)	0.0680 (13)	0.0347 (12)	0.0081 (11)	0.0440 (11)
C8	0.0440 (10)	0.0744 (14)	0.0590 (12)	0.0240 (10)	0.0159 (9)	0.0256 (11)
C9	0.0771 (16)	0.0827 (17)	0.117 (2)	0.0329 (14)	0.0329 (15)	0.0762 (17)
C10	0.0654 (12)	0.0652 (12)	0.0397 (10)	0.0334 (10)	0.0109 (9)	0.0223 (9)
C11	0.0431 (9)	0.0451 (9)	0.0386 (9)	0.0197 (7)	0.0121 (7)	0.0190 (7)
C12	0.0385 (8)	0.0399 (8)	0.0397 (9)	0.0160 (7)	0.0099 (7)	0.0174 (7)
C13	0.0402 (8)	0.0438 (9)	0.0409 (9)	0.0207 (7)	0.0127 (7)	0.0240 (7)
C14	0.0454 (9)	0.0535 (10)	0.0405 (9)	0.0290 (8)	0.0156 (7)	0.0237 (8)
C15	0.0433 (9)	0.0399 (9)	0.0471 (10)	0.0154 (7)	0.0070 (7)	0.0157 (8)
C16	0.0882 (17)	0.0513 (12)	0.0835 (17)	0.0417 (12)	0.0098 (13)	0.0202 (12)
C17	0.142 (3)	0.094 (2)	0.107 (2)	0.079 (2)	0.012 (2)	0.0433 (19)
N1	0.0662 (10)	0.0574 (9)	0.0382 (8)	0.0390 (8)	0.0178 (7)	0.0269 (7)
N2	0.0461 (8)	0.0586 (9)	0.0364 (7)	0.0312 (7)	0.0170 (6)	0.0257 (7)
O1	0.0979 (12)	0.0630 (9)	0.0499 (9)	0.0456 (9)	0.0243 (8)	0.0172 (7)
O2	0.0668 (9)	0.0449 (7)	0.0571 (8)	0.0302 (7)	0.0086 (7)	0.0203 (6)
O3	0.0544 (8)	0.0581 (8)	0.0487 (7)	0.0271 (6)	0.0034 (6)	0.0289 (6)
O4	0.0419 (7)	0.0570 (8)	0.0397 (7)	0.0149 (6)	0.0088 (5)	0.0152 (6)
O5	0.0554 (8)	0.0653 (9)	0.0974 (12)	0.0163 (7)	0.0160 (8)	0.0564 (9)
O6	0.0778 (10)	0.0686 (9)	0.0446 (7)	0.0525 (8)	0.0231 (7)	0.0277 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.384 (2)	C10—C11	1.501 (2)
C1—C6	1.384 (2)	C10—H10A	0.9600
C1—C13	1.533 (2)	C10—H10B	0.9600
С2—С3	1.389 (2)	C10—H10C	0.9600
С2—Н2	0.9300	C11—C12	1.344 (2)
С3—О3	1.368 (2)	C11—N1	1.383 (2)
C3—C4	1.383 (3)	C12—C15	1.468 (2)
C4—O4	1.382 (2)	C12—C13	1.518 (2)
C4—C5	1.390 (3)	C13—N2	1.464 (2)
C5—O5	1.368 (2)	C13—H13	0.9800
C5—C6	1.387 (3)	C14—O6	1.233 (2)
С6—Н6	0.9300	C14—N2	1.338 (2)
С7—ОЗ	1.406 (3)	C14—N1	1.371 (2)
С7—Н7А	0.9600	C15—O1	1.210 (2)
С7—Н7В	0.9600	C15—O2	1.340 (2)
С7—Н7С	0.9600	C16—O2	1.444 (3)
C8—O4	1.428 (2)	C16—C17	1.472 (3)

C8—H8A	0.9600	C16—H16A	0.9700
C8—H8B	0.9600	C16—H16B	0.9700
C8—H8C	0.9600	C17—H17A	0.9600
С9—О5	1.410 (3)	C17—H17B	0.9600
С9—Н9А	0.9600	C17—H17C	0.9600
С9—Н9В	0.9600	N1—H1N	0.8600
С9—Н9С	0.9600	N2—H2N	0.8600
C2—C1—C6	120.13 (15)	H10B—C10—H10C	109.5
C2—C1—C13	120.26 (15)	C12—C11—N1	119.53 (15)
C6—C1—C13	119.40 (15)	C12—C11—C10	127.51 (17)
C1—C2—C3	119.70 (16)	N1—C11—C10	112.94 (15)
C1—C2—H2	120.1	C11—C12—C15	120.97 (16)
C3—C2—H2	120.2	C11—C12—C13	121.07 (15)
O3—C3—C4	114.49 (15)	C15—C12—C13	117.94 (15)
O3—C3—C2	125.05 (16)	N2—C13—C12	109.34 (13)
C4—C3—C2	120.42 (15)	N2—C13—C1	109.29 (14)
O4—C4—C3	119.43 (15)	C12—C13—C1	114.52 (14)
O4—C4—C5	120.85 (16)	N2—C13—H13	107.8
C3—C4—C5	119.58 (16)	С12—С13—Н13	107.8
O5—C5—C6	124.58 (17)	C1—C13—H13	107.8
O5—C5—C4	115.35 (16)	O6—C14—N2	123.56 (16)
C6—C5—C4	120.03 (17)	O6—C14—N1	120.72 (16)
C1—C6—C5	120.03 (16)	N2—C14—N1	115.66 (15)
С1—С6—Н6	120.0	O1—C15—O2	122.09 (18)
С5—С6—Н6	120.0	O1—C15—C12	125.98 (18)
O3—C7—H7A	109.5	O2—C15—C12	111.89 (16)
O3—C7—H7B	109.5	O2—C16—C17	109.0 (2)
H7A—C7—H7B	109.5	O2—C16—H16A	109.9
O3—C7—H7C	109.5	C17—C16—H16A	109.9
H7A—C7—H7C	109.5	O2—C16—H16B	109.9
H7B—C7—H7C	109.5	C17—C16—H16B	109.9
O4—C8—H8A	109.5	H16A—C16—H16B	108.3
O4—C8—H8B	109.5	С16—С17—Н17А	109.5
H8A—C8—H8B	109.5	С16—С17—Н17В	109.5
O4—C8—H8C	109.5	H17A—C17—H17B	109.5
H8A—C8—H8C	109.5	С16—С17—Н17С	109.5
H8B—C8—H8C	109.5	H17A—C17—H17C	109.5
О5—С9—Н9А	109.5	H17B—C17—H17C	109.5
О5—С9—Н9В	109.5	C14—N1—C11	123.90 (15)
H9A—C9—H9B	109.5	C14—N1—H1N	118.1
О5—С9—Н9С	109.5	C11—N1—H1N	118.1
Н9А—С9—Н9С	109.5	C14—N2—C13	125.19 (14)
Н9В—С9—Н9С	109.5	C14—N2—H2N	117.4
C11—C10—H10A	109.5	C13—N2—H2N	117.4
C11—C10—H10B	109.5	C15—O2—C16	114.13 (17)
H10A—C10—H10B	109.5	C3—O3—C7	118.70 (15)
C11—C10—H10C	109.5	C4—O4—C8	113.93 (14)

supporting information

H10A—C10—H10C	109.5	С5—О5—С9	117.35 (17)
C6 C1 C2 C3	1 2 (2)	C6 C1 C13 N2	-52 6 (2)
$C_0 - C_1 - C_2 - C_3$	-172 41 (15)	$C_{1} = C_{1} = C_{1} = C_{1}$	32.0(2)
C13 - C1 - C2 - C3	-1/3.41(13)	$C_2 = C_1 $	-114.07(17)
C1 = C2 = C3 = 03	1/9.5/(16)	C6-C1-C13-C12	/0.4 (2)
C1—C2—C3—C4	1.8 (2)	C11—C12—C15—O1	12.9 (3)
O3—C3—C4—O4	-5.5 (2)	C13—C12—C15—O1	-165.48 (19)
C2—C3—C4—O4	172.46 (15)	C11—C12—C15—O2	-169.40 (16)
O3—C3—C4—C5	178.81 (15)	C13—C12—C15—O2	12.2 (2)
C2—C3—C4—C5	-3.2 (3)	O6—C14—N1—C11	-177.32 (18)
O4—C4—C5—O5	3.7 (3)	N2-C14-N1-C11	0.0 (3)
C3—C4—C5—O5	179.34 (16)	C12-C11-N1-C14	-11.8 (3)
O4—C4—C5—C6	-174.07 (16)	C10-C11-N1-C14	166.62 (18)
C3—C4—C5—C6	1.6 (3)	O6—C14—N2—C13	-161.54 (18)
C2-C1-C6-C5	-2.9 (3)	N1-C14-N2-C13	21.2 (3)
C13—C1—C6—C5	171.79 (16)	C12-C13-N2-C14	-27.1 (2)
O5—C5—C6—C1	-176.06 (17)	C1—C13—N2—C14	98.96 (19)
C4—C5—C6—C1	1.5 (3)	O1—C15—O2—C16	0.3 (3)
N1-C11-C12-C15	-174.94 (16)	C12-C15-O2-C16	-177.52 (18)
C10-C11-C12-C15	6.9 (3)	C17—C16—O2—C15	174.6 (2)
N1-C11-C12-C13	3.4 (3)	C4—C3—O3—C7	-174.43 (18)
C10-C11-C12-C13	-174.76 (18)	C2—C3—O3—C7	7.7 (3)
C11—C12—C13—N2	13.6 (2)	C3—C4—O4—C8	102.7 (2)
C15—C12—C13—N2	-167.97 (15)	C5—C4—O4—C8	-81.7 (2)
C11—C12—C13—C1	-109.38 (18)	C6—C5—O5—C9	-5.1 (3)
C15—C12—C13—C1	69.0 (2)	C4—C5—O5—C9	177.3 (2)
C2—C1—C13—N2	122.09 (16)		

Hydrogen-bond geometry (Å, °)

HA	D—H	H···A	D…A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···O6 ⁱ	0.86	2.01	2.867 (2)	171
N2—H2 <i>N</i> ···O3 ⁱⁱ	0.86	2.56	3.0629 (19)	118
N2—H2 <i>N</i> ···O4 ⁱⁱ	0.86	2.39	3.1331 (19)	145
C8—H8A····O1 ⁱⁱⁱ	0.96	2.46	3.325 (3)	149
C9—H9A····O1 ^{iv}	0.96	2.56	3.491 (3)	163

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y+1, z+1; (iv) -x+1, -y+1, -z+1.