Received 18 February 2015
Accepted 26 February 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cobalt(II); transition metal complexes; benzoic acid derivatives; onedimensional coordination polymer

CCDC reference: 1051344
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of catena-poly[[diaquabis(4-formylbenzoato- κO^{1})cobalt(II)]- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Gülçin Șefiye Așkın, ${ }^{\text {a }}$ Fatih Çelik, ${ }^{\text {b }}$ Nefise Dilek, ${ }^{\text {c }}$ Hacali Necefoğlu ${ }^{\text {b }}$ and Tuncer Hökelek ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Kafkas University, 36100 Kars, Turkey, and ${ }^{\text {c }}$ Aksaray University, Department of Physics, 68100, Aksaray, Turkey.
*Correspondence e-mail: merzifon@hacettepe.edu.tr

In the title polymeric compound, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Co}^{\text {II }}$ atom is located on a twofold rotation axis and has a slightly distorted octahedral coordination sphere. In the equatorial plane, it is coordinated by two carboxylate O atoms of two symmetry-related monodentate formylbenzoate anions and by two N atoms of two bridging pyrazine ligands. The latter are bisected by the twofold rotation axis. The axial positions are occupied by two O atoms of the coordinating water molecules. In the formylbenzoate anion, the carboxylate group is twisted away from the attached benzene ring by $7.50(8)^{\circ}$, while the benzene and pyrazine rings are oriented at a dihedral angle of $64.90(4)^{\circ}$. The pyrazine ligands bridge the $\mathrm{Co}^{\mathrm{II}}$ cations, forming linear chains running along the b-axis direction. Strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the water molecules to the carboxylate O atoms. In the crystal, weak $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{O}_{\text {water }}$ hydrogen bonds link adjacent chains into layers parallel to the $b c$ plane. The layers are linked via $\mathrm{C}-\mathrm{H}_{\mathrm{pyrazine}} \cdots \mathrm{O}_{\text {formyl }}$ hydrogen bonds, forming a three-dimensional network. There are also weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present.

1. Chemical context

The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978; Antsyshkina et al., 1980; Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties and, as a result, they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen \& Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).

In this context, we report the synthesis and crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, which is isotypic with its $\mathrm{Cu}^{\mathrm{II}}$ (Çelik et al., 2014a) and $\mathrm{Ni}^{\mathrm{II}}$ (Çelik et al., 2014b) analogues.

2. Structural commentary

The asymmetric unit of the title compound contains a $\mathrm{Co}^{\mathrm{II}}$ ion, one formylbenzoate (FB) anion, one water molecule and half of a pyrazine molecule. Atoms N1 and N2 of the pyrazine
ligand and Co 1 are located on a twofold rotation axis (Fig. 1). The pyrazine ligands bridge adjacent $\mathrm{Co}^{\mathrm{II}}$ ions, forming polymeric chains running along the b-axis direction (Fig. 2). The distance between symmetry-related $\mathrm{Co}^{\text {II }}$ ions [Co1 $\cdots \mathrm{Co}^{1 \mathrm{iii}}$; symmetry code: (iii) $\left.x, y+1, z\right]$ is 7.1193 (4) \AA.

The equatorial plane of the $\mathrm{Co}^{\mathrm{II}} \mathrm{O}_{4} \mathrm{~N}_{2}$ coordination sphere is composed of two carboxylate O atoms [O 1 and $\mathrm{O} 1^{\mathrm{i}}$; symmetry code: (i) $\left.2-x, y, \frac{3}{2}-z\right]$ of two symmetry-related monodentate formylbenzoate anions and two N atoms [N 1 and $\mathrm{N} 2^{\text {ii; }}$; symmetry code: (ii) $x,-1+y, z$] of two bridging pyrazine ligands, which are bisected by the twofold rotation axis. The axial positions are occupied by two O atoms (O 4 and $\mathrm{O} 4^{\mathrm{i}}$) of the coordinating water molecules.

Figure 1
A view of the coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ atom of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The twofold rotation axis bisects atoms Co1, N 1 and N 2 . Non-labelled atoms are generated by the symmetry code $-x+2, y,-z+\frac{3}{2}$.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).
$C g 1$ is the centroid of ring $A(\mathrm{C} 2-\mathrm{C} 7)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H41 $\cdots \mathrm{O} 2$	$0.89(3)$	$1.72(3)$	$2.5909(16)$	$164(2)$
O4-H42 O^{i}	$0.71(3)$	$2.63(3)$	$2.958(2)$	$111(2)$
C10-H10 ${ }^{\mathrm{ii}}$ O3	0.93	2.46	$3.320(2)$	154
C7-H7 \cdots Cg1 $^{\mathrm{iii}}$	0.93	2.65	$3.4216(15)$	142

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+2$; (iii) $x,-y, z-\frac{1}{2}$.

The near equality of the $\mathrm{C} 1-\mathrm{O} 1[1.272(2) \AA$ A C and $\mathrm{C} 1-\mathrm{O} 2$ [1.245 (2) A $]$ bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The $\mathrm{Co}-\mathrm{N}$ bond length is 2.165 (9) \AA, while the $\mathrm{Co}-\mathrm{O}$ bond lengths are 2.0551 (9) \AA (for benzoate oxygen) and 2.1491 (11) \AA (for water oxygen), close to standard values. The Co1 atom is displaced by 0.1034 (2) \AA from the mean plane of the carboxylate group ($\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{O} 2$). The dihedral angle between the carboxylate group and the adjacent benzene ring $A(\mathrm{C} 2-\mathrm{C} 7)$ is $7.50(8)^{\circ}$, while the benzene and pyrazine rings are oriented at a dihedral angle of $64.90(4)^{\circ}$.

3. Supramolecular features

Strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the water molecules to the non-coordinating carboxylate oxygen atoms. In the crystal, weak $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{O}_{\text {water }}$ hydrogen bonds (Table 1) link adjacent chains into layers parallel to the $b c$ plane. The layers are linked via C $\mathrm{H}_{\text {pyrazine }} \cdots \mathrm{O}_{\text {formyl }}$ hydrogen bonds, forming a three-dimensional network (Fig. 3). There are also weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present (Table 1).

Figure 2
A partial view of the crystal packing of the title compound.

Figure 3
Part of the crystal structure. Intermolecular hydrogen bonds are shown as dashed lines. Non-bonding H atoms have been omitted for clarity.

4. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2. Atoms H 41 and H 42 (for $\mathrm{H}_{2} \mathrm{O}$) were located in a difference Fourier map and were refined freely. The methine H atom was also located in a difference Fourier map and the $\mathrm{C}-\mathrm{H}$ distance restrained to 0.984 (13) A. The aromatic C-bound H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

5. Synthesis and crystallization

The title compound was prepared by the reaction of $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.40 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ and pyrazine $(0.40 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ with sodium 4-formylbenzoate $(1.72 \mathrm{~g}, \quad 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$ at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving orange single crystals.

Acknowledgements

The authors acknowledge the Aksaray University Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by the Kafkas University Research Fund (grant No. 2012-FEF-12).

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{3}\right.$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
\(0.025,0.071,1.06\)
2427
[Co(C88 H5O O}\mp@subsup{)}{2}{}(\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{4}{}\mp@subsup{\textrm{N}}{2}{})(\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mp@subsup{)}{2}{}
4 7 3 . 2 9
Monoclinic, C2/c
296
22.1623 (6), 7.1193 (2), 12.2911 (3)
94.432 (1)
1933.49 (9)
4
Mo K\alpha
0.94
0.47\times0.22\times0.11
Bruker SMART BREEZE CCD
Multi-scan (SADABS; Bruker,
    2012)
0.830,0.914
27023, 2427, 2336
0.024
0.668
154
1
H}\mathrm{ atoms treated by a mixture of
    independent and constrained
    refinement
0.35, -0.34
```

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

References

Adiwidjaja, G., Rossmanith, E. \& Küppers, H. (1978). Acta Cryst. B34, 3079-3083.
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. \& Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. \& Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.
Antsyshkina, A. S., Chiragov, F. M. \& Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. \& Hökelek, T. (2014a). Acta Cryst. E70, m4-m5.
Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. \& Hökelek, T. (2014b). Acta Cryst. E70, m65-m66.
Chen, H. J. \& Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hauptmann, R., Kondo, M. \& Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.
Nadzhafov, G. N., Shnulin, A. N. \& Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. \& Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Crystal structure of catena-poly[[diaquabis(4-formylbenzoato-k ${ }^{1}$)cobalt(II)]- μ -pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Gülçin Şefiye Aşkın, Fatih Çelik, Nefise Dilek, Hacali Necefoğlu and Tuncer Hökelek

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
catena-Poly[[diaquabis(4-formylbenzoato- κO^{1})cobalt(II)]- μ-pyrazine $\left.-\kappa^{2} N: N^{\prime}\right]$

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=473.29$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=22.1623$ (6) \AA
$b=7.1193$ (2) \AA
$c=12.2911(3) \AA$
$\beta=94.432(1)^{\circ}$
$V=1933.49(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART BREEZE CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.830, T_{\text {max }}=0.914$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.071$
$S=1.06$
2427 reflections
154 parameters
1 restraint

$$
F(000)=972
$$

$D_{\mathrm{x}}=1.626 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9866 reflections
$\theta=2.4-28.3^{\circ}$
$\mu=0.94 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, orange
$0.47 \times 0.22 \times 0.11 \mathrm{~mm}$

27023 measured reflections
2427 independent reflections
2336 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-29 \rightarrow 29$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0409 P)^{2}+1.5712 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} * / U_{\mathrm{eq}}$
Co1	1.0000	$-0.05145(3)$	0.7500	$0.01998(9)$
O1	$0.91572(4)$	$-0.04830(13)$	$0.80894(9)$	$0.0276(2)$
O2	$0.86274(5)$	$-0.17780(18)$	$0.66579(9)$	$0.0402(3)$
O3	$0.60114(6)$	$-0.1312(3)$	$0.95577(12)$	$0.0651(4)$
O4	$0.96115(5)$	$-0.06701(18)$	$0.58454(9)$	$0.0352(2)$
H41	$0.9245(12)$	$-0.104(4)$	$0.600(2)$	$0.058(6)^{*}$
H42	$0.9564(12)$	$0.019(4)$	$0.555(2)$	$0.066(8)^{*}$
N1	1.0000	$0.2518(2)$	0.7500	$0.0247(3)$
N2	1.0000	$0.6436(2)$	0.7500	$0.0235(3)$
C1	$0.86731(5)$	$-0.11157(17)$	$0.75983(11)$	$0.0240(2)$
C2	$0.81095(5)$	$-0.10250(17)$	$0.82116(10)$	$0.0226(2)$
C3	$0.81105(6)$	$-0.0089(2)$	$0.92052(11)$	$0.0268(2)$
H3	0.8467	0.0439	0.9518	0.032^{*}
C4	$0.75794(6)$	$0.0058(2)$	$0.97289(11)$	$0.0301(3)$
H4	0.7580	0.0682	1.0394	0.036^{*}
C5	$0.70463(6)$	$-0.0726(2)$	$0.92617(12)$	$0.0292(3)$
C6	$0.70446(6)$	$-0.1685(2)$	$0.82755(12)$	$0.0307(3)$
H6	0.6689	-0.2222	0.7967	0.037^{*}
C7	$0.75745(6)$	$-0.18340(19)$	$0.77557(11)$	$0.0271(3)$
H7	0.7574	-0.2478	0.7098	0.032^{*}
C8	$0.64849(8)$	$-0.0553(3)$	$0.98296(15)$	$0.0430(4)$
H8	$0.6472(7)$	$0.029(2)$	$1.0463(12)$	$0.021(4)^{*}$
C9	$0.97461(6)$	$0.35053(18)$	$0.82681(11)$	$0.0287(3)$
H9	0.9563	0.2869	0.8815	0.034^{*}
C10	$0.97486(7)$	$0.54530(17)$	$0.82719(12)$	$0.0282(3)$
H10	0.9571	0.6090	0.8825	0.034^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.01683(12)$	$0.01603(12)$	$0.02763(14)$	0.000	$0.00520(8)$	0.000
O1	$0.0180(4)$	$0.0288(5)$	$0.0366(5)$	$-0.0022(3)$	$0.0058(4)$	$-0.0040(4)$

O2	$0.0284(5)$	$0.0584(7)$	$0.0351(5)$	$-0.0116(5)$	$0.0103(4)$	$-0.0128(5)$
O3	$0.0296(6)$	$0.1092(13)$	$0.0583(8)$	$-0.0015(7)$	$0.0149(5)$	$0.0049(9)$
O4	$0.0299(5)$	$0.0449(6)$	$0.0312(5)$	$-0.0052(5)$	$0.0051(4)$	$0.0083(5)$
N1	$0.0217(7)$	$0.0178(6)$	$0.0353(8)$	0.000	$0.0065(6)$	0.000
N2	$0.0242(7)$	$0.0172(6)$	$0.0301(7)$	0.000	$0.0078(6)$	0.000
C1	$0.0197(5)$	$0.0204(5)$	$0.0324(6)$	$-0.0004(4)$	$0.0059(4)$	$0.0013(5)$
C2	$0.0193(5)$	$0.0218(5)$	$0.0270(6)$	$0.0006(4)$	$0.0039(4)$	$0.0022(4)$
C3	$0.0224(6)$	$0.0303(6)$	$0.0272(6)$	$0.0003(5)$	$-0.0008(5)$	$-0.0012(5)$
C4	$0.0312(7)$	$0.0337(7)$	$0.0259(6)$	$0.0040(6)$	$0.0048(5)$	$-0.0022(5)$
C5	$0.0236(6)$	$0.0332(7)$	$0.0317(6)$	$0.0046(5)$	$0.0086(5)$	$0.0055(5)$
C6	$0.0207(6)$	$0.0367(7)$	$0.0351(7)$	$-0.0048(5)$	$0.0038(5)$	$-0.0002(6)$
C7	$0.0234(6)$	$0.0308(6)$	$0.0274(6)$	$-0.0050(5)$	$0.0048(5)$	$-0.0036(5)$
C8	$0.0316(8)$	$0.0576(11)$	$0.0417(8)$	$0.0079(7)$	$0.0152(6)$	$0.0035(7)$
C9	$0.0318(6)$	$0.0211(6)$	$0.0349(7)$	$-0.0002(5)$	$0.0137(5)$	$0.0036(5)$
C10	$0.0332(7)$	$0.0210(6)$	$0.0321(7)$	$0.0016(5)$	$0.0141(5)$	$-0.0009(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

Col-O1	2.0551 (9)	C2-C1	1.5093 (17)
Col-O1 ${ }^{\text {i }}$	2.0551 (9)	C2-C3	1.3911 (18)
Col-O4	2.1491 (11)	C2-C7	1.3961 (17)
Col-O4 ${ }^{\text {i }}$	2.1491 (11)	C3-H3	0.9300
Co1-N1	2.1588 (15)	C4-C3	1.3884 (18)
Col-N2 ${ }^{\text {ii }}$	2.1714 (15)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	1.2721 (16)	C5-C4	1.390 (2)
$\mathrm{O} 2-\mathrm{C} 1$	1.2451 (17)	C5-C6	1.391 (2)
O3-C8	1.205 (2)	C5-C8	1.478 (2)
O4-H41	0.89 (3)	C6-H6	0.9300
O4-H42	0.71 (3)	C7-C6	1.3836 (18)
N1-C9	1.3357 (15)	C7-H7	0.9300
N1-C9 ${ }^{\text {i }}$	1.3357 (15)	C8-H8	0.984 (13)
$\mathrm{N} 2-\mathrm{Col}^{\text {iii }}$	2.1714 (15)	C9-H9	0.9300
N2-C10	1.3347 (15)	C10-C9	1.3866 (19)
N2-C10 ${ }^{\text {i }}$	1.3347 (15)	C10-H10	0.9300
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	178.75 (5)	C3-C2-C1	120.92 (11)
O1-Co1-O4	91.46 (4)	C3-C2-C7	119.58 (12)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Co1-O} 4$	88.60 (4)	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	119.46 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 4^{\text {i }}$	88.60 (4)	C2-C3-H3	120.0
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 4{ }^{\mathrm{i}}$	91.46 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.94 (12)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	89.38 (3)	C4-C3-H3	120.0
$\mathrm{O} 1{ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{N} 1$	89.38 (3)	C3-C4-C5	120.15 (13)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2^{2 i}$	90.62 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2^{\text {ii }}$	90.62 (3)	C5-C4-H4	119.9
O4-Col-O4 ${ }^{\text {i }}$	174.09 (7)	C4-C5-C6	120.13 (12)
O4-Co1-N1	92.96 (4)	C4-C5-C8	119.41 (14)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{N} 1$	92.96 (4)	C6-C5-C8	120.46 (14)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{N} 2^{\text {ii }}$	87.04 (4)	C5-C6-H6	120.2

$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2^{\text {ii }}$	87.04 (4)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2{ }^{\text {ii }}$	180.000 (1)
C1-O1-Co1	125.81 (9)
Col-O4-H41	96.6 (15)
Col-O4-H42	118 (2)
H41-O4-H42	105 (3)
C9-N1-Co1	121.75 (8)
C9 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{Col}$	121.75 (8)
C9-N1-C9 ${ }^{\text {i }}$	116.49 (15)
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Co}{ }^{1 i i}$	121.61 (8)
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Co1}{ }^{\text {iii }}$	121.61 (8)
C10-N2-C10 ${ }^{\text {i }}$	116.79 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.62 (11)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.42 (12)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.96 (11)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1$	23.45 (11)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1$	-150.64 (11)
N1-Co1-O1-C1	116.39 (10)
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1$	-63.61 (10)
$\mathrm{O} 1-\mathrm{Co1-N1-C9}$	35.39 (8)
O1-Col-N1-C9	-144.61 (8)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 9^{\text {i }}$	-144.61 (8)
O1- ${ }^{\text {i }}$ - $1-\mathrm{N} 1-\mathrm{C} 9^{\text {i }}$	35.39 (8)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 9$	126.82 (8)
O4- ${ }^{\text {i }}$ Col-N1-C9	-53.18 (8)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 9^{\text {i }}$	-53.18 (8)
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 9^{\text {i }}$	126.82 (8)
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-3.6 (2)
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	177.23 (8)
Col-N1-C9-C10	179.66 (10)
C9i-N1-C9-C10	-0.34 (10)
$\mathrm{Co1}{ }^{\text {iii- }} \mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	179.66 (10)
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	-0.34 (10)

$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	119.67 (12)
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	119.7
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$120.52(12)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.7
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 5$	$125.34(17)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{H} 8$	$114.5(10)$
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8$	$120.1(10)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$121.79(12)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{H} 9$	119.1
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	119.1
$\mathrm{~N} 2-\mathrm{C} 10-\mathrm{C} 9$	$121.57(12)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{H} 10$	119.2
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	119.2

7.53 (18)
-171.75 (13)
-174.80 (12)
5.92 (18)
176.79 (12)
-0.9 (2)
-176.64 (12)
1.1 (2)
-0.1 (2)
-0.8 (2)
1.0 (2)
-179.86 (14)
-179.95 (14)
-172.93 (18)
6.3 (3)
-0.2 (2)
0.7 (2)

Symmetry codes: (i) $-x+2, y,-z+3 / 2$; (ii) $x, y-1, z$; (iii) $x, y+1, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)
Cg 1 is the centroid of ring A (C2-C7).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 2$	$0.89(3)$	$1.72(3)$	$2.5909(16)$	$164(2)$
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 4^{\text {iv }}$	$0.71(3)$	$2.63(3)$	$2.958(2)$	$111(2)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O}^{\text {v }}$	0.93	2.46	$3.320(2)$	154
${\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\text {vi }}}$	0.93	2.65	$3.4216(15)$	142

Symmetry codes: (iv) $-x+2,-y,-z+1$; (v) $-x+3 / 2,-y+1 / 2,-z+2$; (vi) $x,-y, z-1 / 2$.

