research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 424-426

Crystal structure of (2E)-1-(4-hy­dr­oxy-1-methyl-2-oxo-1,2-di­hydro­quinolin-3-yl)-3-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of Kinshasa, Kinshasa XI BP 190, Democratic Republic of Congo, bFaculty of Chemical Technology, Hanoi University of Industry, Minh Khai Commune – Tu Liem District, Hanoi, Vietnam, cFaculty of Chemistry, Hanoi University of Science, 334 - Nguyen Trai – Thanh Xuan District, Hanoi, Vietnam, dChemistry Department, Hanoi National University of Education, 136 - Xuan Thuy – Cau Giay, Hanoi, Vietnam, and eChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 14 March 2015; accepted 18 March 2015; online 28 March 2015)

In the title compound, C20H17NO5, the dihedral angle between the mean plane of the di­hydro­quinoline ring system (r.m.s. deviation = 0.003 Å) and the benzene ring is 1.83 (11)°. The almost planar conformation is a consequence of an intra­molecular O—H⋯O hydrogen bond and the E configuration about the central C=C bond. In the crystal structure, O—H⋯O hydrogen bonds generate chains of mol­ecules along the [10-1] direction. These chains are linked via ππ inter­actions [inter-centroid distances are in the range 3.6410 (16)–3.8663 (17) Å].

1. Chemical context

The quinoline ring is an important component of bioactive heterocycles because of its diversity (Larsen et al., 1996[Larsen, R. D., Corley, E. G., King, A. O., Carroll, J. D., Davis, P., Verhoeven, T. R., Reider, P. J., Labelle, M., Gauthier, J. Y., Xiang, Y. B. & Zamboni, R. J. (1996). J. Org. Chem. 61, 3398-3405.]; Chen et al., 2001[Chen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L. & Tzeng, C. C. (2001). J. Med. Chem. 44, 2374-2377.]; Roma et al., 2000[Roma, G., Di Braccio, M., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1035.]; Dubé et al., 1998[Dubé, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Ethier, D., Falgueyret, J.-P., Friesen, R. W., Girard, M., Girard, Y., Guay, J., Riendeau, D., Tagari, P. & Young, R. (1998). Bioorg. Med. Chem. Lett. 8, 1255-1260.]; Billker et al., 1998[Billker, O., Lindo, V., Panico, M., Etienne, A. E., Paxton, T., Dell, A., Rogers, M., Sinden, R. E. & Morris, H. R. (1998). Nature, 392, 289-292.]). Many derivatives containing 4-hy­droxy-1,2-di­hydro­quinolin-2(1H)-one have wide applications in pharmaceuticals, such as anti­cancer (Hasegawa et al., 1990[Hasegawa, S., Masunaga, K., Muto, M. & Hanada, S. (1990). Chem. Abstr. 114, 34897k.]), anti-inflammatory (Ukrainets et al., 1996[Ukrainets, I. V., Taran, S. G., Sidorenko, L. V., Gorokhova, O. V., Ogirenko, A. A., Turov, A. V. & Filimonova, N. I. (1996). Khim. Geterotsikl. Soedin. 8, 1113-1123.]) and anti­seizure (Rowley et al., 1993[Rowley, M., Leeson, P. D., Stevenson, G. I., Moseley, A. M., Stansfield, I., Sanderson, I., Robinson, L., Baker, R., Kemp, J. A., Marshall, G. R., et al. (1993). J. Med. Chem. 36, 3386-3396.]). Some α,β-unsaturated ketones are known to have anti­malarial, anti­bacterial and anti­fungal properties (Katritzky & Rees, 1984[Katritzky, A. R. & Rees, C. W. (1984). Compr. Heterocycl. Chem. pp. 25-85 Oxford: Pergamon Press.]). The anti­cancer ability of some α,β-unsaturated ketones containing a quinoline ring has also been reported (Rezig et al., 2000[Rezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. J. (2000). J. Soc. Alger. Chim. 10, 111-120.]; Nguyen, 2007[Nguyen, M. T. (2007). Personal communication.]). A number of the α,β-unsaturated ketones containing quinoline synthesized by the Claisen–Schmidt reaction have been reported to inhibit anti­malarial activity (Domínguez et al., 2001[Domínguez, J. N., Charris, J. E., Lobo, G., Gamboa de Domínguez, N., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555-560.]). Moussaoui et al. (2002[Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71-78.]) also described the synthesis of α,β-unsaturated ketones containing a quinoline ring and claimed cytotoxicity with human leukemia cells. Here we present the synthesis and crystal structure of an α,β-unsaturated ketone derived from 3-acetyl-4-hy­droxy-N-methyl­quinolin-2(1H)-one and 4-hy­droxy-3-meth­oxy­benzaldehyde.

[Scheme 1]

2. Structural Commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The whole mol­ecule is almost planar with a maximum deviation from the best plane through all atoms of 0.147 (3) Å for atom C20. The di­hydro­quinoline and benzene rings make a dihedral angle of 1.83 (11)° between the best planes. The configuration of the C12=C13 bond is E, with a C9—C11—C12—C13 torsion angle of 177.0 (2)°. In addition, intra­molecular O2—H2⋯O3 and C12—H12⋯O1 hydrogen bonds assure the observed planarity of the structure (Table 1[link]). Three short intra­molecular contacts are observed: H10B⋯O1 (2.18 Å), H5A⋯O4 (2.25 Å) and H13⋯O3 (2.37 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.65 2.407 (3) 148
O5—H5A⋯O1i 0.84 2.05 2.730 (3) 137
C12—H12⋯O1 0.98 2.18 2.822 (3) 124
C10—H10C⋯O3ii 0.98 2.56 3.523 (3) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

3. Supra­molecular features

In the crystal, mol­ecules are connected via O5—H5A⋯O1 hydrogen bonds, forming chains propagating along [10[\overline{1}]] (Fig. 2[link] and Table 1[link]). These chains are linked by ππ inter­actions involving both ring systems (Fig. 3[link]) and C—H⋯O inter­actions (Table 1[link]). The inter-centroid distances are 3.6410 (16) and 3.8663 (17) Å for ππ inter­actions involving Cg1⋯Cg2iv and Cg3⋯Cg2v, respectively, where Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C2/C7–C9, C2–C7 and C14–C19 rings, respectively [symmetry codes: (iv) −x + 1, −y, −z + 2; (v) −x + 2, −y, −z + 2].

[Figure 2]
Figure 2
Infinite chains in the [10[\overline{1}]] direction formed by O5—H5A⋯O1 hydrogen bonds (shown as red dashed lines). [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iii) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]
[Figure 3]
Figure 3
ππ inter­actions in the crystal of the title compound shown as green dashed lines. [Symmetry codes: (iv) −x + 1, −y, −z + 2; (v) −x + 2, −y, −z + 2.]

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for α,β-unsaturated ketones C—CH=CH—C(=O)—O gave 1281 hits of which the majority adopts an E configuration (C—C=C—C torsion angle around 180°) as in the title compound. For only 19 entries this torsion angle is centered around 0°. A search for 1,2-di­hydro­quinoline derivatives gave 706 hits of which none contains an α,β-unsaturated ketone at the 3-position. The angle between the best planes through the two six-membered rings in these 1,2-di­hydro­quinoline derivatives is in the range of 0–22.13°. In the title compound, this angle is 1.49 (12)°.

5. Synthesis and crystallization

The precursors 4-hy­droxy-6-methyl-2H-pyrano[3,2-c]quino­line-2,5(6H)-dione and 3-acetyl-4-hy­droxy-N-methyl­quinolin-2(1H)-one were prepared in high yield (87.0 and 92.5%, respectively) according to Kappe et al. (1994[Kappe, T., Aigner, R., Hohengassner, P. & Stadlbauer, W. (1994). J. Prakt. Chem. 336, 596-601.]).

The title compound was synthesized by refluxing a solution of 2.17 g (0.01 mol) of 3-acetyl-4-hy­droxy-N-methyl­quinolin-2(1H)-one, 1.52 g (0.01 mol) of 4-hy­droxy-3-meth­oxy­benzaldehyde, 22 ml of chloro­form and 5 drops of piperidine (as a catalyst) in a 100 ml flask for 30 h. The precipitate was filtered off and recrystallized from ethanol to obtain the title product as yellow crystals. The yield was 2.03 g (58%); m.p. 505–506 K, Rf 0.7 (CHCl3–C2H5OH = 7:1 v/v).

IR (KBr, cm−1): 3357, 3115 (νOH); 1637 (νC=O); 997 (νCH= trans). 1H NMR (δ p.p.m.; DMSO-d6, Bruker Avance 500 MHz): 8.47 (1H, d, 2J = 16.0 Hz, Hβ), 7.92 (1H, d, 2J = 16.0 Hz, Hα), 3.59 (3H, s CH3-N), 7.33 (1H, t, 3J = 8.0 Hz, C6-H), 7.55 (1H, d, 3J = 8.0 Hz, C5-H), 7.81 (1H, t, 3J = 8.0 Hz, C7-H), 8.13 (1H, d, 3J = 8.0 Hz, C8-H), 3.85 (3H, s, OCH3), 6.89 (2H, d, 3J = 8.0 Hz, C13-H), 7.27 (1H, d, 3J = 8.0 Hz, C12-H), 7.30 (1H, s, C9-H), 9.89 (1H, s, C4-OH). Calculation for C20H17NO5: M = 351 au. Found (by ESI MS, m/z): 351 (M+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined using a riding model with stretchable C—H and O—H distances and with Uiso = 1.2Ueq(C) (1.5 times for methyl and hydroxyl groups).

Table 2
Experimental details

Crystal data
Chemical formula C20H17NO5
Mr 351.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.3634 (8), 22.664 (2), 8.8079 (9)
β (°) 95.413 (3)
V3) 1662.1 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.84
Crystal size (mm) 0.58 × 0.22 × 0.04
 
Data collection
Diffractometer Bruker SMART 6000
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.641, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 15707, 2881, 1889
Rint 0.086
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.156, 1.02
No. of reflections 2881
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.19
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2E)-1-(4-Hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C20H17NO5Z = 4
Mr = 351.35F(000) = 736
Monoclinic, P21/nDx = 1.404 Mg m3
a = 8.3634 (8) ÅCu Kα radiation, λ = 1.54178 Å
b = 22.664 (2) ŵ = 0.84 mm1
c = 8.8079 (9) ÅT = 100 K
β = 95.413 (3)°Block, yellow
V = 1662.1 (3) Å30.58 × 0.22 × 0.04 mm
Data collection top
Bruker SMART 6000
diffractometer
2881 independent reflections
Radiation source: fine-focus sealed tube1889 reflections with I > 2σ(I)
Crossed Gοbel mirrors monochromatorRint = 0.086
w\ and φ scansθmax = 66.6°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.641, Tmax = 0.967k = 2626
15707 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0033P]
where P = (Fo2 + 2Fc2)/3
2881 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7024 (3)0.04442 (11)0.9256 (3)0.0415 (6)
N10.7229 (2)0.02301 (9)1.1896 (2)0.0420 (5)
O10.8821 (2)0.08925 (8)1.0865 (2)0.0512 (5)
C20.6258 (3)0.06452 (11)1.0557 (3)0.0413 (6)
O20.6850 (2)0.07762 (9)0.8038 (2)0.0583 (6)
H20.73800.06330.73620.088*
C30.5393 (3)0.11726 (12)1.0516 (4)0.0523 (7)
H30.52840.14020.96090.063*
O30.8460 (2)0.00808 (8)0.6787 (2)0.0546 (5)
C40.4692 (3)0.13626 (13)1.1794 (4)0.0587 (8)
H40.41080.17231.17720.070*
O41.2629 (3)0.28691 (9)0.7891 (2)0.0675 (6)
C50.4853 (3)0.10230 (14)1.3095 (4)0.0620 (8)
H50.43760.11521.39730.074*
O51.3629 (3)0.29415 (9)0.5092 (3)0.0723 (7)
H5A1.36060.32050.57590.109*
C60.5689 (3)0.05015 (13)1.3150 (3)0.0540 (7)
H60.57890.02771.40640.065*
C70.6394 (3)0.02989 (11)1.1873 (3)0.0421 (6)
C80.8029 (3)0.04333 (11)1.0694 (3)0.0394 (6)
C90.7893 (3)0.00803 (10)0.9302 (3)0.0370 (5)
C100.7290 (4)0.06001 (14)1.3261 (3)0.0635 (8)
H10A0.62030.07331.34200.095*
H10B0.79740.09441.31280.095*
H10C0.77320.03721.41480.095*
C110.8604 (3)0.02611 (11)0.7932 (3)0.0418 (6)
C120.9447 (3)0.08179 (11)0.7778 (3)0.0447 (6)
H120.95070.10940.85940.054*
C131.0134 (3)0.09468 (11)0.6516 (3)0.0429 (6)
H131.00540.06540.57410.051*
C141.0990 (3)0.14816 (11)0.6180 (3)0.0420 (6)
C151.1320 (3)0.19255 (11)0.7263 (3)0.0447 (6)
H151.09440.18900.82440.054*
C161.2192 (3)0.24159 (12)0.6913 (3)0.0480 (7)
C171.2722 (3)0.24754 (12)0.5466 (4)0.0536 (7)
C181.2366 (4)0.20473 (12)0.4387 (4)0.0584 (8)
H181.27140.20900.33960.070*
C191.1502 (3)0.15542 (12)0.4737 (3)0.0524 (7)
H191.12560.12610.39810.063*
C201.2328 (4)0.28030 (14)0.9429 (4)0.0699 (9)
H20A1.11660.27820.94990.105*
H20B1.27730.31411.00190.105*
H20C1.28340.24390.98390.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (13)0.0349 (13)0.0493 (15)0.0023 (10)0.0045 (11)0.0069 (11)
N10.0485 (11)0.0400 (12)0.0372 (12)0.0021 (9)0.0034 (10)0.0010 (8)
O10.0626 (11)0.0393 (11)0.0518 (11)0.0104 (9)0.0065 (9)0.0053 (8)
C20.0355 (12)0.0364 (14)0.0522 (16)0.0059 (10)0.0046 (11)0.0078 (11)
O20.0723 (13)0.0472 (12)0.0584 (13)0.0144 (10)0.0210 (10)0.0155 (9)
C30.0465 (15)0.0426 (16)0.0679 (19)0.0003 (12)0.0057 (14)0.0037 (13)
O30.0706 (12)0.0439 (11)0.0515 (11)0.0091 (9)0.0171 (10)0.0107 (8)
C40.0519 (16)0.0476 (17)0.077 (2)0.0073 (13)0.0092 (15)0.0175 (15)
O40.0914 (15)0.0506 (13)0.0635 (14)0.0232 (11)0.0223 (12)0.0085 (10)
C50.0574 (18)0.066 (2)0.064 (2)0.0045 (15)0.0134 (16)0.0199 (15)
O50.0931 (16)0.0444 (13)0.0869 (18)0.0117 (11)0.0471 (14)0.0035 (10)
C60.0532 (15)0.0613 (19)0.0482 (16)0.0000 (13)0.0084 (13)0.0105 (13)
C70.0345 (12)0.0436 (15)0.0476 (15)0.0056 (10)0.0016 (11)0.0069 (11)
C80.0368 (12)0.0336 (13)0.0475 (15)0.0028 (10)0.0024 (11)0.0029 (10)
C90.0355 (12)0.0315 (13)0.0443 (14)0.0040 (10)0.0051 (11)0.0013 (10)
C100.086 (2)0.064 (2)0.0411 (16)0.0142 (17)0.0089 (16)0.0072 (13)
C110.0407 (13)0.0374 (14)0.0479 (15)0.0050 (11)0.0068 (12)0.0028 (11)
C120.0455 (14)0.0382 (14)0.0519 (16)0.0020 (11)0.0126 (12)0.0035 (11)
C130.0425 (13)0.0378 (14)0.0486 (15)0.0030 (11)0.0056 (12)0.0025 (11)
C140.0386 (12)0.0382 (14)0.0506 (16)0.0026 (10)0.0108 (12)0.0028 (11)
C150.0451 (14)0.0435 (15)0.0470 (15)0.0019 (11)0.0120 (12)0.0001 (11)
C160.0495 (15)0.0400 (15)0.0564 (17)0.0009 (11)0.0141 (13)0.0009 (12)
C170.0584 (17)0.0380 (15)0.068 (2)0.0030 (12)0.0270 (15)0.0101 (13)
C180.077 (2)0.0479 (17)0.0552 (18)0.0014 (14)0.0308 (16)0.0037 (13)
C190.0632 (17)0.0456 (17)0.0508 (17)0.0012 (13)0.0185 (14)0.0033 (12)
C200.089 (2)0.063 (2)0.059 (2)0.0198 (18)0.0139 (18)0.0138 (15)
Geometric parameters (Å, º) top
C1—C21.439 (4)C8—C91.459 (3)
C1—O21.307 (3)C9—C111.454 (3)
C1—C91.392 (3)C10—H10A0.9800
N1—C71.387 (3)C10—H10B0.9800
N1—C81.384 (3)C10—H10C0.9800
N1—C101.462 (3)C11—C121.458 (3)
O1—C81.235 (3)C12—H120.9500
C2—C31.396 (4)C12—C131.331 (4)
C2—C71.395 (4)C13—H130.9500
O2—H20.8400C13—C141.452 (3)
C3—H30.9500C14—C151.396 (4)
C3—C41.386 (4)C14—C191.389 (4)
O3—C111.269 (3)C15—H150.9500
C4—H40.9500C15—C161.380 (4)
C4—C51.377 (4)C16—C171.395 (4)
O4—C161.367 (3)C17—C181.371 (4)
O4—C201.409 (4)C18—H180.9500
C5—H50.9500C18—C191.381 (4)
C5—C61.372 (4)C19—H190.9500
O5—H5A0.8400C20—H20A0.9800
O5—C171.359 (3)C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C6—C71.396 (4)
O2—C1—C2116.6 (2)H10A—C10—H10B109.5
O2—C1—C9122.2 (2)H10A—C10—H10C109.5
C9—C1—C2121.2 (2)H10B—C10—H10C109.5
C7—N1—C10119.1 (2)O3—C11—C9118.2 (2)
C8—N1—C7123.7 (2)O3—C11—C12117.7 (2)
C8—N1—C10117.2 (2)C9—C11—C12124.1 (2)
C3—C2—C1121.3 (3)C11—C12—H12119.4
C7—C2—C1118.4 (2)C13—C12—C11121.2 (2)
C7—C2—C3120.3 (2)C13—C12—H12119.4
C1—O2—H2109.5C12—C13—H13116.1
C2—C3—H3119.9C12—C13—C14127.8 (2)
C4—C3—C2120.2 (3)C14—C13—H13116.1
C4—C3—H3119.9C15—C14—C13122.1 (2)
C3—C4—H4120.4C19—C14—C13119.1 (2)
C5—C4—C3119.1 (3)C19—C14—C15118.8 (2)
C5—C4—H4120.4C14—C15—H15119.9
C16—O4—C20117.7 (2)C16—C15—C14120.2 (3)
C4—C5—H5119.3C16—C15—H15119.9
C6—C5—C4121.4 (3)O4—C16—C15125.4 (3)
C6—C5—H5119.3O4—C16—C17114.5 (2)
C17—O5—H5A109.5C15—C16—C17120.1 (3)
C5—C6—H6119.7O5—C17—C16122.0 (3)
C5—C6—C7120.5 (3)O5—C17—C18118.1 (3)
C7—C6—H6119.7C18—C17—C16119.9 (3)
N1—C7—C2120.0 (2)C17—C18—H18120.0
N1—C7—C6121.5 (3)C17—C18—C19120.1 (3)
C2—C7—C6118.5 (3)C19—C18—H18120.0
N1—C8—C9117.1 (2)C14—C19—H19119.6
O1—C8—N1118.6 (2)C18—C19—C14120.9 (3)
O1—C8—C9124.3 (2)C18—C19—H19119.6
C1—C9—C8119.5 (2)O4—C20—H20A109.5
C1—C9—C11118.0 (2)O4—C20—H20B109.5
C11—C9—C8122.5 (2)O4—C20—H20C109.5
N1—C10—H10A109.5H20A—C20—H20B109.5
N1—C10—H10B109.5H20A—C20—H20C109.5
N1—C10—H10C109.5H20B—C20—H20C109.5
C1—C2—C3—C4178.7 (2)C7—C2—C3—C41.4 (4)
C1—C2—C7—N11.1 (3)C8—N1—C7—C23.3 (4)
C1—C2—C7—C6178.3 (2)C8—N1—C7—C6176.0 (2)
C1—C9—C11—O33.2 (3)C8—C9—C11—O3178.2 (2)
C1—C9—C11—C12175.5 (2)C8—C9—C11—C123.1 (4)
N1—C8—C9—C11.9 (3)C9—C1—C2—C3179.7 (2)
N1—C8—C9—C11176.7 (2)C9—C1—C2—C70.5 (3)
O1—C8—C9—C1177.2 (2)C9—C11—C12—C13177.0 (2)
O1—C8—C9—C114.2 (4)C10—N1—C7—C2177.0 (2)
C2—C1—C9—C80.1 (3)C10—N1—C7—C63.7 (4)
C2—C1—C9—C11178.7 (2)C10—N1—C8—O14.2 (3)
C2—C3—C4—C50.4 (4)C10—N1—C8—C9176.6 (2)
O2—C1—C2—C30.8 (4)C11—C12—C13—C14179.0 (2)
O2—C1—C2—C7179.0 (2)C12—C13—C14—C155.8 (4)
O2—C1—C9—C8179.5 (2)C12—C13—C14—C19174.4 (3)
O2—C1—C9—C110.8 (4)C13—C14—C15—C16177.5 (2)
C3—C2—C7—N1178.8 (2)C13—C14—C19—C18177.9 (3)
C3—C2—C7—C61.9 (4)C14—C15—C16—O4178.0 (2)
C3—C4—C5—C60.1 (5)C14—C15—C16—C171.2 (4)
O3—C11—C12—C134.3 (4)C15—C14—C19—C182.0 (4)
C4—C5—C6—C70.4 (4)C15—C16—C17—O5177.8 (3)
O4—C16—C17—O51.5 (4)C15—C16—C17—C180.4 (4)
O4—C16—C17—C18179.7 (3)C16—C17—C18—C190.9 (5)
C5—C6—C7—N1179.3 (2)C17—C18—C19—C140.4 (5)
C5—C6—C7—C21.4 (4)C19—C14—C15—C162.4 (4)
O5—C17—C18—C19177.4 (3)C20—O4—C16—C157.6 (4)
C7—N1—C8—O1175.6 (2)C20—O4—C16—C17171.6 (3)
C7—N1—C8—C93.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.652.407 (3)148
O5—H5A···O1i0.842.052.730 (3)137
C12—H12···O10.982.182.822 (3)124
C10—H10C···O3ii0.982.563.523 (3)167
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

We thank VLIR–UOS and the Chemistry Department of KU Leuven for support of this work.

References

First citationBillker, O., Lindo, V., Panico, M., Etienne, A. E., Paxton, T., Dell, A., Rogers, M., Sinden, R. E. & Morris, H. R. (1998). Nature, 392, 289–292.  CAS PubMed Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L. & Tzeng, C. C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDomínguez, J. N., Charris, J. E., Lobo, G., Gamboa de Domínguez, N., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555–560.  Web of Science PubMed Google Scholar
First citationDubé, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Ethier, D., Falgueyret, J.-P., Friesen, R. W., Girard, M., Girard, Y., Guay, J., Riendeau, D., Tagari, P. & Young, R. (1998). Bioorg. Med. Chem. Lett. 8, 1255–1260.  PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHasegawa, S., Masunaga, K., Muto, M. & Hanada, S. (1990). Chem. Abstr. 114, 34897k.  Google Scholar
First citationKappe, T., Aigner, R., Hohengassner, P. & Stadlbauer, W. (1994). J. Prakt. Chem. 336, 596–601.  CrossRef CAS Google Scholar
First citationKatritzky, A. R. & Rees, C. W. (1984). Compr. Heterocycl. Chem. pp. 25–85 Oxford: Pergamon Press.  Google Scholar
First citationLarsen, R. D., Corley, E. G., King, A. O., Carroll, J. D., Davis, P., Verhoeven, T. R., Reider, P. J., Labelle, M., Gauthier, J. Y., Xiang, Y. B. & Zamboni, R. J. (1996). J. Org. Chem. 61, 3398–3405.  CrossRef CAS Google Scholar
First citationMoussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. 12, 71–78.  CAS Google Scholar
First citationNguyen, M. T. (2007). Personal communication.  Google Scholar
First citationRezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. J. (2000). J. Soc. Alger. Chim. 10, 111–120.  CAS Google Scholar
First citationRoma, G., Di Braccio, M., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRowley, M., Leeson, P. D., Stevenson, G. I., Moseley, A. M., Stansfield, I., Sanderson, I., Robinson, L., Baker, R., Kemp, J. A., Marshall, G. R., et al. (1993). J. Med. Chem. 36, 3386–3396.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Taran, S. G., Sidorenko, L. V., Gorokhova, O. V., Ogirenko, A. A., Turov, A. V. & Filimonova, N. I. (1996). Khim. Geterotsikl. Soedin. 8, 1113–1123.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 424-426
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds