organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o233-o234

Crystal structure of benzyl 3-(3-methyl­phen­yl)di­thio­carbazate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: thahira@upm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 March 2015; accepted 9 March 2015; online 14 March 2015)

In the title compound, C15H16N2S2, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0354 Å) and forms dihedral angles of 56.02 (4) and 75.52 (4)° with the phenyl and tolyl rings, respectively; the dihedral angle between the aromatic rings is 81.72 (5)°. The conformation about the N—N bond is gauche [C—N—N—C = −117.48 (15)°]. Overall, the mol­ecule has the shape of the letter L. In the crystal packing, supra­molecular chains along the a axis are formed by N—H⋯S(thione) hydrogen bonds whereby the thione S atom accepts two such bonds. The hydrogen bonding leads to alternating edge-shared eight-membered {⋯HNCS}2 and 10-membered {⋯HNNH⋯S}2 synthons. The chains are connected into layers by phen­yl–tolyl C—H⋯π inter­actions; the layers stack along the c axis with no specific inter­actions between them.

1. Related literature

For background on the coordination chemistry of di­thio­carbazate derivatives, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the structure of the 2-tolyl analogue, which is superimposable upon the title compound with the exception of the tolyl rings, see: Tayamon et al. (2012[Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1402.]). For the synthesis, see: Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H16N2S2

  • Mr = 288.42

  • Monoclinic, P 21 /n

  • a = 5.9396 (1) Å

  • b = 10.3243 (2) Å

  • c = 23.5474 (5) Å

  • β = 96.952 (2)°

  • V = 1433.36 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.25 mm−1

  • T = 100 K

  • 0.20 × 0.09 × 0.06 mm

2.2. Data collection

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.700, Tmax = 1.000

  • 18486 measured reflections

  • 2784 independent reflections

  • 2616 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.01

  • 2784 reflections

  • 179 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2i 0.88 (1) 2.50 (2) 3.3581 (13) 167 (2)
N2—H2N⋯S2ii 0.87 (1) 2.52 (1) 3.3819 (13) 167 (2)
C6—H6⋯Cg1iii 0.95 2.61 3.5314 (19) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For background on the coordination chemistry of dithiocarbazate derivatives, see: Ravoof et al. (2010). For the structure of the 2-tolyl analogue, which is superimposable upon the title compound with the exception of the tolyl rings, see: Tayamon et al. (2012). For the synthesis, see: Tarafder et al. (2002).

Experimental top

The compound was prepared according to Tarafder et al. (2002). m-Tolylhydrazine hydrochloride (0.05 mol) was added to a solution of potassium hydroxide (0.05 mol) in 95% ethanol (70 ml) with continual stirring. This mixture was cooled in an ice-bath until the temperature was about 268 K when the mixture was filtered to remove excess potassium chloride. Carbon disulfide (0.05 mol) was added drop-wise to the filtrate with vigorous stirring for about 1 h. The mixture was kept in the ice-salt bath while benzyl chloride (0.05 mol) was added drop-wise with vigorous stirring. Stirring was continued for 1 h after the complete addition of benzyl chloride. A pale-pink precipitate that was obtained was filtered and washed with cold ethanol. The product was dried in a desiccator and the filtrate was kept in freezer overnight. Pale-brown crystals were obtained from its filtrate. Yield 53.1%. M.pt: 416 K. Anal. Found (Calc.): C, 61.26 (62.46); H, 5.42 (5.59); N, 9.02 (9.71)%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N—H H atoms were refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, the (0 0 2) reflection was omitted from the final cycles of refinement.

Structure description top

For background on the coordination chemistry of dithiocarbazate derivatives, see: Ravoof et al. (2010). For the structure of the 2-tolyl analogue, which is superimposable upon the title compound with the exception of the tolyl rings, see: Tayamon et al. (2012). For the synthesis, see: Tarafder et al. (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMOL (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Superimposition of the title compound, shown in red, and the 2-tolyl analogue (blue). The molecules have been superimposed such that the CS2 residues are overlapped.
[Figure 3] Fig. 3. The supramolecular chain along the a axis sustained by N—H···S hydrogen bonding, shown as blue dashed lines.
[Figure 4] Fig. 4. A view of the unit-cell contents in projection down the a axis. The N—H···S and C—H···π interactions are shown as blue and purple dashed lines, respectively.
1-Benzylsulfonyl-1,2,3,4-tetrahydroquinoline top
Crystal data top
C15H16N2S2F(000) = 608
Mr = 288.42Dx = 1.337 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 5.9396 (1) ÅCell parameters from 9462 reflections
b = 10.3243 (2) Åθ = 4.7–71.5°
c = 23.5474 (5) ŵ = 3.25 mm1
β = 96.952 (2)°T = 100 K
V = 1433.36 (5) Å3Prism, pale-brown
Z = 40.20 × 0.09 × 0.06 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2784 independent reflections
Radiation source: fine-focus sealed tube2616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1952 pixels mm-1θmax = 71.4°, θmin = 4.7°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.700, Tmax = 1.000l = 2828
18486 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.7171P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.015
2784 reflectionsΔρmax = 0.43 e Å3
179 parametersΔρmin = 0.31 e Å3
Crystal data top
C15H16N2S2V = 1433.36 (5) Å3
Mr = 288.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.9396 (1) ŵ = 3.25 mm1
b = 10.3243 (2) ÅT = 100 K
c = 23.5474 (5) Å0.20 × 0.09 × 0.06 mm
β = 96.952 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2784 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2616 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 1.000Rint = 0.022
18486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.43 e Å3
2784 reflectionsΔρmin = 0.31 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02626 (6)0.14613 (3)0.57928 (2)0.01811 (14)
S20.27407 (6)0.35220 (3)0.50311 (2)0.01879 (14)
N10.1325 (2)0.37365 (13)0.56063 (5)0.0185 (3)
H1N0.145 (3)0.4481 (12)0.5433 (8)0.022*
N20.3251 (2)0.32132 (13)0.59271 (6)0.0190 (3)
H2N0.440 (2)0.319 (2)0.5728 (7)0.023*
C10.0490 (3)0.29984 (14)0.54689 (6)0.0166 (3)
C20.2885 (3)0.06797 (15)0.54854 (7)0.0220 (3)
H2A0.42050.12310.55410.026*
H2B0.28670.05410.50700.026*
C30.3054 (3)0.06035 (15)0.57852 (6)0.0183 (3)
C40.4833 (3)0.08287 (17)0.61097 (7)0.0232 (3)
H40.59040.01630.61520.028*
C50.5047 (3)0.20200 (18)0.63711 (7)0.0277 (4)
H50.62820.21710.65840.033*
C60.3471 (3)0.29890 (17)0.63237 (7)0.0289 (4)
H60.36060.37990.65080.035*
C70.1689 (3)0.27671 (16)0.60040 (7)0.0283 (4)
H70.06060.34300.59680.034*
C80.1488 (3)0.15806 (16)0.57376 (7)0.0232 (4)
H80.02630.14370.55200.028*
C90.3914 (3)0.37731 (15)0.64746 (6)0.0182 (3)
C100.2516 (3)0.45821 (15)0.67466 (6)0.0194 (3)
H100.10500.47960.65630.023*
C110.3250 (3)0.50851 (16)0.72891 (7)0.0231 (3)
C120.5383 (3)0.47294 (18)0.75585 (7)0.0266 (4)
H120.58970.50530.79290.032*
C130.6756 (3)0.39062 (18)0.72868 (7)0.0270 (4)
H130.81970.36620.74760.032*
C140.6050 (3)0.34342 (16)0.67428 (7)0.0220 (3)
H140.70140.28860.65560.026*
C150.1791 (3)0.60228 (19)0.75688 (8)0.0304 (4)
H15A0.11340.55860.78790.046*
H15B0.05710.63390.72850.046*
H15C0.27180.67560.77240.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0189 (2)0.0149 (2)0.0195 (2)0.00064 (12)0.00198 (15)0.00260 (13)
S20.0174 (2)0.0191 (2)0.0192 (2)0.00001 (13)0.00053 (15)0.00490 (13)
N10.0193 (6)0.0165 (6)0.0189 (6)0.0008 (5)0.0012 (5)0.0036 (5)
N20.0166 (6)0.0212 (7)0.0189 (6)0.0010 (5)0.0009 (5)0.0006 (5)
C10.0204 (7)0.0157 (7)0.0141 (6)0.0019 (6)0.0037 (5)0.0002 (5)
C20.0194 (7)0.0187 (8)0.0259 (8)0.0037 (6)0.0055 (6)0.0019 (6)
C30.0202 (7)0.0177 (7)0.0160 (7)0.0026 (6)0.0020 (6)0.0007 (6)
C40.0188 (7)0.0288 (9)0.0214 (7)0.0000 (6)0.0001 (6)0.0016 (7)
C50.0227 (8)0.0404 (10)0.0197 (8)0.0116 (7)0.0013 (6)0.0046 (7)
C60.0350 (9)0.0233 (9)0.0265 (8)0.0089 (7)0.0046 (7)0.0073 (7)
C70.0344 (9)0.0183 (8)0.0316 (9)0.0033 (7)0.0019 (7)0.0023 (7)
C80.0256 (8)0.0218 (8)0.0228 (8)0.0002 (6)0.0055 (6)0.0010 (6)
C90.0191 (7)0.0178 (7)0.0174 (7)0.0044 (6)0.0009 (6)0.0038 (6)
C100.0180 (7)0.0192 (7)0.0206 (7)0.0017 (6)0.0012 (6)0.0040 (6)
C110.0266 (8)0.0224 (8)0.0211 (7)0.0035 (6)0.0063 (6)0.0019 (6)
C120.0288 (8)0.0333 (9)0.0169 (7)0.0065 (7)0.0006 (6)0.0005 (7)
C130.0217 (8)0.0344 (9)0.0233 (8)0.0016 (7)0.0036 (6)0.0057 (7)
C140.0194 (8)0.0235 (8)0.0230 (8)0.0006 (6)0.0021 (6)0.0041 (6)
C150.0353 (9)0.0319 (10)0.0248 (8)0.0013 (8)0.0070 (7)0.0059 (7)
Geometric parameters (Å, º) top
S1—C11.7588 (15)C6—H60.9500
S1—C21.8245 (16)C7—C81.388 (2)
S2—C11.6761 (15)C7—H70.9500
N1—C11.328 (2)C8—H80.9500
N1—N21.4007 (18)C9—C101.388 (2)
N1—H1N0.878 (9)C9—C141.392 (2)
N2—C91.424 (2)C10—C111.399 (2)
N2—H2N0.875 (9)C10—H100.9500
C2—C31.510 (2)C11—C121.396 (2)
C2—H2A0.9900C11—C151.503 (2)
C2—H2B0.9900C12—C131.386 (3)
C3—C81.386 (2)C12—H120.9500
C3—C41.397 (2)C13—C141.387 (2)
C4—C51.388 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.384 (3)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.390 (3)C15—H15C0.9800
C1—S1—C2102.12 (7)C8—C7—H7119.9
C1—N1—N2119.73 (13)C6—C7—H7119.9
C1—N1—H1N120.1 (13)C3—C8—C7120.68 (15)
N2—N1—H1N118.6 (13)C3—C8—H8119.7
N1—N2—C9116.74 (13)C7—C8—H8119.7
N1—N2—H2N111.2 (13)C10—C9—C14120.35 (15)
C9—N2—H2N110.3 (13)C10—C9—N2123.14 (14)
N1—C1—S2121.90 (11)C14—C9—N2116.47 (14)
N1—C1—S1113.26 (11)C9—C10—C11120.48 (14)
S2—C1—S1124.84 (9)C9—C10—H10119.8
C3—C2—S1107.71 (10)C11—C10—H10119.8
C3—C2—H2A110.2C12—C11—C10118.85 (15)
S1—C2—H2A110.2C12—C11—C15120.66 (15)
C3—C2—H2B110.2C10—C11—C15120.46 (15)
S1—C2—H2B110.2C13—C12—C11120.25 (15)
H2A—C2—H2B108.5C13—C12—H12119.9
C8—C3—C4118.88 (15)C11—C12—H12119.9
C8—C3—C2121.17 (14)C12—C13—C14120.85 (15)
C4—C3—C2119.94 (14)C12—C13—H13119.6
C5—C4—C3120.39 (16)C14—C13—H13119.6
C5—C4—H4119.8C13—C14—C9119.18 (16)
C3—C4—H4119.8C13—C14—H14120.4
C6—C5—C4120.40 (15)C9—C14—H14120.4
C6—C5—H5119.8C11—C15—H15A109.5
C4—C5—H5119.8C11—C15—H15B109.5
C5—C6—C7119.42 (15)H15A—C15—H15B109.5
C5—C6—H6120.3C11—C15—H15C109.5
C7—C6—H6120.3H15A—C15—H15C109.5
C8—C7—C6120.22 (16)H15B—C15—H15C109.5
C1—N1—N2—C9117.48 (15)C2—C3—C8—C7178.47 (15)
N2—N1—C1—S2173.66 (10)C6—C7—C8—C30.1 (3)
N2—N1—C1—S16.62 (17)N1—N2—C9—C1014.4 (2)
C2—S1—C1—N1176.50 (11)N1—N2—C9—C14167.76 (13)
C2—S1—C1—S23.79 (12)C14—C9—C10—C111.1 (2)
C1—S1—C2—C3173.00 (11)N2—C9—C10—C11178.89 (14)
S1—C2—C3—C864.36 (17)C9—C10—C11—C121.8 (2)
S1—C2—C3—C4116.71 (14)C9—C10—C11—C15176.39 (15)
C8—C3—C4—C51.1 (2)C10—C11—C12—C130.9 (2)
C2—C3—C4—C5177.82 (14)C15—C11—C12—C13177.29 (16)
C3—C4—C5—C61.4 (2)C11—C12—C13—C140.7 (3)
C4—C5—C6—C71.0 (3)C12—C13—C14—C91.4 (3)
C5—C6—C7—C80.4 (3)C10—C9—C14—C130.5 (2)
C4—C3—C8—C70.5 (2)N2—C9—C14—C13177.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.88 (1)2.50 (2)3.3581 (13)167 (2)
N2—H2N···S2ii0.87 (1)2.52 (1)3.3819 (13)167 (2)
C6—H6···Cg1iii0.952.613.5314 (19)161
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.878 (14)2.497 (15)3.3581 (13)167.0 (16)
N2—H2N···S2ii0.874 (13)2.524 (14)3.3819 (13)167.4 (16)
C6—H6···Cg1iii0.952.613.5314 (19)161
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1, y1, z.
 

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 9419400) and the Science Fund under the Ministry of Science, Technology and Innovation (MOSTI) (06-01-04-SF1810). We also wish to thank Ms Khadijah Densabali for collecting the intensity data. NFAA wishes to thank UPM for the Graduate Research Fellowship award.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationTayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1402.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o233-o234
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds