

Received 4 March 2015 Accepted 13 March 2015

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; aminobenzothiazole derivatives; aminothiazole Schiff bases; hydrogen bonding

CCDC reference: 1053989 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (*E*)-2-{[(6-methoxy-1,3-benzo-thiazol-2-yl)imino]methyl}phenol

Yousef Hijji,^a Belygona Barare,^b Gilbert Wairia,^b Ray J. Butcher^{c*} and Jan Wikaira^d

^aDepartment of Chemistry and Earth Sciences, Qatar University, Doha, Qatar, ^bChemistry Department, Morgan State University, Baltimore, MD 21251, USA, ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^dDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. *Correspondence e-mail: rbutcher99@yahoo.com

The title compound, $C_{15}H_{12}N_2O_2S$, crystallizes in the orthorhombic space group $Pna2_1$, with two molecules in the asymmetric unit (Z' = 2). Each molecule consists of a 2-hydroxy Schiff base moiety linked through a spacer to a 2-aminobenzothiazole moiety. Each molecule contains an intramolecular hydrogen bond between the -OH group and imine N atom, forming a sixmembered ring. The two independent molecules are linked by a pair of C-H···O hydrogen bonds, forming dimers with an $R_2^2(20)$ ring motif. These dimers are further lined into sheets in the *ab* plane by weak intermolecular C-H···N interactions. The structure was refined as an inversion twin

1. Chemical context

A wide range of biological activities have been attributed to aminothiazoles and compounds having similar structures (Tahiliani et al., 2003) and they have many applications in both human and veterinary medicine (Smith et al., 1999; Sarhan et al., 2010). Certain 2-aminobenzothiazole derivatives act on the central nervous system (Funderburk et al., 1953), possess antimicrobial (Murhekar & Khadsan, 2010; Ravi et al., 2014), antifungal (Catalano et al., 2013) and antibacterial properties (Asiri et al., 2013), serve as selective receptors for anion sensing (Hijji & Wairia, 2005), are active in corrosion inhibition (Quraishi et al., 1997; Rawat & Quraishi, 2003) and act as plant-growth regulators (Mahajan et al., 2013). In addition, some metal complexes of Schiff bases of 2-aminobenzothiazole derivatives have potent antibacterial properties (Sharma et al., 2002; Song et al., 2010). Among antitumor agents discovered in recent years, the identification of various 2-(4aminophenyl)benzothiazoles as potent and selective antitumor drugs against breast, ovarian, colon and renal cell lines has stimulated remarkable interest (Usman et al., 2003; Shi et al., 1996; Havrylyuk et al. 2010) in this class of compound from both a synthetic, and particularly, a structural point of view. Aminothiazole Schiff bases have been prepared as intermediate ligands and for complexation with various metals (Liang et al., 1999; Liu et al., 2009).

In this context, the synthesis and structural characterization of new 2-aminobenzothiazole Schiff base derivatives is of interest (El'tsov & Mokrushin, 2002).

research communications

Figure 1

Molecular diagram for molecules A and B of the title compound, showing the atom labeling. Displacement parameters are drawn at the 30% probability level. The diagram shows the two molecules (A and B) linked into dimers by $R_2^2(20)$ C-H···O hydrogen bonds (dashed lines; see Table 1 for details).

2. Structural commentary

The title compound, C₁₅H₁₂N₂O₂S, crystallizes in the orthorhombic space group, $Pna2_1$, with two molecules (A and B) in the asymmetric unit (Z' = 2). Each molecule consists of a 2-hydroxy Schiff base moiety linked through a spacer to a 2-aminobenzothiazole moiety. This spacer is both planar [r.m.s. deviations of fitted atoms of 0.004 (3) and 0.007 (3) Å, respectively for molecules A and B] and very close to coplanar with both the Schiff base and 2-aminobenzothiazole end moieties [making dihedral angles of 2.6 (9) and $4.0 (3)^{\circ}$, respectively, in molecule A and 3.3 (8) and 3.9 $(7)^{\circ}$ in molecule B]. The molecules themselves are very close to planar, as is shown by the dihedral angles of 4.0(3) and 6.3(2) between the two end groups for molecules A and B, respectively. Each molecule contains an intramolecular hydrogen bond between the OH group and imine N atom, forming a six-membered ring.

3. Supramolecular features

In addition to the intramolecular hydrogen bond mentioned above, the molecules are linked by a pair of $C-H\cdots O$ hydrogen bonds (Table 1), forming dimers with an $R_2^2(20)$ ring motif, as shown in Fig. 1. These dimers are further linked into sheets in the *ab* plane by weak intermolecular $C-H\cdots N$ interactions involving C15 and N2*B*, as shown in Fig. 2.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.35, last update November 2014; Groom & Allen, 2014) for related Schiff base derivatives of 2-aminobenzo-

 Table 1

 Hydrogen-bond geometry (Å, °).

	•			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1A - H1A \cdots N1A$	0.84	1.93	2.647 (9)	143
$C13A - H13A \cdots O1B$	0.95	2.48	3.289 (9)	144
$C15A - H15A \cdots N2B^{i}$	0.98	2.57	3.525 (10)	166
$O1B - H1B \cdot \cdot \cdot N1B$	0.84	1.89	2.636 (9)	147
$C13B - H13B \cdots O1A$	0.95	2.53	3.356 (10)	145

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{3}{2}, z - \frac{1}{2}$.

thiazole gave 23 hits of which the closest example to the title compound was (E)-2-[(6-ethoxybenzothiazol-2-yl)imino-methyl]-6-methoxyphenol (Kong, 2009).

5. Synthesis and crystallization

A mixture of 0.505 g (4.10 mmol) salicylaldehyde and 0.746 g (4.10 mmol) 2-amino-6-methoxybenzothiozole was dissolved in 2 ml of acetonitrile in a vial. The mixture was reacted in a Biotage initiator eight mono mode microwave at 423 K for 2 min and then allowed to cool for 15 min. The resulting product was recrystallized from acetonitrile, filtered and then

Figure 2

Packing diagram, viewed along the *b* axis, showing a sheet of $R_2^2(20)$ C-H···O-linked dimers in the *ac* plane.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{15}H_{12}N_2O_2S$
M _r	284.33
Crystal system, space group	Orthorhombic, <i>Pna</i> 2 ₁
Temperature (K)	120
a, b, c (Å)	35.623 (2), 3.8172 (2), 18.6525 (8)
$V(Å^3)$	2536.4 (2)
Ζ	8
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.30
Crystal size (mm)	$0.38 \times 0.09 \times 0.06$
Data collection	
Diffractometer	Agilent SuperNova (Dual, Cu at
	zero, Atlas)
Absorption correction	Multi-scan (CrysAlis PRO;
	Agilent, 2012)
T_{\min}, T_{\max}	0.573, 0.863
No. of measured, independent and	6990, 3895, 3677
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.045
$(\sin \theta / \lambda)_{\rm max} (\dot{\rm A}^{-1})$	0.630
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.073, 0.189, 1.09
No. of reflections	3895
No. of parameters	364
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	1.01, -0.74
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.65 (5)

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus et al., 2007), SHELXL2013 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2008).

vacuum dried to afford 0.971 g (86% yield) of a yellow crystalline solid (m.p. 399–403 K). A sample was dissolved in ethanol and allowed to crystallize by slow evaporation to give yellow needles used for X-ray structural determination.

¹H NMR (300 MHz, CDCl₃): δ 12.07 (*s*, 1H), 9.36 (*s*, 1H), 8.81 (*dd*, *J* = 9.0, 2.5 Hz, 1H), 8.39 (*d*, *J* = 7.5 Hz, 1H), 8.05 (*d*, *J* = 9.0 Hz. 1H), 7.55 (*m*, 2H), 7.09 (*d*, 7.5 Hz, 1H), 7.04 (*t*, *J* = 7.5 Hz, 1H), 3.83 (*s*, 3H)

¹³C NMR (300 MHz, CDCl₃, p.p.m.): δ 55.07, 105.07, 115.46, 118.4, 121.2, 122.88, 125.26, 130.4, 132.44, 135.07, 145.59, 157.8 162.69, 165.36, 169.49

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically and refined as riding: C–H = 0.93-0.99 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms. Phenol H atoms were located in a difference Fourier map and then refined as riding on their attached O atoms.

Acknowledgements

RJB wishes to acknowledge the assistance of the Department of Chemistry at the University of Canterbury, New Zealand, in allowing access to their diffractometer during his visit in 2014. YH would like to thank support from the Qatar National Research Fund Grant No. NPRP 7–495-1–094.

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Asiri, A. M., Khan, S. A., Marwani, H. M. & Sharma, K. (2013). J. Photochem. Photobiol. B, **120**, 82–89.
- Catalano, A., Carocci, A., Defrenza, I., Muraglia, M., Carrieri, A., Van Bambeke, F., Rosato, A., Corbo, F. & Franchini, C. (2013). *Eur. J. Med. Chem.* **64**, 357–364.
- El'tsov, O. S. & Mokrushin, V. S. (2002). Russ. Chem. Bull. 51, 547–549.
- Funderburk, W. H., King, E. E., Domino, E. F. & Unna, K. R. (1953). J. Pharmacol. Exp. Ther. 107, 356–367.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Havrylyuk, D., Mosula, L., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Eur. J. Med. Chem. 45, 5012–5021.
- Hijji, Y. M. & Wairia, G. (2005). Proceedings of SPIE-The International Society for Optical Engineering 60070B, pp. 1–12. Kong, L.-Q. (2009). Acta Cryst. E65, 0832.
- Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393–396.
- Liu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, 0738.
- Mahajan, D. P., Bhosale, J. D. & Bendre, R. S. (2013). J. Appl. Chem. 2, 765–771.
- Murhekar, M. M. & Khadsan, R. E. (2010). *Pharma Chem.* 2, 219–223.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Quraishi, M. A., Khan, M. A. W., Ajmal, M., Muralidharan, S. & Iyer, S. V. (1997). Corrosion, 53, 475–480.
- Ravi, M., Ushaiah, B., Sujitha, P., Kudle, R. K. & Devi, C. S. (2014). Int. J. Pharm. Pharm. Sci. Vol. 6, Suppl 2, 637.
- Rawat, J. & Quraishi, M. A. (2003). Corrosion, 59, 238-241.
- Sarhan, A. A. O., Al-Dhfyan, A., Al-Mozaini, M. A., Adra, C. N. & Aboul-Fadl, T. (2010). *Eur. J. Med. Chem.* **45**, 2689–2694.
- Sharma, R. C., Singh, S., Vats, R. & Agarwal, S. (2002). J. Inst. Chem. (India), 74, 188–190.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375– 3384.
- Smith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Healy, P. C. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703.
- Song, S., Song, M., Zhang, H. & Yang, L. (2010). *Huaxue Yanjiu*, 21, 21–25.
- Tahiliani, H., Jaisinghani, N. & Ojha, K. G. (2003). Indian J. Chem. Sect. B, 42, 171–174.
- Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41– m43.

supporting information

Acta Cryst. (2015). E71, 385-387 [doi:10.1107/S2056989015005228]

Crystal structure of (*E*)-2-{[(6-methoxy-1,3-benzothiazol-2-yl)imino]methyl}-phenol

Yousef Hijji, Belygona Barare, Gilbert Wairia, Ray J. Butcher and Jan Wikaira

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus *et al.*, 2007); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(E)-2-{[(6-Methoxy-1,3-benzothiazol-2-yl)imino]methyl}phenol

Crystal data $C_{15}H_{12}N_2O_2S$ $D_{\rm x} = 1.489 {\rm Mg m^{-3}}$ $M_r = 284.33$ Cu Ka radiation, $\lambda = 1.54178$ Å Orthorhombic, Pna21 Cell parameters from 2917 reflections $\theta = 4.7 - 76.1^{\circ}$ a = 35.623 (2) Åb = 3.8172 (2) Å $\mu = 2.30 \text{ mm}^{-1}$ T = 120 Kc = 18.6525 (8) Å Needle, yellow-orange $V = 2536.4 (2) \text{ Å}^3$ Z = 8 $0.38 \times 0.09 \times 0.06 \text{ mm}$ F(000) = 1184Data collection Agilent SuperNova (Dual, Cu at zero, Atlas) 6990 measured reflections 3895 independent reflections diffractometer Radiation source: sealed X-ray tube 3677 reflections with $I > 2\sigma(I)$ Detector resolution: 5.3250 pixels mm⁻¹ $R_{\rm int} = 0.045$ ω scans $\theta_{\rm max} = 76.2^\circ, \ \theta_{\rm min} = 3.4^\circ$ $h = -41 \rightarrow 44$ Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $k = -2 \rightarrow 4$ $T_{\rm min} = 0.573, T_{\rm max} = 0.863$ $l = -20 \rightarrow 23$ Refinement Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_o^2) + (0.0845P)^2 + 6.6687P]$ $R[F^2 > 2\sigma(F^2)] = 0.073$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.189$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.09 $\Delta \rho_{\rm max} = 1.01 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$ 3895 reflections Absolute structure: Refined as an inversion 364 parameters 1 restraint twin. Hydrogen site location: mixed Absolute structure parameter: 0.65 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	0.87402 (5)	0.3471 (4)	0.32176 (9)	0.0241 (4)	
O1A	0.97069 (15)	0.6508 (16)	0.4723 (3)	0.0337 (13)	
H1A	0.9559	0.6313	0.4376	0.050*	
O2A	0.78912 (15)	-0.1334 (15)	0.1150 (3)	0.0283 (12)	
N1A	0.94790 (18)	0.3743 (16)	0.3497 (4)	0.0250 (13)	
N2A	0.92781 (17)	0.1374 (18)	0.2372 (4)	0.0283 (13)	
C1A	1.0055 (2)	0.5657 (19)	0.4512 (4)	0.0261 (15)	
C2A	1.0359 (2)	0.648 (2)	0.4958 (4)	0.0306 (16)	
H1	1.0314	0.7620	0.5402	0.037*	
C3A	1.0718 (2)	0.568 (2)	0.4768 (4)	0.0318 (17)	
H2	1.0919	0.6241	0.5082	0.038*	
C4A	1.0793 (2)	0.403 (2)	0.4114 (5)	0.0274 (15)	
H3	1.1045	0.3592	0.3970	0.033*	
C5A	1.0495 (2)	0.303 (2)	0.3674 (4)	0.0274 (16)	
H4	1.0542	0.1730	0.3249	0.033*	
C6A	1.0126 (2)	0.394 (2)	0.3862 (4)	0.0274 (16)	
C7A	0.9824 (2)	0.2951 (18)	0.3370 (4)	0.0238 (15)	
H5	0.9884	0.1694	0.2946	0.029*	
C8A	0.9213 (2)	0.2730 (17)	0.2996 (4)	0.0225 (14)	
C9A	0.89431 (19)	0.0635 (19)	0.2017 (4)	0.0237 (14)	
C10A	0.8905 (2)	-0.087(2)	0.1348 (4)	0.0265 (15)	
H10A	0.9120	-0.1510	0.1078	0.032*	
C11A	0.8548 (2)	-0.1449 (19)	0.1075 (4)	0.0264 (16)	
H11A	0.8521	-0.2508	0.0617	0.032*	
C12A	0.8227 (2)	-0.0498 (17)	0.1462 (4)	0.0212 (14)	
C13A	0.8255 (2)	0.1077 (19)	0.2129 (4)	0.0254 (15)	
H13A	0.8037	0.1706	0.2392	0.031*	
C14A	0.8617 (2)	0.1715 (18)	0.2403 (4)	0.0240 (14)	
C15A	0.75623 (19)	-0.027(2)	0.1521 (5)	0.0289 (16)	
H15A	0.7340	-0.1033	0.1254	0.043*	
H15B	0.7560	0.2289	0.1566	0.043*	
H15C	0.7560	-0.1328	0.2000	0.043*	
S1B	0.87656 (5)	0.8509 (4)	0.49182 (9)	0.0246 (4)	
O1B	0.78077 (16)	0.5412 (16)	0.3390 (3)	0.0361 (14)	
H1B	0.7960	0.6119	0.3701	0.054*	
O2B	0.95964 (15)	1.3166 (15)	0.7026 (3)	0.0293 (12)	
N1B	0.80272 (18)	0.8089 (15)	0.4624 (4)	0.0247 (13)	
N2B	0.82255 (17)	1.0626 (16)	0.5746 (4)	0.0263 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

C1B	0.7453 (2)	0.5753 (18)	0.3644 (4)	0.0248 (15)
C2B	0.7160 (2)	0.4583 (19)	0.3210 (5)	0.0291 (15)
H6	0.7209	0.3632	0.2749	0.035*
C3B	0.6790 (2)	0.484 (2)	0.3472 (4)	0.0299 (17)
H7	0.6587	0.4020	0.3187	0.036*
C4B	0.6717 (2)	0.628 (2)	0.4136 (4)	0.0287 (16)
H8	0.6466	0.6431	0.4301	0.034*
C5B	0.7005 (2)	0.7494 (18)	0.4564 (4)	0.0243 (15)
H9	0.6950	0.8494	0.5019	0.029*
C6B	0.7381 (2)	0.7258 (16)	0.4329 (4)	0.0204 (14)
C7B	0.7681 (2)	0.8352 (17)	0.4793 (4)	0.0245 (15)
H10	0.7618	0.9319	0.5247	0.029*
C8B	0.8289 (2)	0.9165 (19)	0.5123 (4)	0.0252 (15)
C9B	0.8560 (2)	1.1290 (19)	0.6098 (4)	0.0253 (15)
C10B	0.8589 (2)	1.2798 (19)	0.6777 (4)	0.0262 (16)
H10B	0.8370	1.3415	0.7040	0.031*
C11B	0.8943 (2)	1.3379 (19)	0.7062 (5)	0.0261 (15)
H11B	0.8967	1.4428	0.7522	0.031*
C12B	0.9269 (2)	1.2432 (18)	0.6678 (5)	0.0252 (16)
C13B	0.9242 (2)	1.0870 (17)	0.6009 (4)	0.0246 (14)
H13B	0.9460	1.0207	0.5748	0.029*
C14B	0.8884 (2)	1.0313 (17)	0.5736 (4)	0.0234 (14)
C15B	0.9936 (2)	1.235 (2)	0.6643 (5)	0.0288 (16)
H15D	1.0149	1.3469	0.6882	0.043*
H15E	0.9916	1.3226	0.6150	0.043*
H15F	0.9972	0.9808	0.6635	0.043*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0280 (8)	0.0261 (8)	0.0182 (9)	-0.0016 (6)	-0.0003 (7)	-0.0049 (7)
O1A	0.029 (3)	0.044 (3)	0.028 (3)	-0.005 (2)	0.000 (2)	0.001 (3)
O2A	0.031 (3)	0.031 (3)	0.023 (3)	-0.003(2)	-0.002(2)	-0.004 (2)
N1A	0.032 (3)	0.021 (3)	0.022 (3)	-0.002 (2)	-0.002 (3)	-0.006 (2)
N2A	0.032 (3)	0.033 (3)	0.020 (3)	-0.007(2)	-0.003 (3)	0.001 (3)
C1A	0.033 (4)	0.025 (3)	0.020 (4)	-0.006 (3)	-0.003 (3)	0.006 (3)
C2A	0.040 (4)	0.034 (4)	0.018 (4)	-0.015 (3)	-0.002 (3)	0.002 (3)
C3A	0.039 (4)	0.033 (4)	0.024 (4)	-0.007 (3)	-0.008 (3)	0.009(3)
C4A	0.027 (3)	0.026 (3)	0.030 (4)	0.004 (3)	0.001 (3)	0.002 (3)
C5A	0.038 (4)	0.030 (4)	0.014 (4)	-0.001 (3)	-0.001 (3)	0.000 (3)
C6A	0.034 (4)	0.025 (3)	0.023 (4)	-0.002 (3)	0.000 (3)	0.004 (3)
C7A	0.037 (4)	0.022 (3)	0.012 (3)	-0.003 (3)	0.000 (3)	0.003 (3)
C8A	0.034 (4)	0.017 (3)	0.017 (4)	0.000 (2)	0.002 (3)	-0.004 (2)
C9A	0.028 (3)	0.027 (3)	0.016 (3)	-0.004 (3)	0.001 (3)	0.007 (3)
C10A	0.030 (3)	0.028 (4)	0.022 (4)	0.003 (3)	0.003 (3)	-0.002 (3)
C11A	0.041 (4)	0.021 (3)	0.016 (4)	-0.008 (3)	0.000 (3)	0.003 (3)
C12A	0.032 (3)	0.014 (3)	0.018 (3)	-0.004 (2)	-0.003 (3)	0.004 (3)
C13A	0.030 (3)	0.027 (4)	0.019 (3)	0.002 (3)	0.004 (3)	0.004 (3)

supporting information

C14A	0.033 (3)	0.016 (3)	0.023 (4)	-0.005 (3)	0.003 (3)	0.005 (3)
C15A	0.025 (3)	0.029 (3)	0.033 (4)	-0.003 (3)	-0.002 (3)	-0.005 (3)
S1B	0.0291 (9)	0.0271 (8)	0.0177 (9)	0.0008 (6)	-0.0003 (6)	-0.0047 (7)
O1B	0.033 (3)	0.046 (3)	0.029 (3)	-0.001 (2)	0.002 (2)	-0.013 (3)
O2B	0.029 (3)	0.036 (3)	0.022 (3)	0.004 (2)	-0.001 (2)	-0.001 (2)
N1B	0.032 (3)	0.020 (3)	0.022 (3)	0.002 (2)	-0.004 (3)	0.002 (2)
N2B	0.034 (3)	0.020 (3)	0.024 (3)	-0.002 (2)	-0.004 (3)	-0.003 (3)
C1B	0.033 (4)	0.018 (3)	0.023 (4)	0.001 (3)	-0.003 (3)	0.002 (3)
C2B	0.040 (4)	0.029 (3)	0.018 (4)	0.000 (3)	0.000 (3)	0.003 (3)
C3B	0.036 (4)	0.028 (4)	0.026 (4)	-0.002 (3)	-0.010 (3)	0.009 (3)
C4B	0.030 (4)	0.030 (4)	0.026 (4)	0.000 (3)	0.003 (3)	0.002 (3)
C5B	0.031 (4)	0.020 (3)	0.022 (4)	0.001 (3)	0.003 (3)	0.003 (3)
C6B	0.029 (3)	0.012 (3)	0.021 (4)	0.001 (2)	-0.002 (3)	0.004 (3)
C7B	0.040 (4)	0.014 (3)	0.019 (4)	-0.003 (2)	-0.003 (3)	0.009 (3)
C8B	0.028 (4)	0.022 (3)	0.025 (4)	0.002 (3)	0.001 (3)	0.000 (3)
C9B	0.033 (3)	0.019 (3)	0.024 (4)	-0.004 (2)	-0.001 (3)	-0.001 (3)
C10B	0.040 (4)	0.017 (3)	0.021 (4)	0.001 (3)	0.005 (3)	-0.002 (3)
C11B	0.033 (4)	0.021 (3)	0.024 (4)	-0.002 (3)	0.000 (3)	-0.002 (3)
C12B	0.033 (4)	0.014 (3)	0.028 (4)	-0.004 (2)	-0.003 (3)	0.002 (3)
C13B	0.033 (3)	0.018 (3)	0.023 (4)	0.002 (3)	0.003 (3)	0.006 (3)
C14B	0.045 (4)	0.014 (3)	0.011 (3)	0.000 (3)	0.003 (3)	0.006 (2)
C15B	0.040 (4)	0.025 (3)	0.021 (4)	-0.002 (3)	-0.004 (3)	0.001 (3)

Geometric parameters (Å, °)

S1A—C14A	1.718 (8)	S1B—C14B	1.726 (8)
S1A—C8A	1.759 (8)	S1B—C8B	1.758 (8)
O1A—C1A	1.341 (10)	O1B—C1B	1.356 (9)
O1A—H1A	0.8399	O1B—H1B	0.8400
O2A—C12A	1.369 (9)	O2B—C12B	1.364 (9)
O2A—C15A	1.421 (9)	O2B—C15B	1.438 (10)
N1A—C7A	1.288 (10)	N1B—C7B	1.278 (10)
N1A—C8A	1.385 (10)	N1B	1.380 (10)
N2A—C8A	1.295 (10)	N2B—C8B	1.309 (10)
N2A—C9A	1.393 (9)	N2B—C9B	1.383 (9)
C1A—C6A	1.402 (11)	C1B—C2B	1.395 (11)
C1A—C2A	1.402 (11)	C1B—C6B	1.424 (10)
C2A—C3A	1.362 (12)	C2B—C3B	1.409 (11)
C2A—H1	0.9500	C2B—H6	0.9500
C3A—C4A	1.398 (12)	C3B—C4B	1.378 (12)
C3A—H2	0.9500	C3B—H7	0.9500
C4A—C5A	1.395 (11)	C4B—C5B	1.381 (11)
С4А—Н3	0.9500	C4B—H8	0.9500
C5A—C6A	1.405 (12)	C5B—C6B	1.412 (10)
C5A—H4	0.9500	С5В—Н9	0.9500
C6A—C7A	1.463 (11)	C6B—C7B	1.435 (10)
С7А—Н5	0.9500	C7B—H10	0.9500
C9A-C10A	1.382 (11)	C9B—C14B	1.388 (11)

C9A—C14A	1.428 (10)	C9B—C10B	1.396 (11)
C10A—C11A	1.385 (11)	C10B—C11B	1.388 (12)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A - C12A	1 401 (11)	C11B-C12B	1410(11)
$C_{11A} = U_{12A}$	0.0500		0.0500
CIIA—HIIA	0.9500		0.9500
C12A—C13A	1.385 (11)	C12B—C13B	1.387 (11)
C13A—C14A	1.407 (10)	C13B—C14B	1.391 (11)
C13A—H13A	0.9500	C13B—H13B	0.9500
C15A—H15A	0.9800	C15B—H15D	0.9800
C15A—H15B	0.9800	C15B—H15E	0.9800
C15A—H15C	0.9800	C15B—H15F	0.9800
			0.9000
C14A S1A C9A	99 5 (<i>1</i>)	C14D $S1D$ $C9D$	80.2 (4)
C14A - S1A - C0A	100 5	C1P O1P U1P	09.2 (4) 100.2
	109.5		109.5
C12A—O2A—C15A	116.6 (6)	C12B—O2B—C15B	116.0 (6)
C7A—N1A—C8A	117.5 (6)	C7B—N1B—C8B	117.6 (7)
C8A—N2A—C9A	110.8 (6)	C8B—N2B—C9B	110.5 (6)
O1A—C1A—C6A	122.3 (7)	O1B—C1B—C2B	117.6 (7)
O1A—C1A—C2A	119.1 (7)	O1B—C1B—C6B	121.3 (6)
C6A—C1A—C2A	118.6 (7)	C2B—C1B—C6B	121.1 (7)
$C_{A} = C_{A} = C_{A}$	1214(8)	C1B-C2B-C3B	1184(8)
$C_{3}A - C_{2}A - H_{1}$	119.3	C1B-C2B-H6	120.8
$C_{1A} = C_{2A} = H_1$	119.5	C_{1D} C_{2D} C_{2D} H_6	120.8
CIA - C2A - HI	119.5	$C_{3}D = C_{2}D = C_{3}D$	120.0
C2A—C3A—C4A	120.5 (7)	C4B—C3B—C2B	121.0(/)
C2A—C3A—H2	119.8	C4B—C3B—H7	119.5
C4A—C3A—H2	119.8	C2B—C3B—H7	119.5
C5A—C4A—C3A	119.4 (7)	C3B—C4B—C5B	120.9 (7)
С5А—С4А—Н3	120.3	C3B—C4B—H8	119.5
СЗА—С4А—НЗ	120.3	C5B—C4B—H8	119.5
C4A—C5A—C6A	119.9 (7)	C4B—C5B—C6B	120.2 (7)
С4А—С5А—Н4	120.1	C4B—C5B—H9	119.9
C6A - C5A - H4	120.1	C6B-C5B-H9	119.9
	120.1 120.0(7)	C5P $C6P$ $C1P$	119.9 118.3(7)
C1A = C(A = C7A)	120.0(7)	$C_{2}D - C_{1}D - C_{1}D$	110.3(7)
CIA = COA = C/A	122.1(7)	$C_{J}B = C_{0}B = C_{J}B$	120.0(7)
	11/.9(/)		121.6(7)
NIA—C/A—C6A	121.7 (7)	NIB—C/B—C6B	123.1 (7)
N1A—C7A—H5	119.2	N1B—C7B—H10	118.4
C6A—C7A—H5	119.2	C6B—C7B—H10	118.4
N2A—C8A—N1A	126.7 (7)	N2B—C8B—N1B	127.5 (7)
N2A—C8A—S1A	116.5 (6)	N2B—C8B—S1B	114.9 (6)
N1A—C8A—S1A	116.8 (5)	N1B—C8B—S1B	117.6 (6)
C10A—C9A—N2A	126.7 (7)	N2B—C9B—C14B	115.8 (7)
C10A—C9A—C14A	1197(7)	N2B-C9B-C10B	124 8 (7)
N2A - C9A - C14A	113.6(7)	C14B - C9B - C10B	121.0(7) 1193(7)
$C_{0A} = C_{10A} = C_{11A}$	110.0(7)	C11B C10B C0B	118 8 (9)
C_{2A} C_{10A} U_{10A}	119.2 (7)		120.6
C_{7A} C_{10A} H_{10A}	120.4		120.0
CIIA—CIUA—HIUA	120.4	CAR-CIOR-HIOR	120.6
C10A—C11A—C12A	121.2 (8)	C10B—C11B—C12B	120.8 (8)

C10A—C11A—H11A	119.4	C10B—C11B—H11B	119.6
C12A—C11A—H11A	119.4	C12B—C11B—H11B	119.6
O2A—C12A—C13A	123.1 (7)	O2B—C12B—C13B	125.1 (7)
O2A—C12A—C11A	115.8 (7)	O2B—C12B—C11B	114.2 (7)
C13A—C12A—C11A	121.1 (7)	C13B—C12B—C11B	120.7 (7)
C12A - C13A - C14A	1178(7)	C12B— $C13B$ — $C14B$	1173(7)
C12A - C13A - H13A	121.1	C12B—C13B—H13B	121.4
C14A—C13A—H13A	121.1	C14B—C13B—H13B	121.4
C13A - C14A - C9A	120.8 (7)	C9B-C14B-C13B	123.0(7)
C13A - C14A - S1A	128.5 (6)	C9B-C14B-S1B	109.6 (6)
C9A - C14A - S1A	110 5 (6)	C13B - C14B - S1B	107.0(0) 127.4(6)
O2A - C15A - H15A	109.5	O2B-C15B-H15D	109.5
O_2A C_{15A} H_{15B}	109.5	O2B $C15B$ $H15D$	109.5
$H_{15} - C_{15} - H_{15} B$	109.5	$H_{15}D_{15}B_{1$	109.5
$\Omega_{2A} = C_{15A} = H_{15C}$	109.5	$\begin{array}{c} 1115D \\ \hline \\ 02P \\ \hline \\ 015P \\ \hline \\ 115E \\ \hline 115E \\ \hline \\ 115E \\ \hline $	109.5
	109.5	U_{15} U	109.5
$\frac{1115A}{115C}$	109.5		109.5
пізв—сіза—пізс	109.5	пізе—Сізв—пізг	109.5
$O_{1} \land C_{1} \land C_{2} \land C_{3} \land$	-170.0(7)	OIR CIR C2R C3R	178 6 (6)
$C_{A} = C_{A} = C_{A} = C_{A}$	1/9.9(7)	C_{1}^{C}	-1.5(11)
C1A $C2A$ $C3A$ $C4A$	0.7(11)	C1P C2P C2P C4P	-1.3(11) 1.1(11)
C1A = C2A = C3A = C4A	0.0(12)	C1B - C2B - C3B - C4B	1.1(11)
$C_{2A} = C_{3A} = C_{4A} = C_{5A}$	-5.0(12)	$C_{2B} = C_{4B} = C_{4B} = C_{4B}$	-0.1(12)
$C_{A} = C_{A} = C_{A} = C_{A}$	3.3(12)	C_{3B} C_{4B} C_{5B} C_{7B} C_{1B}	-0.0(11)
OIA - CIA - C6A - C5A	-1/8.4(7)	C4B - C5B - C6B - C1B	0.2(10)
C_{2A} — C_{1A} — C_{6A} — C_{5A}	1.0 (11)	C4B = C5B = C6B = C7B	-1/6.6(6)
OIA - CIA - C6A - C/A	-0.1 (11)		-1/9.3 (6)
C2A— $C1A$ — $C6A$ — C/A	179.3 (7)	C2B—C1B—C6B—C5B	0.9(10)
C4A—C5A—C6A—C1A	-4.0 (11)	OIB—CIB—C6B—C/B	-2.5 (10)
C4A—C5A—C6A—C7A	177.6 (7)	C2B—C1B—C6B—C7B	177.6 (6)
C8A—N1A—C7A—C6A	179.3 (6)	C8B—N1B—C7B—C6B	-178.6 (6)
C1A—C6A—C7A—N1A	2.9 (11)	C5B—C6B—C7B—N1B	177.4 (6)
C5A—C6A—C7A—N1A	-178.8 (7)	C1B—C6B—C7B—N1B	0.7 (10)
C9A—N2A—C8A—N1A	179.1 (7)	C9B—N2B—C8B—N1B	179.2 (7)
C9A—N2A—C8A—S1A	-2.8 (8)	C9B—N2B—C8B—S1B	-0.3 (8)
C7A—N1A—C8A—N2A	-7.7 (11)	C7B—N1B—C8B—N2B	-4.1 (11)
C7A—N1A—C8A—S1A	174.3 (5)	C7B—N1B—C8B—S1B	175.5 (5)
C14A—S1A—C8A—N2A	1.2 (6)	C14B—S1B—C8B—N2B	0.4 (6)
C14A—S1A—C8A—N1A	179.5 (6)	C14B—S1B—C8B—N1B	-179.2 (6)
C8A—N2A—C9A—C10A	-178.8 (7)	C8B—N2B—C9B—C14B	0.0 (9)
C8A—N2A—C9A—C14A	3.3 (9)	C8B—N2B—C9B—C10B	-179.3 (7)
N2A—C9A—C10A—C11A	179.6 (7)	N2B—C9B—C10B—C11B	-178.8 (7)
C14A—C9A—C10A—C11A	-2.7 (11)	C14B—C9B—C10B—C11B	2.0 (11)
C9A-C10A-C11A-C12A	0.6 (11)	C9B-C10B-C11B-C12B	-0.7 (11)
C15A—O2A—C12A—C13A	4.5 (10)	C15B—O2B—C12B—C13B	2.6 (10)
C15A—O2A—C12A—C11A	-177.6 (6)	C15B—O2B—C12B—C11B	-178.0 (6)
C10A—C11A—C12A—O2A	-177.3 (6)	C10B—C11B—C12B—O2B	179.9 (7)
C10A—C11A—C12A—C13A	0.5 (11)	C10B—C11B—C12B—C13B	-0.6 (11)
O2A—C12A—C13A—C14A	178.2 (6)	O2B—C12B—C13B—C14B	179.9 (6)

supporting information

C8A—S1A—C14A—C13A 176.1 (7) C8B—S1B—C14B—C9B -0.4 (5) C8A—S1A—C14A—C9A 0.7 (5) C8B—S1B—C14B—C13B -178.5 (6)	N2A—C9A—C14A—C13A -178. C10A—C9A—C14A—S1A 179.6 N2A—C9A—C14A—S1A -2.4 (
---	---

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
01 <i>A</i> —H1 <i>A</i> ···N1 <i>A</i>	0.84	1.93	2.647 (9)	143	
C13A—H13A…O1B	0.95	2.48	3.289 (9)	144	
$C15A$ — $H15A$ ···· $N2B^{i}$	0.98	2.57	3.525 (10)	166	
O1 <i>B</i> —H1 <i>B</i> ···N1 <i>B</i>	0.84	1.89	2.636 (9)	147	
C13B—H13B…O1A	0.95	2.53	3.356 (10)	145	

Symmetry code: (i) -x+3/2, y-3/2, z-1/2.