CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 28 February 2015
Accepted 9 March 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; xenon; fluorosulfate; oxidizer; noble gas; xenon-oxygen compound; superacid

CCDC reference: 1052852
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of bis(fluorosulfato- κ O)xenon(II), $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$

Moritz Malischewski* and Konrad Seppelt

Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstrasse 34-36, 14195 Berlin, Germany. *Correspondence e-mail: m-mali@hotmail.de

Thermally unstable $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$ has been prepared by the reaction of XeF_{2} with $\mathrm{HSO}_{3} \mathrm{~F}$. Single crystals were obtained from $\mathrm{HSO}_{3} \mathrm{~F}$ by slow cooling in a sealed tube. The molecular structure is characterized by the Xe atom covalently bonded to two O atoms of two fluorosulfate tetrahedra in an almost linear fashion $\left[\mathrm{O}-\mathrm{Xe}-\mathrm{O}=179.13(4)^{\circ}\right]$. The crystal packing is strongly influenced by intermolecular van der Waals forces.

1. Chemical context

In 1972, Neil Bartlett published data on the unit cell of $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$ (Wechsberg et al., 1972). As a result of the thermal instability of this compound, no further structural details were given at that time, but ${ }^{19} \mathrm{~F}$ and ${ }^{129} \mathrm{Xe}$ NMR spectra were reported subsequently (Gillespie et al., 1974; Schrobilgen et al., 1978). The decomposition of $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$ leads cleanly to Xe and $\mathrm{S}_{2} \mathrm{O}_{6} \mathrm{~F}_{2}$.

2. Structural commentary

Analogous to XeF_{2} (Agron et al., 1963), the two-coordinated xenon atom adopts a linear geometry [angle $\mathrm{O} 1-\mathrm{Xe}-\mathrm{O} 4=$ $\left.179.13(4)^{\circ}\right]$. The molecule has nearly C_{i} symmetry, with the xenon atom at the pseudo-inversion centre (Fig. 1). This finding is in contrast to earlier reports, where C_{s} symmetry was discussed based on Raman spectroscopic data (Gillespie \& Landa, 1973). The $\mathrm{Xe}-\mathrm{O}$ bonds are 2.1101 (13) and 2.1225 (13) \AA, which is typical for $\mathrm{Xe}-\mathrm{O}$ single bonds, whereas $\mathrm{Xe}=\mathrm{O}$ double bonds are considerably shorter with lengths $\simeq 1.75 \AA$. The related compound xenon fluoride fluorosulfate, $\mathrm{XeF}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)$ (Bartlett et al., 1969, 1972),

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
The crystal packing of the title compound
contains a $\mathrm{Xe}-\mathrm{O}$ bond that is slightly longer [2.155 (8) \AA] than in the title compound, but the $\mathrm{Xe}-\mathrm{F}$ bond of $\mathrm{XeF}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)$ is at 1.940 (8) \AA shorter than that in XeF_{2} ($2.00 \AA$). For $\mathrm{XeF}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)$, partial ionic bonding $\left(\mathrm{XeF}^{+} \cdot \mathrm{OSO}_{2} \mathrm{~F}^{-}\right)$was discussed. Obviously, both XeF_{2} and $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$ have a higher covalent character. The $\mathrm{S}-\mathrm{O}$ bonds in $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$ involving the O atoms that are also bonded to the xenon atom ($\mathrm{S} 1-\mathrm{O} 1$ and $\mathrm{S} 2-\mathrm{O} 4$) are about $0.1 \AA$ longer than the terminal $\mathrm{S}-\mathrm{O}$ bonds (Table 1), indicating partial double-bond character.

3. Supramolecular features

The crystal packing (Fig. 2) is strongly influenced by intermolecular van der Waals interactions to seven oxygen atoms and two fluorine atoms (Table 2). Whereas the xenon atom in XeF_{2} exhibits intermolecular interactions to eight fluorine atoms (distance $3.42 \AA$; Agron et al., 1963), $\mathrm{XeF}\left(\mathrm{OSO}_{2} \mathrm{~F}\right)$ has fewer contacts (five contacts to oxygen in the range 3.28$3.49 \AA$ and one contact to fluorine of $3.39 \AA$; Bartlett et al., 1972).

4. Synthesis and crystallization

550 mg fluorosulfuric acid were placed in a 8 mm PFA tube. $170 \mathrm{mg}(1 \mathrm{mmol})$ of XeF_{2} were added and the mixture vigorously shaken at room temperature for some minutes until all XeF_{2} had dissolved. The PFA tube was evacuated for some

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

Xe1-O1	$2.1101(13)$	S1-F1	$1.5449(12)$
Xe1-O4	$2.1225(13)$	S2-O6	$1.4141(13)$
S1-O3	$1.4103(13)$	S2-O5	$1.4150(14)$
S1-O2	$1.4092(14)$	S2-O4	$1.5237(13)$
S1-O1	$1.5334(13)$	S2-F2	$1.5483(12)$
O1-Xe1-O4	$179.13(4)$		

Table 2
Intermolecular contacts (A).

Xe1...O2	3.1613 (15)	Xe1...F1 ${ }^{\text {iv }}$	(17)
Xe1...O5	3.1855 (16)	Xe1...O3 ${ }^{\text {v }}$	3.4707 (19)
$\mathrm{Xe} 1 \cdots \mathrm{O} 2{ }^{\text {i }}$	3.1872 (17)	Xe1 $\cdots \mathrm{O}^{\text {vi }}$	3.4818 (18)
Xe1. ${ }^{\text {O }} 6^{\text {ii }}$	3.2317 (19)	Xe1 $\cdots \mathrm{F}^{\text {vii }}$	3.5867 (17)
Xe1 \cdots O6 $6^{\text {iii }}$	3.3262 (18)		
Symmetry codes: (i) $-x,-y+1,-z+2$; (ii) $\quad x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (iv) $x+1, y, z$; (v) $-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (vi) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (vii) $x-1, y, z$.			

seconds to remove HF, then frozen with liquid nitrogen and sealed. The yellow product ($\simeq 0.2 \mathrm{ml}$) was warmed to 273 K and the PFA tube placed in a dewar filled with 273 K ethanol and cooled slowly to 193 K in a freezer. The light-yellow single crystals of $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$ that had formed were decanted off and mounted in a cold nitrogen stream. At 100 K , the crystals are colorless. The compound decomposes rapidly in moist air and can ignite organic materials.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}\right]$
$M_{\text {r }}$	329.42
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	100
$a, b, c(\AA)$	6.706 (3), 13.237 (6), 7.769 (3)
$\beta{ }^{\circ}{ }^{\circ}$)	96.50 (3)
$V\left(\AA^{3}\right)$	685.2 (5)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	5.66
Crystal size (mm)	$0.50 \times 0.40 \times 0.15$
Data collection	
Diffractometer	Bruker CCD SMART 2000
Absorption correction	Multi-scan (SADABS; Bruker, 2006)
$T_{\text {min }}, T_{\text {max }}$	0.545, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	11036, 2096, 1978
$R_{\text {int }}$	0.020
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.716
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.013, 0.033, 1.11
No. of reflections	2096
No. of parameters	101
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.56, -0.69
Computer programs: SMART and SAIN SHELXTL (Sheldrick, 2008), ORTEP-3 (Brandenburg, 1999).	uker, 2006), SHELXS97, SHELXL indows (Farrugia, 2012) and DIAMO

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

MM acknowledges funding by the Fonds der Chemischen Industrie FCI.

References

Agron, P. A., Begun, G. M., Levy, H. A., Mason, A. A., Jones, C. G. \& Smith, D. F. (1963). Science, 139, 842-844.
Bartlett, N., Wechsberg, M., Jones, G. R. \& Burbank, R. D. (1972). Inorg. Chem. 11, 1124-1127.

Bartlett, N., Wechsberg, M., Sladky, F. O., Bulliner, P. A., Jones, G. R. \& Burbank, R. D. (1969). J. Chem. Soc. D, pp. 703-704.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gillespie, R. J. \& Landa, B. (1973). Inorg. Chem. 12, 1383-1389.
Gillespie, R. J., Netzer, A. \& Schrobilgen, G. J. (1974). Inorg. Chem. 13, 1455-1459.
Schrobilgen, G. J., Holloway, J. H., Granger, P. \& Brevard, C. (1978). Inorg. Chem. 17, 980-987.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wechsberg, M., Bulliner, P. A., Sladky, F. O., Mews, R. \& Bartlett, N. (1972). Inorg. Chem. 11, 3063-3070.

supporting information

Acta Cryst. (2015). E71, 363-365 [doi:10.1107/S2056989015004788]

Crystal structure of bis(fluorosulfato- $\kappa \mathrm{O}$) xenon(II), $\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}$

Moritz Malischewski and Konrad Seppelt

Computing details

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL
(Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999);
software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(fluorosulfato- κO) xenon(II)

Crystal data

$\left[\mathrm{Xe}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}\right]$
$M_{r}=329.42$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=6.706(3) \AA$
$b=13.237$ (6) \AA
$c=7.769(3) \AA$
$\beta=96.50(3)^{\circ}$
$V=685.2(5) \AA^{3}$
$Z=4$

Data collection

Bruker CCD SMART 2000
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\min }=0.545, T_{\max }=1.000$
$F(000)=608$
$D_{\mathrm{x}}=3.194 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 999 reflections
$\theta=2.0-21.0^{\circ}$
$\mu=5.66 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Irregular, colorless
$0.50 \times 0.40 \times 0.15 \mathrm{~mm}$

11036 measured reflections
2096 independent reflections
1978 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=30.6^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-9 \rightarrow 8$
$k=-18 \rightarrow 18$
$l=-11 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.013$
$w R\left(F^{2}\right)=0.033$
$S=1.11$
2096 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0151 P)^{2}+0.4262 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.56$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.69$ e \AA^{-3}
Extinction correction: SHELXL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0244 (5)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Xe1	$0.000928(13)$	$0.627394(6)$	$0.726096(13)$	$0.01145(4)$
S1	$-0.33404(6)$	$0.46260(3)$	$0.75371(5)$	$0.01295(8)$
S2	$0.32649(6)$	$0.79932(3)$	$0.70775(5)$	$0.01265(8)$
O4	$0.24243(18)$	$0.72199(8)$	$0.82568(16)$	$0.0155(2)$
F2	$0.51324(16)$	$0.74159(8)$	$0.65972(16)$	$0.0227(2)$
O2	$-0.22016(19)$	$0.45699(9)$	$0.91739(17)$	$0.0190(2)$
F1	$-0.52083(16)$	$0.52658(9)$	$0.78020(16)$	$0.0255(2)$
O6	$0.4027(2)$	$0.88225(8)$	$0.80947(18)$	$0.0181(2)$
O5	$0.2017(2)$	$0.81316(9)$	$0.55006(17)$	$0.0202(3)$
O3	$-0.4069(2)$	$0.37545(9)$	$0.6629(2)$	$0.0218(3)$
O1	$-0.23650(18)$	$0.53141(9)$	$0.62828(16)$	$0.0168(2)$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Xe1	$0.01151(6)$	$0.01094(6)$	$0.01174(7)$	$-0.00098(3)$	$0.00068(3)$	$0.00171(3)$
S1	$0.01200(16)$	$0.01179(15)$	$0.0150(2)$	$-0.00106(12)$	$0.00137(13)$	$0.00063(13)$
S2	$0.01379(17)$	$0.01185(15)$	$0.01261(19)$	$-0.00147(12)$	$0.00274(13)$	$-0.00024(13)$
O4	$0.0159(5)$	$0.0156(5)$	$0.0143(6)$	$-0.0052(4)$	$-0.0010(4)$	$0.0026(4)$
F2	$0.0194(5)$	$0.0234(5)$	$0.0268(6)$	$0.0023(4)$	$0.0093(4)$	$-0.0049(4)$
O2	$0.0216(6)$	$0.0210(5)$	$0.0141(6)$	$-0.0027(5)$	$0.0004(5)$	$0.0033(5)$
F1	$0.0158(5)$	$0.0232(5)$	$0.0382(7)$	$0.0055(4)$	$0.0064(5)$	$-0.0005(5)$
O6	$0.0221(6)$	$0.0147(5)$	$0.0181(7)$	$-0.0052(4)$	$0.0047(5)$	$-0.0038(4)$
O5	$0.0240(6)$	$0.0219(6)$	$0.0141(6)$	$-0.0038(5)$	$-0.0006(5)$	$0.0044(5)$
O3	$0.0243(6)$	$0.0164(6)$	$0.0248(8)$	$-0.0070(4)$	$0.0026(5)$	$-0.0041(5)$
O1	$0.0167(5)$	$0.0191(5)$	$0.0139(6)$	$-0.0064(4)$	$-0.0022(4)$	$0.0033(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Xe} 1-\mathrm{O} 1$	$2.1101(13)$	$\mathrm{S} 1-\mathrm{F} 1$	$1.5449(12)$
$\mathrm{Xe} 1-\mathrm{O} 4$	$2.1225(13)$	$\mathrm{S} 2-\mathrm{O} 6$	$1.4141(13)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4103(13)$	$\mathrm{S} 2-\mathrm{O} 5$	$1.4150(14)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4092(14)$	$\mathrm{S} 2-\mathrm{O} 4$	$1.5237(13)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.5334(13)$	$\mathrm{S} 2-\mathrm{F} 2$	$1.5483(12)$
$\mathrm{Xe} 1 \cdots \mathrm{O} 2$			$3.4551(17)$

Xe1 \cdots O5	3.1855 (16)	Xel $\cdots{ }^{\text {O }}{ }^{\text {v }}$	3.4707 (19)
Xe1 $\cdots \mathrm{O}^{2}$	3.1872 (17)	Xe1 $\cdots{ }^{\text {a }}{ }^{\text {vi }}$	3.4818 (18)
Xe1 $\cdots{ }^{\text {c }}{ }^{\text {ii }}$	3.2317 (19)	Xe1 \cdots F2 ${ }^{\text {vii }}$	3.5867 (17)
Xe1 $\cdots \mathrm{O}^{\text {iii }}$	3.3262 (18)		
$\mathrm{O} 1-\mathrm{Xe} 1-\mathrm{O} 4$	179.13 (4)	O6-S2-O4	108.69 (8)
O3-S1-O2	122.00 (8)	O5-S2-O4	112.64 (8)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	108.46 (8)	O6-S2-F2	105.47 (8)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	112.23 (7)	O5-S2-F2	105.68 (8)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{F} 1$	105.94 (8)	$\mathrm{O} 4-\mathrm{S} 2-\mathrm{F} 2$	100.24 (7)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{F} 1$	105.86 (8)	S2-O4-Xe1	119.74 (7)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{F} 1$	99.77 (7)	S1-O1-Xe1	119.18 (7)
O6-S2-O5	121.62 (8)		

Symmetry codes: (i) $-x,-y+1,-z+2$; (ii) $x-1 / 2,-y+3 / 2, z-1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (iv) $x+1, y, z$; (v) $-x-1 / 2, y+1 / 2,-z+3 / 2$; (vi) $x-1 / 2,-y+3 / 2$, $z+1 / 2$; (vii) $x-1, y, z$.

