

Reçu le 23 février 2015 Accepté le 14 mars 2015

Édité par A. Van der Lee, Université de Montpellier II, France

Keywords: triple molybdates; hexakis(molybdate); open-framework structure; crystal structure

CCDC reference: 1054352 **Supporting information**: this article has supporting information at journals.iucr.org/e

Structure cristalline de la triple molybdate $Ag_{0.90}AI_{1.06}Co_{2.94}(MoO_4)_5$

Rawia Nasri, Saïda Fatma Chérif* et Mohamed Faouzi Zid

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis, Tunisia. *Correspondence e-mail: c.fatouma@yahoo.fr

Silver(I) aluminiun tricobalt(II) pentakis[tetraoxidomolybdate(VI)], Ag_{0.90}Al_{1.06}Co_{2.94}(MoO₄)₅, was synthesized using a solid-state reaction at 845 K. The structure can be described as a three-dimensional framework formed from dimeric M_2O_{10} (M = Co/Al) and trimeric M_3O_{14} units linked to MoO₄ tetrahedra by sharing corners, with the cavities occupied by disordered Ag⁺ cations. It is shown that the Co and Al atoms occupy common positions with different occupancies. The Ag⁺ cations are located at two different sites with occupancies of 0.486 (1) and 0.408 (1). The title coumpond is isotypic with NaMg₃Al(MoO₄)₅ and NaFe₄(MoO₄)₅. Differences and similarities with other related structures are discussed.

011ⁱ

1. Contexte chimique

012ⁱⁱ

Les molybdates triples des métaux de transition ont un champ prometteur pour diverses applications: catalyse (Ivanov *et al.*, 1998), spectroscopie (Méndez-Blas *et al.*, 2004). L'assemblage octaèdres-tétraèdres dans ces matériaux conduit à des charpentes ouvertes présentant des propriétés physiques importantes, en particulier la conduction ionique (Judeinstein *et al.*, 1994; Sanz *et al.*, 1999). L'exploration du système A-Co-Al-Mo-O (A = ion monovalent) nous a permis d'élaborer un

O2ⁱⁱ

Figure 1

Représentation des polyèdres de coordination de l'unité structurale dans Ag_{0.90}Al_{1.06}Co_{2.94}(MoO₄)₅. Les éllipsoïdes ont été définis avec 50% de probabilité. [Code de symétrie: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z; (v) -x + 2, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -y + 1, -z + 1; (vii) x - 1, y, z; M = Co/Al.]

research communications

Figure 2

Projection: (a) d'une couche de type A disposée parallèlement au plan (001), (b) d'une couche de type D dans le plan (001), (c) d'une couche de type C dans le plan (001), (d) d'une bicouche dans le plan (001).

nouveau matériau de formulation $Ag_{0.90}Al_{1.06}Co_{2.94}(MoO_4)_5$. Un examen bibliographique montre que le matériau étudié est isostructural aux composés: NaMg₃Al(MoO₄)₅ (Hermanowicz *et al.*, 2006) et NaFe₄(MoO₄)₅ (Muessig *et al.*, 2003).

2. Commentaire structurelle

L'unité structurale renferme un dimère M_2O_{10} (M = Co/Al), deux octaèdres MO₆ et cinq tétraèdres MoO₄ reliés par mise en commun de sommets. La compensation de charges dans la structure est assurée par les cations Ag⁺ (Fig. 1). La charpente anionique peut être décrite moyennant la succession de différents types de couches reliées par partage de sommets et d'arêtes. Elle peut être subdivisée en couches de type A, B, C et D. Les couches de type A sont formées par les dimères M_2O_{10} (M = Co2/Al2) reliés par mise en commun de sommets uniquement avec les tétraèdres Mo3O4 disposés en 'trans' (Fig. 2*a*). Dans les couches de type *D*, les dimères M_2O_{10} (*M* = Co1/Al1, Co3/Al3), se connectent par mise en commun de sommets avec les tétraèdres Mo1O4 et Mo4O4, dans lequels les sommets non engagés dans la couche sont tous orientés selon la même direction en 'cis' (Fig. 2b). Dans les couches de type C, les octaèdres MO_6 (M = Co4/Al4) et les tétraèdres Mo2O₄ et Mo5O₄ se connectent par mise en commun de sommets pour former des chaînes classiques de type MMoO₈ (Fig. 2c).

La disposition particulière, des tétraèdres MoO_4 en '*cis*' dans les couches de type *D* et en '*trans*' dans les couches *A*, respectivement permet la jonction de ces dernières par ponts mixtes pour conduire à des doubles couches de type *B*

Figure 3 Projection de la structure de Ag_{0.90}Al_{1.06}Co_{2.94}(MoO₄)₅, selon *a*.

(Fig. 2*d*). La jonction des différentes couches *A* et bicouches *B* parallèlement au plan (001), selon la disposition A-BB-A-BB par ponts mixtes de type M-O-Mo conduit à une charpente tridimentionnelle possédant des canaux dans lesquels résident les cations Ag⁺, mais excentrés (Fig. 3).

Un examen des caractéristiques géométriques relevées de l'étude structurale montre que les distances moyennes dans les tétraèdres MoO₄ et dans les octaèdres MO_6 (M = Co/Al), sont égales respectivement à 1.762 (4) et 2.036 (4) Å. La première Mo–O, est conforme à celles rencontrées dans la litérature (Ennajeh *et al.*, 2013; Engel *et al.*, 2009; Huyghe *et al.*, 1991). La seconde M-O (M=Co/Al), s'avère une moyenne entre celles Co^{II}–O (Engel *et al.*, 2009; Sanz *et al.*, 1999) et Al–O (Brik & Avram, 2011; Hermanowicz *et al.*, 2006). Dans les dimères M_2O_{10} , la distance courte métal–métal égale à 3.109 (8) Å, pourrait conduire à des propriétés magnétiques (Feng *et al.*, 1997). De plus, le calcul des charges des ions, utilisant la formule empirique de Brown & Altermatt (1985), conduit aux valeurs des charges des ions suivants: Mo1 (6.047), Mo2

Figure 4

Projection de la structure de: (a) β -K₂Co₂(MoO₄)₃, selon b, (b) α -K₂Co₂-(MoO₄)₃, selon a.

(6.012), Mo3 (5.949), Mo4 (5.965), Mo5 (5.993), (Co1/Al1) (2.140), (Co2/Al2) (2.314), (Co3/Al3) (2.312), (Co4/Al4) (2.481), Ag1 (0.965) et Ag2 (0.998). En effet, en tenant compte des taux d'occupation des sites, la charge globale calculée des cations restants [+10,1(2)] est égale en module à celle de l'ion molybdate $[Mo_5O_{20}]^{10-}$.

Un examen rigoureux des travaux antérieurs montre une analogie structurale entre les connections des polyèdres dans les composés appartenant à la famille de type alluaudite Na₃In₂As₃O₁₂ et Na₃In₂P₃O₁₂ (Lii & Ye, 1997), le matériau Ag₂Co₂(MoO₄)₃ (Tsyrenova *et al.*, 2004) et les différentes variétés du composé K₂Co₂(MoO₄)₃ (Engel *et al.*, 2009). Dans ces phases, une différence nette a été observée dans les charpentes anioniques. En effet, on remarque que dans le cas des alluaudites, les dimères adoptent une disposition perpendiculaire les uns aux autres. Contrairement à notre structure dans laquelle les dimères sont disposès d'une façon parallèle.

La charpente anionique dans le composé $K_2Co_2(MoO_4)_3$ présente contrairement à notre structure des tétramères au lieu des dimères et trimères. L'association, par partage de sommets, des tétramères avec les tétraèdres MoO_4 conduit dans la forme β - $K_2Co_2(MoO_4)_3$ à une structure en couches (two-dimensional) (Fig. 4*a*). Par contre, leur jonction dans la forme α - $K_2Co_2(MoO_4)_3$ engendre une charpente tridimensionnelle possédant des canaux allongés où résident des cations potassium (Fig. 4*b*).

3. Synthèse et cristallisation

Dans le but de préparer un composé de formulation analogue à NaMg₃Al(MoO₄)₅ ayant des propriétés physiques intéressantes, nous avons voulu synthétiser la phase AgAl-Co₃(MoO₄)₅. Un mélange de réactifs: AgNO₃ (Merck, 101510), Co(NO₃)₂·6H₂O (FLUKA, 60832), Al₂O₃ (FLUKA, 60109) et (NH₄)₂Mo₄O₁₃ (FLUKA, 69858) a été pris dans les proportions tel que les rapports sont Ag:Al:Co:Mo=1:1:3:5. Après un broyage poussé dans un mortier en agate, le mélange a été mis dans un creuset en porcelaine préchauffé à l'air à

Détails expérimentaux.	
Données crystallines Formule chimique M_r Système cristallin, groupe d'espace Fempérature (K) i, b, c (Å) χ, β, c (Å) χ, β, χ (°) V (Å ³) Z	Ag _{0.90} Al _{1,06} Co _{2.94} (MoO ₄) ₅ 1098,64 Triclinique, $P\overline{1}$ 298 6,8547 (8), 6,9410 (8), 17,597 (2) 87,958 (6), 87,462 (6), 78,818 (4) 820,20 (16) 2
Type de rayonnement	Μο Κα
$\mu (\mathrm{mm}^{-1})$	7,79
Taille des cristaux (mm)	$0,22 \times 0,16 \times 0,12$
Collection de données Diffractomètre Correction d'absorption	Enraf–Nonius CAD-4 ψ scan (North <i>et al.</i> , 1968)
T_{\min}, T_{\max}	0,233, 0,407
Nombre de réflexions mesurées, indépendantes et observées $[I > 2\sigma(I)]$	3912, 3527, 3086
R _{int}	0,029
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0,638
Affinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0,027, 0,070, 1,09
Nombre de réflexions	3527
Nombre de paramètres	287
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} \; { m \AA}^{-3})$	1,28, -0,77

Programmes informatiques: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 et SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2001) et WinGX (Farrugia, 2012).

673 K pendant 12 heures en vue d'éliminer les composés volatils. Il est ensuite porté jusqu'à une température de synthèse proche de celle de la fusion à 845 K. Le mélange est abandonné à cette température pendant deux semaines pour favoriser la germination et la croissance des cristaux. Par la suite, il a subi en premier lieu un refroidissement lent (5°/jour) jusqu'à 800 K puis rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur rouge, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau chaude. Une analyse qualitative au MEB de marque FEI et de type *QUANTA* 200 confirme la présence des éléments chimiques attendus: Ag, Al, Co, Mo et l'oxygène.

4. Affinement

Tableau 1

Détails de donnés crystallines, collection de donnés et affinement sont résumés dans le tableau 1. La structure a été résolue par des méthodes directes de *SHELXS97* (Sheldrick, 2008), et interpretée en partant de la formule AgAl- $Co_3Mo_5O_{20}$ similaire au composé isotype NaAlMg₃Mo₅O₂₀. Un examen de la carte de Fourier différence montre des résidus non négligeables autour des cations Co^{2+} et Ag⁺. L'affinement, en se basant sur les grandeurs géométriques, a été mené d'une part avec des taux d'occupation variables pour les atomes de cobalt et de l'aluminium occupant statiquement les mêmes positions et ayant les mêmes ellipsoïdes utilisant les deux fonctions EXYZ et EADP autorisées par le programme *SHELXL97* (Sheldrick, 2008), et d'autre part en considérant que l'ion Ag^+ est reparti sur deux positions proches dans la structure. En effet, l'affinement de tous les paramètres variables conduit à des ellipsoïdes bien définis. Les densités électroniques maximum et minimum restantes dans la carte de Fourier différence sont acceptables et sont situées respectivements à 0.92 Å de Mo4 et à 0.93 Å de Mo3.

Remerciements

Les auteurs remercient le Ministére de l'Enseignement Supérieur, de la Recherche Scientifique et de la technologie de la Tunisie pour le financement du laboratoire LMC (code LR01ES11).

Références

- Brandenburg, K. & Putz, H. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Allemagne.
- Brik, M. G. & Avram, C. N. (2011). J. Lumin. 131, 2642-2645.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Engel, J. M., Ahsbahs, H., Fuess, H. & Ehrenberg, H. (2009). Acta Cryst. B65, 29–35.
- Ennajeh, I., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i54-i55.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Feng, P., Bu, X. & Stucky, G. D. (1997). J. Solid State Chem. 129, 328– 333.
- Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne.
- Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685–695.
- Huyghe, M., Lee, M.-R., Quarton, M. & Robert, F. (1991). Acta Cryst. C47, 244–246.
- Ivanov, K., Krustev, S. & Litcheva, P. (1998). J. Alloys Compd, 279, 132–135.
- Judeinstein, P., Titman, J., Stamm, M. & Schmidt, H. (1994). Chem. Mater. 6, 127–134.
- Lii, K.-H. & Ye, J. (1997). J. Solid State Chem. 131, 131-137.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Méndez-Blas, A., Rico, M., Volkov, V., Cascales, C., Zaldo, C., Coya, C., Kling, A. & Alves, L. C. (2004). J. Phys. Condens. Matter, 16, 2139–2160.
- Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611–616.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C. & Saez-Puche, R. (1999). J. Solid State Chem. 145, 604–611.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tsyrenova, G. D., Solodovnikov, S. F., Khaikina, E. G., Khobrakova, E. T., Bazarova, Zh. G. & Solodovnikova, Z. A. (2004). J. Solid State Chem. 177, 2158–2167.

supporting information

Acta Cryst. (2015). E71, 388-391 [doi:10.1107/S2056989015005290]

Structure cristalline de la triple molybdate Ag_{0.90}Al_{1.06}Co_{2.94}(MoO₄)₅

Rawia Nasri, Saïda Fatma Chérif et Mohamed Faouzi Zid

Computing details

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Silver aluminiun tricobalt pentakis(tetraoxidomolybdate)

Crystal data

Ag_{0.90}Al_{1.06}Co_{2.94}(MoO₄)₅ $M_r = 1098.64$ Triclinic, *P*I Hall symbol: -P 1 a = 6.8547 (8) Å b = 6.9410 (8) Å c = 17.597 (2) Å a = 87.958 (6)° $\beta = 87.462$ (6)° $\gamma = 78.818$ (4)° V = 820.20 (16) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.233, T_{\max} = 0.407$ 3912 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.070$ S = 1.093527 reflections 287 parameters 0 restraints Z = 2 F(000) = 1010.92 $D_x = 4.448 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 7.79 \text{ mm}^{-1}$ T = 298 K Prism, red $0.22 \times 0.16 \times 0.12 \text{ mm}$

3527 independent reflections 3086 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 1$ $k = -8 \rightarrow 8$ $I = -22 \rightarrow 22$ 2 standard reflections every 120 min intensity decay: 1.2%

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 3.7871P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00088 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	0.22547 (6)	0.43949 (6)	0.09513 (2)	0.00816 (11)	
Mo2	0.71279 (6)	0.32538 (6)	0.28488 (2)	0.00936 (11)	
Mo3	0.77392 (6)	0.80749 (6)	0.52742 (2)	0.00941 (11)	
Mo4	0.74619 (6)	0.04587 (6)	0.08587 (2)	0.01000 (11)	
Mo5	0.18593 (7)	0.71922 (7)	0.30929 (3)	0.01203 (11)	
Ag1	0.6084 (2)	0.8428 (4)	0.3355 (3)	0.0375 (8)	0.486 (11)
Ag2	0.6351 (7)	0.8417 (3)	0.2935 (6)	0.056 (2)	0.408 (11)
Col	0.66729 (10)	0.58420 (10)	0.11583 (4)	0.0087 (2)	0.920 (6)
Al1	0.66729 (10)	0.58420 (10)	0.11583 (4)	0.0087 (2)	0.080 (6)
Co2	0.68200 (11)	0.32794 (11)	0.49318 (4)	0.0083 (3)	0.742 (6)
Al2	0.68200 (11)	0.32794 (11)	0.49318 (4)	0.0083 (3)	0.258 (6)
Co3	0.27664 (11)	0.92534 (11)	0.12614 (4)	0.0076 (3)	0.737 (6)
A13	0.27664 (11)	0.92534 (11)	0.12614 (4)	0.0076 (3)	0.263 (6)
Co4	0.24922 (13)	0.19504 (13)	0.26423 (5)	0.0088 (3)	0.542 (6)
Al4	0.24922 (13)	0.19504 (13)	0.26423 (5)	0.0088 (3)	0.458 (6)
01	0.6232 (6)	0.6325 (6)	0.5034 (2)	0.0151 (8)	
O2	0.2678 (6)	0.9019 (6)	0.2444 (2)	0.0170 (8)	
03	0.3541 (5)	0.6292 (6)	0.1188 (2)	0.0141 (7)	
O4	0.6898 (6)	0.3752 (6)	0.3811 (2)	0.0201 (8)	
05	0.6529 (6)	0.5519 (6)	0.2336 (2)	0.0163 (8)	
06	0.9815 (6)	0.9588 (6)	0.1222 (2)	0.0216 (9)	
O7	0.2186 (7)	0.4863 (6)	0.2692 (2)	0.0260 (9)	
08	0.3258 (6)	0.7020 (6)	0.3915 (2)	0.0201 (8)	
09	1.0223 (6)	0.7103 (6)	0.5056 (2)	0.0203 (8)	
O10	0.2933 (6)	0.3839 (6)	0.0016 (2)	0.0198 (8)	
011	0.7036 (6)	0.0327 (6)	0.4785 (2)	0.0188 (8)	
012	0.5836 (5)	0.8879 (5)	0.1247 (2)	0.0135 (7)	
013	0.2675 (5)	0.2115 (5)	0.1509 (2)	0.0132 (7)	
O14	-0.0592 (6)	0.7932 (7)	0.3351 (3)	0.0304 (10)	
015	0.9585 (6)	0.2166 (6)	0.2630 (2)	0.0197 (8)	
016	-0.0250 (6)	0.5351 (6)	0.1053 (2)	0.0209 (9)	
O17	0.7454 (6)	0.0344 (6)	-0.0127 (2)	0.0222 (9)	

supporting information

O18	0.7497 (7)	0.8501 (6)	0.6254 (2)	0.0226 (9)
019	0.5474 (6)	0.1619 (6)	0.2671 (2)	0.0195 (8)
O20	0.6641 (7)	0.2928 (6)	0.1097 (2)	0.0236 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0090 (2)	0.0058 (2)	0.0104 (2)	-0.00328 (15)	-0.00181 (15)	0.00175 (15)
Mo2	0.0101 (2)	0.0082 (2)	0.0097 (2)	-0.00186 (16)	-0.00103 (15)	0.00114 (15)
Mo3	0.0103 (2)	0.0078 (2)	0.0111 (2)	-0.00401 (16)	-0.00117 (15)	0.00059 (15)
Mo4	0.0115 (2)	0.0074 (2)	0.0121 (2)	-0.00496 (16)	0.00168 (16)	0.00012 (15)
Mo5	0.0115 (2)	0.0104 (2)	0.0147 (2)	-0.00390 (17)	-0.00107 (16)	0.00338 (16)
Ag1	0.0138 (6)	0.0340 (8)	0.065 (2)	-0.0072 (5)	-0.0068 (7)	0.0149 (8)
Ag2	0.0357 (14)	0.0136 (8)	0.120 (5)	0.0020 (7)	-0.043 (2)	-0.0071 (13)
Col	0.0084 (4)	0.0066 (4)	0.0113 (4)	-0.0023 (3)	-0.0010 (3)	0.0013 (3)
Al1	0.0084 (4)	0.0066 (4)	0.0113 (4)	-0.0023 (3)	-0.0010 (3)	0.0013 (3)
Co2	0.0082 (4)	0.0073 (4)	0.0095 (4)	-0.0021 (3)	-0.0013 (3)	0.0007 (3)
Al2	0.0082 (4)	0.0073 (4)	0.0095 (4)	-0.0021 (3)	-0.0013 (3)	0.0007 (3)
Co3	0.0083 (4)	0.0054 (4)	0.0093 (4)	-0.0019 (3)	-0.0014 (3)	0.0003 (3)
Al3	0.0083 (4)	0.0054 (4)	0.0093 (4)	-0.0019 (3)	-0.0014 (3)	0.0003 (3)
Co4	0.0100 (5)	0.0079 (5)	0.0088 (5)	-0.0028 (3)	-0.0012 (3)	0.0007 (3)
Al4	0.0100 (5)	0.0079 (5)	0.0088 (5)	-0.0028 (3)	-0.0012 (3)	0.0007 (3)
01	0.0148 (18)	0.0153 (19)	0.0155 (18)	-0.0040 (15)	-0.0011 (14)	0.0011 (14)
O2	0.0164 (19)	0.0146 (19)	0.0187 (19)	-0.0014 (15)	0.0047 (15)	0.0024 (15)
O3	0.0118 (17)	0.0158 (19)	0.0168 (18)	-0.0074 (15)	-0.0017 (14)	-0.0006 (14)
O4	0.025 (2)	0.021 (2)	0.0146 (19)	-0.0043 (17)	-0.0020 (16)	0.0007 (16)
05	0.020 (2)	0.0146 (19)	0.0154 (18)	-0.0041 (16)	-0.0071 (15)	0.0034 (15)
O6	0.0147 (19)	0.024 (2)	0.028 (2)	-0.0076 (17)	-0.0049 (16)	0.0013 (17)
O7	0.034 (2)	0.023 (2)	0.024 (2)	-0.0126 (19)	0.0037 (18)	-0.0011 (17)
08	0.021 (2)	0.018 (2)	0.021 (2)	-0.0043 (17)	-0.0042 (16)	0.0013 (16)
09	0.0133 (18)	0.021 (2)	0.027 (2)	-0.0051 (16)	0.0014 (16)	-0.0007 (17)
O10	0.028 (2)	0.017 (2)	0.0134 (18)	-0.0040 (17)	-0.0023 (16)	0.0000 (15)
011	0.022 (2)	0.0139 (19)	0.021 (2)	-0.0055 (16)	-0.0011 (16)	0.0030 (15)
O12	0.0145 (18)	0.0065 (17)	0.0194 (19)	-0.0021 (14)	0.0005 (14)	-0.0014 (14)
O13	0.0117 (17)	0.0104 (17)	0.0167 (18)	-0.0003 (14)	-0.0027 (14)	0.0028 (14)
O14	0.016 (2)	0.036 (3)	0.039 (3)	-0.0045 (19)	0.0043 (18)	0.003 (2)
015	0.017 (2)	0.016 (2)	0.025 (2)	0.0008 (16)	0.0014 (16)	-0.0003 (16)
O16	0.0109 (18)	0.018 (2)	0.033 (2)	-0.0019 (16)	-0.0022 (16)	0.0047 (17)
O17	0.032 (2)	0.021 (2)	0.0155 (19)	-0.0117 (18)	0.0034 (17)	0.0006 (16)
O18	0.036 (2)	0.018 (2)	0.0149 (19)	-0.0101 (18)	0.0015 (17)	-0.0017 (16)
O19	0.023 (2)	0.016 (2)	0.021 (2)	-0.0087 (17)	-0.0081 (16)	0.0035 (15)
O20	0.031 (2)	0.0101 (19)	0.031 (2)	-0.0083 (17)	0.0058 (18)	-0.0035 (16)

Geometric parameters (Å, °)

Mo1—O16	1.720 (4)	Ag2—O5	2.284 (5)
Mo1-010	1.726 (4)	Co1—O20	2.033 (4)
Mo1—O3	1.791 (4)	Co1—O16 ⁱⁱⁱⁱ	2.072 (4)

Mo1-013	1.813 (4)	Co1—O5	2.076 (4)
Mo2—O4	1.735 (4)	Co1-010 ^{iv}	2.082 (4)
Mo2—O15	1.740 (4)	Co1—O12	2.084 (4)
Mo2—O5	1.771 (4)	Co1—O3	2.107 (4)
Mo2—O19	1.796 (4)	Co2—O4	1.987 (4)
Mo3—09	1.736 (4)	Co2—O9 ^v	1.994 (4)
Mo3—O11 ⁱ	1.751 (4)	Co2—O8 ^{vi}	2.033 (4)
Mo3-018	1.754 (4)	Co2—O11	2.050 (4)
Mo3-O1	1.812 (4)	$C_0 2 - O_1^{vi}$	2.055 (4)
Mo4-017	1.739 (4)	$C_0 2 - 01$	2.087 (4)
Mo4—O6 ⁱⁱ	1 750 (4)	C_{03} O_{0}^{vii}	1 995 (4)
$M_04 = 020$	1.757 (4)	C_{03} O_{17iv}	2.014(4)
$Mo4_{}012^{ii}$	1.757(1) 1 807(4)	C_{03}	2.011(1) 2.028(4)
Mo5-014	1.307(4) 1 705(4)	$C_{03} = 013^{i}$	2.023(4)
Mo57	1.703(4) 1.757(4)	$C_{03} = 013$	2.057(4)
$M_{0}5 = 0$	1.757(4)	$C_{03} = 012$	2.008(4)
M05_02	1.730(4) 1.929(4)	$C_{03} = O_2$	2.080(4)
	1.626(4)	$C_{04} = 018^{11}$	1.937 (4)
$AgI = 014^{m}$	2.237(5)	$C_{04} = 013^{-12}$	1.970 (4)
Ag1-019 ⁴	2.455 (4)	04-013	1.994 (4)
Agl—O8	2.484 (4)	$C_{04} = 07$	1.996 (4)
$Ag2 - 014^{m}$	2.210 (5)	Co4—019	2.015 (4)
Ag2—019 ¹	2.225 (5)	Co4—O2 ⁿ	2.056 (4)
016 14 1 010	111.2 (2)		07.05 (15)
016—Mo1—010	111.2(2)	05-03	87.85 (15)
016—Mo1—03	106.92 (18)	$O10^{10}$ —Co1—O3	96.81 (15)
010—Mo1—03	106.34 (18)	012-Co1-03	77.15 (15)
O16—Mo1—O13	106.10 (18)	04—Co2—O9 ^v	90.75 (17)
O10—Mo1—O13	107.77 (18)	O4—Co2—O8 ^{v1}	176.36 (17)
O3—Mo1—O13	118.55 (17)	$O9^{v}$ —Co2—O8 ^{v1}	88.98 (17)
O4—Mo2—O15	108.65 (19)	O4—Co2—O11	90.57 (16)
O4—Mo2—O5	107.77 (18)	O9 ^v —Co2—O11	89.95 (17)
O15—Mo2—O5	109.23 (18)	O8 ^{vi} —Co2—O11	93.06 (16)
O4—Mo2—O19	107.54 (19)	O4—Co2—O1 ^{vi}	91.49 (16)
O15—Mo2—O19	110.94 (19)	O9 ^v —Co2—O1 ^{vi}	177.73 (16)
O5—Mo2—O19	112.58 (18)	$O8^{vi}$ — $Co2$ — $O1^{vi}$	88.76 (16)
O9—Mo3—O11 ⁱ	109.69 (19)	O11—Co2—O1 ^{vi}	90.41 (16)
O9—Mo3—O18	107.9 (2)	O4—Co2—O1	87.19 (16)
O11 ⁱ —Mo3—O18	108.25 (19)	O9 ^v —Co2—O1	97.01 (16)
O9—Mo3—O1	109.13 (18)	O8 ^{vi} —Co2—O1	89.24 (15)
O11 ⁱ —Mo3—O1	111.73 (18)	O11—Co2—O1	172.71 (16)
O18—Mo3—O1	110.08 (18)	O1 ^{vi} —Co2—O1	82.72 (16)
O17—Mo4—O6 ⁱⁱ	112.9 (2)	O6 ^{vii} —Co3—O17 ^{iv}	82.08 (17)
O17—Mo4—O20	107.5 (2)	O6 ^{vii} —Co3—O3	99.95 (16)
O6 ⁱⁱ —Mo4—O20	109.6 (2)	O17 ^{iv} —Co3—O3	92.94 (16)
O17—Mo4—O12 ⁱⁱ	107.04 (18)	O6 ^{vii} —Co3—O13 ⁱ	93.72 (16)
O6 ⁱⁱ —Mo4—O12 ⁱⁱ	107.18 (18)	O17 ^{iv} —Co3—O13 ⁱ	97.00 (16)
O20—Mo4—O12 ⁱⁱ	112.78 (18)	O3—Co3—O13 ⁱ	164.09 (15)
O14—Mo5—O7	108.7 (2)	O6 ^{vii} —Co3—O12	177.23 (16)

O14—Mo5—O8	108.4 (2)	O17 ^{iv} —Co3—O12	95.29 (16)
O7—Mo5—O8	109.1 (2)	O3—Co3—O12	79.28 (14)
O14—Mo5—O2	110.1 (2)	O13 ⁱ —Co3—O12	87.43 (14)
O7—Mo5—O2	112.59 (18)	O6 ^{vii} —Co3—O2	92.31 (16)
O8—Mo5—O2	107.84 (18)	O17 ^{iv} —Co3—O2	173.71 (17)
O14 ⁱⁱⁱ —Ag1—O19 ⁱ	98.42 (17)	O3—Co3—O2	90.81 (15)
O14 ⁱⁱⁱ —Ag1—O8	140.69 (19)	O13 ⁱ —Co3—O2	80.47 (15)
O19 ⁱ —Ag1—O8	120.42 (15)	O12—Co3—O2	90.37 (15)
O14 ⁱⁱⁱ —Ag2—O19 ⁱ	106.6 (2)	O18 ^{vi} —Co4—O15 ^{vii}	92.13 (18)
O14 ⁱⁱⁱ —Ag2—O5	99.1 (2)	O18 ^{vi} —Co4—O13	173.62 (17)
O19 ⁱ —Ag2—O5	138.3 (5)	O15 ^{vii} —Co4—O13	90.93 (16)
O20—Co1—O16 ⁱⁱⁱ	92.15 (17)	O18 ^{vi} —Co4—O7	94.80 (17)
O20—Co1—O5	88.35 (16)	O15 ^{vii} —Co4—O7	91.14 (18)
O16 ⁱⁱⁱ —Co1—O5	95.76 (16)	O13—Co4—O7	90.73 (16)
O20—Co1—O10 ^{iv}	92.55 (16)	O18 ^{vi} —Co4—O19	86.79 (17)
O16 ⁱⁱⁱ —Co1—O10 ^{iv}	79.59 (16)	O15 ^{vii} —Co4—O19	177.71 (17)
O5—Co1—O10 ^{iv}	175.29 (16)	O13—Co4—O19	89.94 (15)
O20—Co1—O12	163.71 (16)	O7—Co4—O19	90.96 (18)
O16 ⁱⁱⁱ —Co1—O12	104.13 (16)	O18 ^{vi} —Co4—O2 ⁱⁱ	92.52 (16)
O5—Co1—O12	90.12 (15)	O15 ^{vii} —Co4—O2 ⁱⁱ	86.18 (16)
O10 ^{iv} —Co1—O12	90.31 (15)	O13—Co4—O2 ⁱⁱ	82.09 (15)
O20—Co1—O3	86.59 (16)	O7—Co4—O2 ⁱⁱ	172.29 (17)
O16 ⁱⁱⁱ —Co1—O3	176.14 (16)	O19—Co4—O2 ⁱⁱ	91.85 (16)

Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1; (vii) x-1, y, z.