

Received 14 February 2015 Accepted 24 February 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; PTP1B; inhibitor; 1,2,5-thiadiazolidin-3-one 1,1-dioxide; hydrogen bonding

CCDC reference: 1051176 Supporting information: this article has supporting information at journals.iucr.org/e Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonioethoxy)ethoxy]ethoxy}ethyl)carbamoyl]-4-methoxy-[1,1'-biphenyl]-3-yl}-3-oxo-1,2,5-thiadiazolidin-2ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B)

Kasi Viswanatharaju Ruddraraju, Roman Hillebrand, Charles L. Barnes and Kent S. Gates*

125 Chemistry Bldg, University of Missouri Columbia, MO 65211, USA. *Correspondence e-mail: gatesk@missouri.edu

The title compound, $C_{24}H_{32}N_4O_8S$, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonioethoxy)ethoxy]ethoxy}ethyl)carbamoyl] side chain is protonated, while the 1,2,5-thiadiazolidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intramolecular N-H···O hydrogen bond. The 1,2,5-thiadiazolidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, molecules are linked by N-H···O and N-H···N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H···O and C-H···N hydrogen bonds and C-H··· π interactions present.

1. Chemical context

A variety of 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxides have been developed as inhibitors of the enzyme protein tyrosine phosphatase 1B (PTP1B) (Combs, 2010). In this capacity, the 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide core serves as a structural mimic of the phosphoryl tyrosine unit that is present in the endogenous substrates of the enzyme. The parent compound, 5-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide **1** (Fig. 1), is a rather weak inhibitor of PTP1B, displaying a K_i value of approximately 2 m*M* (Black *et al.*, 2005). Docking studies predicted that this compound must bind to the enzyme active site in a conformation where the planes of the 1,2,5-thiadiazolidin-3-one 1,1-dioxide and aryl

OPEN d ACCESS

rings are twisted, rather than co-planar (Black et al., 2005). It was further anticipated that installation of substituents such as methyl or methoxy groups on the aryl ring at the position ortho to the 1,2,5-thiadiazolidin-3-one 1,1-dioxide substituent would bias the conformation of the free ligand toward the twisted form, thus serving to 'pre-organize' the compounds for binding to the enzyme active site (Black et al., 2005). Indeed, compounds 2 and 3 (K; values of 100 and 70 μ M, respectively) display substantially higher affinities for PTP1B than does 1 (Black et al., 2005). X-ray crystal structure analysis confirmed the twisted conformation of the 1,2,5-thiadiazolidin-3-one 1,1-dioxide and aryl ring systems in the protein-ligand cocrystal structure of 4 bound to PTP1B (Black et al., 2005). The planes of these two rings are nearly perpendicular in the protein-ligand complex (dihedral angle of ca 88°, see: pdb code 2bgd). The ability of methyl and methoxy substituents to favor the twisted relationship between the 1,2,5-thiadiazolidin-3-one 1,1-dioxide and aryl rings in compounds like 2 and 3 has been studied computationally and the twisted relationship of these rings has been experimentally observed in the protein-ligand co-crystal structure of 4 with the enzyme PTP1B. However, to the best of our knowledge no crystal structures of free 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxides have been published. Herein, we describe the crystal structure of the title compound (I), shown in the scheme below, a derivative of compound 4.

2. Structural commentary

The title compound (I), crystallized as a zwitterion (Fig. 2). The terminal amine N atom, N4, is protonated and the 1,2,5-

Figure 2

A view of the molecular structure of the title compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $N-H\cdots$ O hydrogen bond is shown as a dashed line (see Table 1 for details) and C-bound H atoms have been omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å,	°).

Cg1 is the centroid of the C3-C8 ring.

$D - \mathbf{H} \cdots A$
2) 161 (2)
2) 133 (2)
2) 124 (2)
2) 163 (2)
2) 162 (3)
2) 166
2) 168
3) 129
2) 129
2) 165

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y + 2, -z.

thiadiazolidin-3-one 1,1-dioxide nitrogen atom, N1, is deprotonated. The [(2-{2-[2-(2-ammonioethoxy)ethoxy]ethoxy}ethyl)carbamoyl] side chain is folded over on itself with an intramolecular N-H···O hydrogen bond involving the ammonium group, N4, and an ether O atom, O7 (Table 1 and Fig. 2). The aryl rings of the biphenyl unit (C3-C8 and C9-C14) are inclined to one another by 20.81 (8)°. The 1,2,5thiadiazolidin-3-one 1,1-dioxide ring (S1/N1/N2/C1/C2) has a shallow envelope conformation with nitrogen atom N2 as the flap. Its mean plane is inclined to the benzene ring to which it is attached (C3-C8) by 62.87 (8)°. This twisted relationship between the planes of the 1,2,5-thiadiazolidin-3-one 1.1-dioxide and aryl rings is substantially less than that seen in the protein-ligand co-crystal structure of 4 bound to PTP1B (Black et al., 2005), where these two rings are nearly perpendicular to one another with a dihedral angle of $ca 88^{\circ}$ (see: Protein Data Bank entry: code 2bgd).

3. Supramolecular features

In the crystal of (I), molecules are linked by $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds, forming slabs lying parallel to the ac plane (Fig. 3 and Table 1). Within the slabs there are also

A view along the *c* axis of the crystal packing of the title compound. The $N-H\cdots O$ and $N-H\cdots O$ hydrogen bonds are shown as dashed lines (see Table 1 for details) and C-bound H atoms have been omitted for clarity.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{24}H_{32}N_4O_8S$
$M_{ m r}$	536.59
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	7.3483 (2), 12.2233 (3), 13.9847 (4)
α, β, γ (°)	95.323 (1), 90.281 (2), 99.802 (1)
$V(Å^3)$	1232.16 (6)
Z	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	1.67
Crystal size (mm)	$0.15\times0.15\times0.02$
Data collection	
Data collection	Druker ADEVILCOD eree
Diffractometer	detector
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
ТТ	0.80, 0.07
I min, I max	15014 4520 4202
observed $[I > 2\sigma(I)]$ reflections	13014, 4339, 4292
R _{int}	0.017
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.111, 1.03
No. of reflections	4539
No. of parameters	351
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.56, -0.33

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

C-H···O and C-H···N hydrogen bonds and C-H··· π interactions present reinforcing the two-dimensional structure (Table 1).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) revealed no crystal structures of free 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxides. It did reveal the presence of five 1,2,5-thiadiazolidin-3-one 1,1-dioxide compounds substituted at the N atom in the 2-position. In the majority of these compounds, the five-membered 1,2,5-thiadiazolidine rings also have envelope conformations, with the N atom in the 5-position, as in compound (I), as the flap.

5. Synthesis and crystallization

The title compound was synthesized by amide bond formation between *tert*-butyl $(2-\{2-[2-(2-\minoethoxy)ethoxy]eth$ $oxy\}ethyl)carbamate and 3'-(1,1-dioxido-4-oxo-1,2,5-thia$ diazolidin-2-yl)-4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid*via*(benzotriazol-1-yloxy)tris(dimethylamino)phosphoniumhexafluorophosphate. The precursors were synthesizedaccording to published procedures (Black*et al.*, 2005;Schwabacher*et al.*, 1998). Full synthetic details will bepublished elsewhere. Single crystals of the title compound (I)were obtained by slow evaporation of a solution of (I) inmethanol.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and freely refined. The Cbound H atoms were included in calculated positions and treated as riding: C-H = 0.95-0.99 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $= 1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

We are grateful to the National Institutes of Health (CA 100757) for partial support of this work.

References

- Black, E., Breed, J., Breeze, A. L., Embrey, K., Garcia, R., Gero, T. W., Godfrey, L., Kenny, P. W., Morley, A. D., Minshull, C. A., Pannifer, A. D., Read, J., Rees, A., Russell, D. J., Toader, D. & Tucker, J. (2005). *Bioorg. Med. Chem. Lett.* **15**, 2503–2507.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Combs, A. P. (2010). J. Med. Chem. 53, 2333-2344.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Schwabacher, A. W., Lane, J. W., Schiesher, M. W., Leigh, K. M. & Johnson, C. W. (1998). J. Org. Chem. 63, 1727–1729.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, 336-338 [doi:10.1107/S2056989015003850]

Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonioethoxy)ethoxy]ethoxy}ethyl)carbamoyl]-4-methoxy-[1,1'-biphenyl]-3-yl}-3-oxo-1,2,5-thiadiazolidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B)

Kasi Viswanatharaju Ruddraraju, Roman Hillebrand, Charles L. Barnes and Kent S. Gates

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2015).

5-{4'-[(2-{2-[2-(2-Ammonioethoxy)ethoxy]ethoxy}ethyl)carbamoyl]-4-methoxy-[1,1'-biphenyl]-3-yl}-3-oxo-1,2,5-thiadiazolidin-2-ide 1,1-dioxide

Crystal data

$C_{24}H_{32}N_4O_8S$
$M_r = 536.59$
Triclinic, $P\overline{1}$
<i>a</i> = 7.3483 (2) Å
<i>b</i> = 12.2233 (3) Å
<i>c</i> = 13.9847 (4) Å
$\alpha = 95.323 (1)^{\circ}$
$\beta = 90.281 \ (2)^{\circ}$
$\gamma = 99.802 (1)^{\circ}$
V = 1232.16 (6) Å ³

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: Incoatec microfocus Cu tube ω and phi scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.89, T_{\max} = 0.97$ 15014 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ Z = 2 F(000) = 568 $D_x = 1.446 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8971 reflections $\theta = 3.2-71.7^{\circ}$ $\mu = 1.67 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.15 \times 0.15 \times 0.02 \text{ mm}$

4539 independent reflections 4292 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 72.1^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -8 \rightarrow 7$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$

 $wR(F^2) = 0.111$ S = 1.03 4539 reflections

351 parameters	$w = 1/[\sigma^2(F_c^2) + (0.0647P)^2 + 0.8661P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Maximum electron density of 0.56 e is in the vicinity of C21 in the extended chain and may represent very minor disorder.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

_	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.52151 (5)	0.68948 (3)	0.09933 (3)	0.01945 (13)	
01	0.65998 (19)	0.61868 (11)	0.09811 (10)	0.0305 (3)	
O2	0.35802 (18)	0.64660 (11)	0.14874 (10)	0.0317 (3)	
O3	0.52042 (18)	0.86988 (10)	-0.09372 (9)	0.0266 (3)	
O4	0.97456 (17)	0.88464 (10)	0.17601 (9)	0.0242 (3)	
05	-0.07338 (17)	0.81837 (11)	0.69084 (9)	0.0296 (3)	
06	-0.04449 (18)	0.63027 (11)	0.85611 (9)	0.0279 (3)	
O7	0.16486 (19)	0.49974 (10)	0.73225 (10)	0.0305 (3)	
08	0.5123 (2)	0.49283 (11)	0.63370 (10)	0.0359 (3)	
N1	0.4761 (2)	0.71885 (12)	-0.00657 (10)	0.0239 (3)	
N2	0.6032 (2)	0.81729 (11)	0.14491 (10)	0.0221 (3)	
N3	0.1468 (2)	0.84118 (12)	0.80862 (11)	0.0232 (3)	
H1N3	0.256 (3)	0.8427 (18)	0.8228 (16)	0.027 (6)*	
N4	0.5520 (3)	0.58747 (14)	0.82658 (12)	0.0291 (3)	
H1N4	0.474 (4)	0.520 (3)	0.812 (2)	0.052 (8)*	
H2N4	0.510 (3)	0.621 (2)	0.8909 (19)	0.041 (6)*	
H3N4	0.685 (5)	0.585 (2)	0.831 (2)	0.058 (8)*	
C1	0.5371 (2)	0.82684 (14)	-0.01819 (12)	0.0206 (3)	
C2	0.6324 (2)	0.89346 (13)	0.07032 (11)	0.0198 (3)	
H2A	0.7659	0.9167	0.0595	0.024*	
H2B	0.5769	0.9607	0.0878	0.024*	
C3	0.6802 (2)	0.83838 (13)	0.23985 (12)	0.0187 (3)	
C4	0.8705 (2)	0.87285 (13)	0.25612 (12)	0.0204 (3)	
C5	0.9381 (2)	0.89174 (14)	0.35051 (13)	0.0229 (4)	
H5	1.0668	0.9150	0.3628	0.028*	
C6	0.8188 (2)	0.87689 (14)	0.42708 (12)	0.0224 (3)	
H6	0.8679	0.8896	0.4909	0.027*	
C7	0.6289 (2)	0.84384 (13)	0.41224 (12)	0.0193 (3)	
C8	0.5638 (2)	0.82427 (13)	0.31696 (12)	0.0197 (3)	
H8	0.4352	0.8005	0.3047	0.024*	
C9	0.4964 (2)	0.83521 (13)	0.49259 (12)	0.0195 (3)	
C10	0.5441 (2)	0.88953 (14)	0.58384 (12)	0.0223 (3)	

1110	0.(((1	0.0000	0.5050	0.007*
HI0	0.0001	0.9293	0.5958	0.027*
	0.4178 (2)	0.88685 (14)	0.05740 (12)	0.0230 (4)
HII	0.4549	0.9235	0./190	0.028*
C12	0.2375 (2)	0.83098 (13)	0.64171 (12)	0.0204 (3)
C13	0.1889 (3)	0.77461 (16)	0.55146 (13)	0.0282 (4)
H13	0.0665	0.7354	0.5396	0.034*
C14	0.3165 (3)	0.77503 (16)	0.47882 (13)	0.0281 (4)
H14	0.2816	0.7338	0.4187	0.034*
C15	1.1677 (3)	0.92460 (19)	0.18946 (15)	0.0334 (4)
H15A	1.1870	0.9942	0.2319	0.050*
H15B	1.2233	0.9383	0.1272	0.050*
H15C	1.2255	0.8687	0.2185	0.050*
C16	0.0893 (2)	0.82919 (14)	0.71575 (13)	0.0226 (4)
C17	0.0153 (3)	0.82894 (15)	0.88628 (13)	0.0270 (4)
H17A	-0.1093	0.8332	0.8612	0.032*
H17B	0.0500	0.8914	0.9369	0.032*
C18	0.0089 (3)	0.71993 (16)	0.92983 (13)	0.0273 (4)
H18A	0.1319	0.7157	0.9570	0.033*
H18B	-0.0813	0.7146	0.9822	0.033*
C19	0.0108 (3)	0.52875 (16)	0.87786 (14)	0.0294 (4)
H19A	-0.0770	0.4912	0.9229	0.035*
H19B	0.1350	0.5449	0.9090	0.035*
C20	0.0145 (3)	0.45443 (15)	0.78734 (15)	0.0303 (4)
H20A	0.0284	0.3787	0.8026	0.036*
H20B	-0.1026	0.4487	0.7505	0.036*
C21	0.1833 (3)	0.42988 (19)	0.64803 (17)	0.0431 (5)
H21A	0.0660	0.4151	0.6101	0.052*
H21B	0.2117	0.3577	0.6651	0.052*
C22	0 3357 (4)	0.4859(2)	0 58984 (17)	0.0510(6)
H22A	0.3335	0 4440	0.5256	0.061*
H22B	0.3141	0 5621	0.5807	0.061*
C23	0.6108 (3)	0.60309 (16)	0.65657 (15)	0.001
H23A	0.5972	0.6482	0.6026	0.0344 (4)
H23R	0.7/37	0.6005	0.6651	0.041*
C24	0.5416 (3)	0.65799 (15)	0.74680 (14)	0.071
	0.6178	0.03733 (13)	0.7631	0.0297(4)
1124A U24D	0.01/0	0.7524	0.7051	0.036*
п24D	0.4123	0.0080	0.7300	0.030

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0198 (2)	0.0170 (2)	0.0207 (2)	-0.00143 (15)	-0.00151 (15)	0.00555 (14)
01	0.0350 (8)	0.0252 (6)	0.0340 (7)	0.0097 (5)	0.0005 (6)	0.0085 (5)
O2	0.0250 (7)	0.0316 (7)	0.0353 (7)	-0.0080(5)	0.0031 (6)	0.0098 (6)
03	0.0334 (7)	0.0249 (6)	0.0221 (6)	0.0042 (5)	-0.0041 (5)	0.0077 (5)
04	0.0183 (6)	0.0312 (6)	0.0231 (6)	0.0026 (5)	0.0036 (5)	0.0060 (5)
05	0.0197 (7)	0.0391 (7)	0.0312 (7)	0.0057 (5)	0.0018 (5)	0.0076 (6)
06	0.0264 (7)	0.0275 (6)	0.0308 (7)	0.0055 (5)	0.0002 (5)	0.0065 (5)

supporting information

O7	0.0299 (7)	0.0246 (6)	0.0351 (7)	0.0004 (5)	0.0045 (6)	0.0007 (5)
08	0.0422 (8)	0.0267 (7)	0.0368 (7)	0.0029 (6)	0.0066 (6)	-0.0014 (6)
N1	0.0289 (8)	0.0204 (7)	0.0217 (7)	0.0008 (6)	-0.0043 (6)	0.0044 (6)
N2	0.0275 (8)	0.0182 (7)	0.0188 (7)	-0.0036 (5)	-0.0031 (6)	0.0064 (5)
N3	0.0194 (8)	0.0262 (8)	0.0237 (7)	0.0021 (6)	0.0040 (6)	0.0032 (6)
N4	0.0342 (10)	0.0243 (8)	0.0300 (8)	0.0068 (7)	-0.0004 (7)	0.0049 (6)
C1	0.0199 (8)	0.0219 (8)	0.0206 (8)	0.0042 (6)	-0.0002 (6)	0.0039 (6)
C2	0.0218 (8)	0.0176 (7)	0.0201 (8)	0.0006 (6)	-0.0006 (6)	0.0069 (6)
C3	0.0212 (8)	0.0158 (7)	0.0188 (8)	0.0015 (6)	-0.0018 (6)	0.0042 (6)
C4	0.0214 (9)	0.0180 (7)	0.0226 (8)	0.0035 (6)	0.0029 (7)	0.0049 (6)
C5	0.0166 (8)	0.0252 (8)	0.0263 (9)	0.0009 (6)	-0.0020 (7)	0.0035 (7)
C6	0.0219 (9)	0.0237 (8)	0.0212 (8)	0.0023 (6)	-0.0033 (7)	0.0026 (6)
C7	0.0206 (9)	0.0174 (7)	0.0205 (8)	0.0031 (6)	0.0002 (6)	0.0050 (6)
C8	0.0176 (8)	0.0189 (8)	0.0225 (8)	0.0015 (6)	-0.0012 (6)	0.0051 (6)
C9	0.0202 (9)	0.0188 (8)	0.0207 (8)	0.0039 (6)	-0.0003 (6)	0.0065 (6)
C10	0.0200 (9)	0.0226 (8)	0.0230 (8)	-0.0006 (6)	-0.0004 (7)	0.0031 (6)
C11	0.0266 (9)	0.0205 (8)	0.0210 (8)	0.0014 (6)	0.0001 (7)	0.0019 (6)
C12	0.0216 (9)	0.0201 (8)	0.0212 (8)	0.0052 (6)	0.0012 (6)	0.0072 (6)
C13	0.0204 (9)	0.0373 (10)	0.0251 (9)	-0.0017 (7)	-0.0024 (7)	0.0052 (7)
C14	0.0251 (10)	0.0365 (10)	0.0202 (8)	-0.0020 (7)	-0.0017 (7)	0.0019 (7)
C15	0.0175 (9)	0.0517 (12)	0.0328 (10)	0.0062 (8)	0.0031 (8)	0.0133 (9)
C16	0.0229 (10)	0.0196 (8)	0.0258 (9)	0.0033 (6)	0.0030 (7)	0.0053 (6)
C17	0.0255 (9)	0.0293 (9)	0.0252 (9)	0.0032 (7)	0.0081 (7)	0.0006 (7)
C18	0.0241 (9)	0.0340 (10)	0.0231 (8)	0.0022 (7)	0.0040 (7)	0.0038 (7)
C19	0.0231 (9)	0.0292 (9)	0.0367 (10)	0.0016 (7)	-0.0006 (8)	0.0131 (8)
C20	0.0226 (9)	0.0249 (9)	0.0438 (11)	0.0018 (7)	0.0007 (8)	0.0094 (8)
C21	0.0386 (12)	0.0417 (12)	0.0427 (12)	-0.0026 (9)	0.0010 (10)	-0.0108 (10)
C22	0.0471 (14)	0.0703 (17)	0.0295 (11)	-0.0007 (12)	0.0019 (10)	-0.0079 (10)
C23	0.0421 (12)	0.0263 (9)	0.0336 (10)	0.0014 (8)	0.0054 (9)	0.0049 (8)
C24	0.0369 (11)	0.0225 (9)	0.0296 (9)	0.0024 (7)	0.0016 (8)	0.0065 (7)

Geometric parameters (Å, °)

<u>81—02</u>	1.4341 (13)	С8—Н8	0.9500
S101	1.4429 (13)	C9—C10	1.397 (2)
S1—N1	1.6025 (14)	C9—C14	1.402 (3)
S1—N2	1.6429 (14)	C10-C11	1.388 (2)
O3—C1	1.237 (2)	C10—H10	0.9500
O4—C4	1.365 (2)	C11—C12	1.390 (2)
O4—C15	1.425 (2)	C11—H11	0.9500
O5—C16	1.226 (2)	C12—C13	1.395 (3)
O6—C19	1.428 (2)	C12—C16	1.505 (2)
O6—C18	1.435 (2)	C13—C14	1.386 (3)
O7—C21	1.410 (2)	C13—H13	0.9500
O7—C20	1.414 (2)	C14—H14	0.9500
O8—C22	1.419 (3)	C15—H15A	0.9800
O8—C23	1.424 (2)	C15—H15B	0.9800
N1—C1	1.345 (2)	C15—H15C	0.9800

supporting information

N2—C3	1.425 (2)	C17—C18	1.509 (3)
N2—C2	1.454 (2)	C17—H17A	0.9900
N3—C16	1.351 (2)	C17—H17B	0.9900
N3—C17	1.459 (2)	C18—H18A	0.9900
N3—H1N3	0.82 (2)	C18—H18B	0.9900
N4—C24	1.481 (2)	C19—C20	1.491 (3)
N4—H1N4	0.93 (3)	C19—H19A	0.9900
N4—H2N4	1.03 (3)	C19—H19B	0.9900
N4—H3N4	0.98 (3)	C20—H20A	0.9900
C1—C2	1.515 (2)	C20—H20B	0.9900
C2—H2A	0.9900	$C_{21} - C_{22}$	1 496 (3)
C2—H2B	0.9900	C21—H21A	0.9900
$C_3 - C_8$	1 385 (2)	C21—H21B	0.9900
$C_3 - C_4$	1.505(2) 1 401(2)	C22—H22A	0.9900
C4-C5	1.101(2) 1.393(2)	C22_H22B	0.9900
C5—C6	1 393 (2)	$C_{22} = C_{24}$	1 505 (3)
C5H5	0.9500	C23_H23A	0.9900
C6 C7	1.394(2)	C23 H23R	0.9900
C6 H6	0.9500	C_{23} H23D	0.9900
C7 $C8$	1.300(2)	$C_2 - H_2 + R$	0.9900
C7 C9	1.399(2) 1.490(2)	C24—1124D	0.9900
07-07	1.490 (2)		
$0^{2}-10^{1}$	113 21 (8)	C14—C13—H13	119.5
02 - S1 - N1	112 24 (8)	C12-C13-H13	119.5
01N1	112.24 (0)	$C_{12} = C_{13} = C_{14} = C_{9}$	121 12 (17)
02 - 51 - N2	109 69 (8)	C13 - C14 - C7	119.4
01 S1 N2	111.00 (8)	C_{13} C_{14} H_{14}	119.4
N1 = S1 = N2	97.26(7)	$O_4 C_{15} H_{15}$	119.4
$C_{1} = C_{1} = C_{1}$	$\frac{97.20(7)}{117.63(14)}$	$O_4 = C_{15} = H_{15R}$	109.5
$C_{1}^{-0} - C_{1}^{-0}$	117.03(14) 112.83(14)	$U_{4} = C_{15} = 115B$	109.5
$C_{13} = 00 = C_{18}$	112.03(14) 111.72(15)	$\begin{array}{c} \text{III} \text{JA} \\ \text{O} \\ \text$	109.5
$C_{21} = 0^{7} = C_{20}^{7}$	111.72(13) 115.10(19)	$H_{15A} = C_{15} = H_{15C}$	109.5
$C_{22} = 0_0 = C_{23}$	113.10(18) 111.85(12)	нтэд—Стэ—нтэС штэр стэ штэс	109.5
C1 - N1 - S1	111.65(12) 125.75(12)		109.5
$C_3 = N_2 = C_2$	125.75(15) 120.81(11)	05 - 016 - 013	123.27(10) 120.21(10)
$C_3 = N_2 = S_1$	120.81 (11)	03 - 016 - 012	120.31 (16)
$C_2 = N_2 = S_1$	111.22 (11)	N_{3} $-C_{10}$ $-C_{12}$	110.41 (16)
C10-N3-C17	121.27 (16)	$N_{3} = C_{17} = C_{18}$	112.19(15)
C10-N3-H1N3	120.7(16)	$N_3 - C_1 / - H_1 / A$	109.2
C1/-N3-HIN3	116.9 (15)	C18 - C17 - H17A	109.2
C24—N4—HIN4	108.5 (17)	$N_3 = C_1 / = H_1 / B$	109.2
C24—N4—H2N4	113.3 (14)	C18—C17—H17B	109.2
H1N4 - N4 - H2N4	107 (2)	H1/A - C1/ - H1/B	107.9
C24—N4—H3N4	102.2 (17)	06-C18-C17	108.55 (14)
H1N4—N4—H3N4	117 (2)	06—C18—H18A	110.0
H2N4—N4—H3N4	109 (2)	C17—C18—H18A	110.0
03—C1—N1	124.30 (16)	06—C18—H18B	110.0
03—C1—C2	121.76 (15)	C17—C18—H18B	110.0
N1-C1-C2	113.94 (14)	H18A—C18—H18B	108.4

N2—C2—C1	104.42 (13)	O6—C19—C20	109.31 (15)
N2—C2—H2A	110.9	O6—C19—H19A	109.8
C1—C2—H2A	110.9	С20—С19—Н19А	109.8
N2—C2—H2B	110.9	O6—C19—H19B	109.8
C1—C2—H2B	110.9	C20—C19—H19B	109.8
H2A—C2—H2B	108.9	H19A—C19—H19B	108.3
C8—C3—C4	119.87 (15)	O7—C20—C19	108.74 (15)
C8—C3—N2	118.94 (15)	O7—C20—H20A	109.9
C4—C3—N2	121.19 (15)	С19—С20—Н20А	109.9
O4—C4—C5	125.49 (16)	O7—C20—H20B	109.9
Q4—C4—C3	115.86 (15)	C19—C20—H20B	109.9
C5—C4—C3	118.65 (15)	H20A—C20—H20B	108.3
C6—C5—C4	120.62 (16)	07—C21—C22	109.08 (18)
C6—C5—H5	119.7	07—C21—H21A	109.9
C4—C5—H5	119.7	C22—C21—H21A	109.9
C5-C6-C7	121.50 (16)	07—C21—H21B	109.9
С5—С6—Н6	119.3	C22—C21—H21B	109.9
C7—C6—H6	119.3	$H_{21}A - C_{21} - H_{21}B$	108.3
C6-C7-C8	117.06 (15)	08-C22-C21	112.5 (2)
C6-C7-C9	122.74 (15)	08—C22—H22A	109.1
C8-C7-C9	120.11(15)	C21—C22—H22A	109.1
C3—C8—C7	122.29 (16)	08—C22—H22B	109.1
C3—C8—H8	118.9	C21—C22—H22B	109.1
C7—C8—H8	118.9	H22A—C22—H22B	107.8
C10—C9—C14	117.26 (16)	08-C23-C24	111.71 (16)
C10—C9—C7	121.45 (15)	08—C23—H23A	109.3
C14—C9—C7	121.26 (15)	C24—C23—H23A	109.3
C11—C10—C9	121.63 (16)	O8—C23—H23B	109.3
C11—C10—H10	119.2	C24—C23—H23B	109.3
C9—C10—H10	119.2	H23A—C23—H23B	107.9
C10—C11—C12	120.59 (16)	N4—C24—C23	109.41 (16)
C10—C11—H11	119.7	N4—C24—H24A	109.8
C12—C11—H11	119.7	C23—C24—H24A	109.8
C11—C12—C13	118.37 (16)	N4—C24—H24B	109.8
C11—C12—C16	123.98 (16)	C23—C24—H24B	109.8
C13—C12—C16	117.63 (16)	H24A—C24—H24B	108.2
C14—C13—C12	120.93 (17)		
O2—S1—N1—C1	121.10 (13)	C9—C7—C8—C3	175.66 (14)
O1—S1—N1—C1	-110.68 (13)	C6—C7—C9—C10	19.1 (2)
N2—S1—N1—C1	6.33 (14)	C8—C7—C9—C10	-157.39 (16)
O2—S1—N2—C3	68.27 (15)	C6-C7-C9-C14	-162.95 (16)
O1—S1—N2—C3	-58.24 (15)	C8—C7—C9—C14	20.6 (2)
N1—S1—N2—C3	-174.93 (14)	C14—C9—C10—C11	-1.7 (3)
O2—S1—N2—C2	-127.73 (12)	C7—C9—C10—C11	176.34 (15)
O1—S1—N2—C2	105.76 (13)	C9—C10—C11—C12	-1.1 (3)
N1—S1—N2—C2	-10.94 (13)	C10-C11-C12-C13	2.2 (2)
S1—N1—C1—O3	179.31 (14)	C10-C11-C12-C16	-176.56 (15)
			. ,

S1—N1—C1—C2	0.00 (19)	C11—C12—C13—C14	-0.6 (3)
C3—N2—C2—C1	174.45 (15)	C16—C12—C13—C14	178.28 (17)
S1—N2—C2—C1	11.42 (16)	C12—C13—C14—C9	-2.3 (3)
O3—C1—C2—N2	173.35 (16)	C10-C9-C14-C13	3.4 (3)
N1-C1-C2-N2	-7.3 (2)	C7—C9—C14—C13	-174.70 (17)
C2—N2—C3—C8	127.60 (17)	C17—N3—C16—O5	7.3 (3)
S1—N2—C3—C8	-70.86 (19)	C17—N3—C16—C12	-173.40 (14)
C2—N2—C3—C4	-52.4 (2)	C11—C12—C16—O5	151.68 (17)
S1—N2—C3—C4	109.13 (16)	C13—C12—C16—O5	-27.1 (2)
C15—O4—C4—C5	-3.1 (2)	C11-C12-C16-N3	-27.6 (2)
C15—O4—C4—C3	177.13 (15)	C13—C12—C16—N3	153.56 (16)
C8—C3—C4—O4	-179.96 (14)	C16—N3—C17—C18	105.25 (19)
N2-C3-C4-O4	0.1 (2)	C19—O6—C18—C17	157.75 (15)
C8—C3—C4—C5	0.3 (2)	N3—C17—C18—O6	-59.8 (2)
N2-C3-C4-C5	-179.71 (15)	C18—O6—C19—C20	-159.42 (15)
O4—C4—C5—C6	-179.90 (15)	C21—O7—C20—C19	176.42 (17)
C3—C4—C5—C6	-0.2 (2)	O6—C19—C20—O7	70.69 (19)
C4—C5—C6—C7	-0.6 (3)	C20—O7—C21—C22	176.10 (19)
C5—C6—C7—C8	1.1 (2)	C23—O8—C22—C21	-119.2 (2)
С5—С6—С7—С9	-175.45 (15)	O7—C21—C22—O8	69.3 (3)
C4—C3—C8—C7	0.3 (2)	C22—O8—C23—C24	78.5 (2)
N2—C3—C8—C7	-179.69 (14)	O8—C23—C24—N4	55.8 (2)
C6—C7—C8—C3	-1.0 (2)		

Hydrogen-bond geometry (Å, °) Cg1 is the centroid of the C3–C8 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H1 <i>N</i> 3····O3 ⁱ	0.82 (2)	2.22 (3)	3.012 (2)	161 (2)
N4—H1 <i>N</i> 4···O1 ⁱⁱ	0.93 (3)	2.29 (3)	3.010 (2)	133 (2)
N4—H1 <i>N</i> 4…O7	0.93 (3)	2.49 (3)	3.106 (2)	124 (2)
N4— $H2N4$ ···N1 ⁱ	1.03 (3)	1.82 (3)	2.821 (2)	163 (2)
N4—H3 <i>N</i> 4···O6 ⁱⁱⁱ	0.98 (3)	1.99 (3)	2.942 (2)	162 (3)
C2—H2 <i>B</i> ···O3 ^{iv}	0.99	2.30	3.267 (2)	166
C18—H18A····N1 ⁱ	0.99	2.57	3.545 (2)	168
C22—H22A···O8 ⁱⁱ	0.99	2.63	3.343 (3)	129
C24—H24A···O5 ⁱⁱⁱ	0.99	2.58	3.298 (2)	129
C21—H21 B ···Cg1 ⁱⁱ	0.99	2.70	3.555 (2)	165

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+2, -*z*.