data reports

OPEN a ACCESS

Crystal structure of methyl 1-methyl-2oxospiro[indoline-3,2'-oxirane]-3'carboxylate

M. P. Savithri,^a P. S. Yuvaraj,^b B. S. R. Reddy,^b R. Raja^c and A. SubbiahPandic*

^aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, ^bUniversity of Madras, Industrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India. *Correspondence e-mail: aspandian59@gmail.com

Received 10 February 2015; accepted 29 March 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{12}H_{11}NO_4$, the dihedral angle between the indole ring system (r.m.s. deviation = 0.019 Å) and the oxirane ring is 88.8 $(2)^{\circ}$. The oxirane O atom and the bridging ester O atom are in an approximate syn conformation [O- $C-C-O = -25.4 (3)^{\circ}$] In the crystal, inversion dimers linked by pair of C-H···O hydrogen bonds generate $R_2^2(8)$ loops, where the C-H donor group forms part of the oxirane ring. A second C-H···O interaction arising from one of the C-H groups of the benzene ring links the dimers into [001] double chains.

Keywords: crystal structure; ester; spiro compound; indoline; oxirane; hydrogen bonding.

CCDC reference: 1056692

1. Related literature

For the bioactivity of indole derivatives, see: Di Fabio et al. (2007); Sharma & Tepe (2004). For a related structure, see: Savithri et al. (2015).

 $\gamma = 94.714 \ (3)^{\circ}$

Z = 2

V = 548.44 (5) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.30$ mm

11311 measured reflections 1927 independent reflections

1480 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.11 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.037$

refinement $\Delta \rho_{\text{max}} = 0.30 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.27$ e Å⁻³

2. Experimental

2.1. Crystal data

C ₁₂ H ₁₁ NO ₄	
$M_r = 233.22$	
Triclinic, P1	
a = 7.1401 (4) Å	
b = 8.7787 (4) Å	
c = 9.0678 (4) Å	
$\alpha = 91.517 \ (3)^{\circ}$	
$\beta = 104.227 \ (3)^{\circ}$	

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.963, T_{\rm max} = 0.969$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.173$ S = 1.061927 reflections 158 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdotsO3^{i}$ $C9-H9\cdotsO1^{ii}$	0.95 (3)	2.52 (3)	3.414 (3)	157 (2)
	0.93	2.43	3.335 (4)	163

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y, z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7369).

References

- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Di Fabio, R., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). *Bioorg. Med. Chem. Lett.* **17**, 2254–2259.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Savithri, M. P., Yuvaraj, P. S., Reddy, B. S. R., Raja, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, o188–o189.
- Sharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319-4321.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o274–o275 [https://doi.org/10.1107/S2056989015006398]

Crystal structure of methyl 1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'carboxylate

M. P. Savithri, P. S. Yuvaraj, B. S. R. Reddy, R. Raja and A. SubbiahPandi

S1. Experimental

To a solution of the catalyst of diphenyl[(R)-2-pyrrolidinyl]methanol (0.15mmol) and trans- α -ylideneoxindoles 1 (0.5 mmol) in nHexane for HPLC grade (2.7ml) was added TBHP (5.5M in decane solution, 0.6mol) at room temperature (25°C). The resultant heterogeneous mixture was maintained under stirring until the reaction completion (TLC nHexane/EtOAc). After wards, the crude reaction mixture was purified by flash chromatography on silica gel (nHexane/EtOAc) to furnish the epoxy oxindoles trans-2 and cis-3. Colourless blocks were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

S2. Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C-H distances fixed in the range 0.93-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The molecular packing as viewed along the *a* axis. Dashed lines shows the C—H…O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 3

Methyl 1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxylate

Crystal data

C₁₂H₁₁NO₄ $M_r = 233.22$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.1401 (4) Å b = 8.7787 (4) Å c = 9.0678 (4) Å a = 91.517 (3)° $\beta = 104.227$ (3)° $\gamma = 94.714$ (3)° V = 548.44 (5) Å³ Z = 2 F(000) = 244 $D_x = 1.412 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1927 reflections $\theta = 2.3-25.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.35 \times 0.30 \times 0.30 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.963, T_{\max} = 0.969$ Refinement	11311 measured reflections 1927 independent reflections 1480 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 10$ $l = -10 \rightarrow 10$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.173$ S = 1.06 1927 reflections 158 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.102P)^2 + 0.172P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$		
02	0.0254 (2)	0.10821 (18)	0.36778 (18)	0.0462 (5)		
O4	0.1745 (3)	-0.03538 (19)	0.15149 (19)	0.0536 (5)		
O3	0.4764 (3)	0.0432 (2)	0.2809 (2)	0.0632 (6)		
01	0.1739 (3)	0.3246 (2)	0.1663 (2)	0.0643 (6)		
N1	0.2372 (3)	0.4866 (2)	0.3794 (3)	0.0504 (6)		
C7	0.2040 (3)	0.3195 (3)	0.5623 (3)	0.0425 (6)		
C2	0.3047 (4)	0.0282 (2)	0.2698 (3)	0.0429 (6)		
C4	0.1736 (3)	0.2320 (2)	0.4166 (2)	0.0379 (5)		
C3	0.2223 (4)	0.0750 (3)	0.3974 (3)	0.0428 (6)		
C6	0.2456 (3)	0.4711 (3)	0.5343 (3)	0.0486 (6)		
C5	0.1928 (3)	0.3492 (3)	0.3012 (3)	0.0438 (6)		
C8	0.2075 (4)	0.2738 (4)	0.7065 (3)	0.0566 (7)		
H8	0.1811	0.1715	0.7247	0.068*		
C11	0.2901 (4)	0.5825 (4)	0.6509 (4)	0.0717 (10)		
H11	0.3174	0.6849	0.6334	0.086*		

C1	0.2456 (5)	-0.0803 (4)	0.0221 (3)	0.0692 (9)
H1A	0.1393	-0.1255	-0.0577	0.104*
H1B	0.3391	-0.1534	0.0521	0.104*
H1C	0.3056	0.0081	-0.0141	0.104*
C12	0.2681 (5)	0.6277 (3)	0.3066 (5)	0.0774 (10)
H12A	0.2979	0.7114	0.3813	0.116*
H12B	0.1528	0.6440	0.2303	0.116*
H12C	0.3742	0.6214	0.2597	0.116*
C10	0.2921 (5)	0.5344 (5)	0.7951 (4)	0.0845 (12)
H10	0.3223	0.6068	0.8761	0.101*
С9	0.2516 (5)	0.3848 (5)	0.8237 (4)	0.0796 (11)
Н9	0.2537	0.3576	0.9225	0.096*
H3	0.273 (4)	0.024 (3)	0.488 (3)	0.052 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	0.0454 (10)	0.0440 (9)	0.0450 (9)	-0.0086 (7)	0.0076 (7)	0.0005 (7)
O4	0.0565 (11)	0.0523 (11)	0.0456 (10)	0.0033 (8)	0.0026 (8)	-0.0115 (8)
O3	0.0524 (13)	0.0730 (13)	0.0597 (12)	0.0065 (9)	0.0068 (9)	-0.0112 (9)
01	0.0859 (15)	0.0673 (12)	0.0455 (11)	0.0096 (10)	0.0247 (10)	0.0167 (9)
N1	0.0464 (12)	0.0339 (11)	0.0738 (15)	0.0021 (8)	0.0206 (10)	0.0087 (9)
C7	0.0352 (12)	0.0495 (14)	0.0418 (13)	0.0004 (10)	0.0099 (9)	-0.0061 (10)
C2	0.0477 (15)	0.0335 (12)	0.0425 (13)	0.0041 (10)	0.0020 (10)	0.0010 (9)
C4	0.0380 (12)	0.0387 (12)	0.0351 (11)	-0.0034 (9)	0.0078 (9)	0.0011 (9)
C3	0.0477 (14)	0.0373 (12)	0.0382 (13)	-0.0010 (10)	0.0024 (10)	0.0032 (10)
C6	0.0333 (13)	0.0470 (14)	0.0650 (17)	0.0033 (10)	0.0125 (11)	-0.0104 (11)
C5	0.0425 (13)	0.0441 (13)	0.0476 (14)	0.0047 (10)	0.0154 (10)	0.0087 (10)
C8	0.0495 (15)	0.0805 (19)	0.0392 (14)	-0.0009 (13)	0.0128 (11)	-0.0032 (12)
C11	0.0491 (17)	0.0595 (18)	0.100 (3)	0.0038 (13)	0.0116 (16)	-0.0328 (17)
C1	0.077 (2)	0.082 (2)	0.0455 (15)	0.0188 (16)	0.0083 (13)	-0.0170 (14)
C12	0.0574 (18)	0.0453 (16)	0.137 (3)	0.0067 (13)	0.0348 (18)	0.0312 (17)
C10	0.061 (2)	0.110 (3)	0.074 (2)	0.0127 (19)	0.0073 (16)	-0.052 (2)
C9	0.062 (2)	0.128 (3)	0.0476 (17)	0.0067 (19)	0.0138 (14)	-0.0251 (18)

Geometric parameters (Å, °)

02—C3	1.421 (3)	С3—Н3	0.95 (3)
O2—C4	1.433 (3)	C6—C11	1.380 (4)
O4—C2	1.311 (3)	C8—C9	1.382 (4)
O4—C1	1.446 (3)	C8—H8	0.9300
O3—C2	1.201 (3)	C11—C10	1.382 (5)
O1—C5	1.209 (3)	C11—H11	0.9300
N1C5	1.356 (3)	C1—H1A	0.9600
N1—C6	1.402 (3)	C1—H1B	0.9600
N1-C12	1.446 (3)	C1—H1C	0.9600
С7—С8	1.373 (3)	C12—H12A	0.9600
С7—С6	1.384 (4)	C12—H12B	0.9600

C7—C4	1.470 (3)	C12—H12C	0.9600
C2—C3	1.484 (4)	C10—C9	1.367 (5)
C4—C3	1.466 (3)	C10—H10	0.9300
C4—C5	1.509 (3)	С9—Н9	0.9300
C3—O2—C4	61.80(14)	O1—C5—C4	126.6 (2)
C2—O4—C1	116.2 (2)	N1—C5—C4	106.3 (2)
C5—N1—C6	111.2 (2)	C7—C8—C9	117.8 (3)
C5—N1—C12	122.4 (3)	C7—C8—H8	121.1
C6-N1-C12	1264(2)	C9 - C8 - H8	121.1
C8-C7-C6	121.6(2)	C6-C11-C10	1167(3)
C8-C7-C4	121.0(2) 131.6(2)	C6-C11-H11	121.7
C6-C7-C4	106.7(2)	C10-C11-H11	121.7
$03-C^2-04$	125.0(2)	04-C1-H1A	109.5
03-02-03	123.0(2) 121.3(2)	04— $C1$ — $H1B$	109.5
$04 - C^2 - C^3$	121.3(2) 113.7(2)	$H_1A - C_1 - H_1B$	109.5
$0^{2}-0^{2}-0^{3}$	58 71 (14)	04-C1-H1C	109.5
02 - C4 - C7	123.07(19)	$H_1A - C_1 - H_1C$	109.5
$C_{2}^{-} C_{4}^{-} C_{7}^{7}$	125.07(17) 125.9(2)	HIB_C1_HIC	109.5
C_{1}^{2} C_{4}^{2} C_{5}^{2}	125.7(2) 116.78(18)	N1 C12 H12A	109.5
$C_2 = C_4 = C_5$	110.78(10) 121.0(2)	N1 C12 H12B	109.5
C_{3}	121.0(2) 105 51 (10)	H12A C12 H12B	109.5
$C_{1} = C_{4} = C_{3}$	50.48(14)	$\frac{1112}{112} = \frac{112}{112} =$	109.5
02 - 03 - 04	39.40(14)	H12A C12 H12C	109.5
$C_2 = C_3 = C_2$	119.95 (19)	H12A - C12 - H12C	109.5
C4 - C3 - C2	121.3(2) 117.1(15)	$\begin{array}{c} \Pi I 2 \mathbf{D} \longrightarrow \mathbb{C} I 2 \longrightarrow \Pi I 2 \mathbb{C} \\ \mathbb{C} \Omega \longrightarrow \mathbb{C} I \Omega \longrightarrow \mathbb{C} I 1 \end{array}$	109.5
02 - C3 - H3	11/.1(13)	C9 = C10 = C11	122.8 (3)
C4 - C3 - H3	110.4 (10)	C9-C10-H10	118.0
	112.8 (13)		110.0
$C_{11} = C_{0} = C_{1}$	120.9 (3)	C10 - C9 - C8	120.3 (3)
CT = CC = NI	128.8 (3)	C10-C9-H9	119.9
C = C = N I	110.3 (2)	C8—C9—H9	119.9
01—C5—N1	127.2 (2)		
C1 04 C2 03	4 4 (4)		$2 \otimes (2)$
C1 = 04 = C2 = 03	-4.4(4)	C4 - C7 - C6 - N1	2.0(3)
$C_1 = 04 = C_2 = C_3$	1/8.0(2)	$C_{2} = N_{1} = C_{2} = C_{11}$	1/8.4(2)
$C_{3} = 0_{2} = C_{4} = C_{7}$	-115.0(2)	C12—N1—C0—C11	-2.3(4)
$C_{3} = 0_{2} = C_{4} = C_{3}$	111.7(2)	$C_{3} = N_{1} = C_{0} = C_{1}$	-0.0(3)
$C_8 = C_7 = C_4 = 0_2$	44.0 (4)	C12-N1-Co-C/	1/8.7(2)
$C_{0} = C_{1} = C_{4} = C_{2}$	-140.1(2)	$C_0 = N_1 = C_2 = O_1$	1/9.0(2)
$C_{0} = C_{1} = C_{4} = C_{3}$	-28.9(4)	C12-N1- $C5$ - $C1$	0.2(4)
$C_{0} - C_{1} - C_{4} - C_{5}$	147.0(2)	$C_0 = N_1 = C_2 = C_4$	-1.0(3)
10 - 1 - 14 - 13	-1/8.4(2)	C_{12} —N1—C5—C4	1/9.7(2)
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$	-2.5(2)	02 - 04 - 05 - 01	-3/./(3)
C4 - C2 - C3 - C2	-110.9(2)	C_{3} C_{4} C_{5} O_{1}	30.3 (4)
$C_{-}C_{4} - C_{3} - O_{2}$	110.4 (2)	$C_{1} - C_{4} - C_{5} - O_{1}$	-17/8.4(2)
$C_{-}C_{4}$	-104.4(2)	02-04-05-N1	142.9 (2)
02	108.6 (2)	C3—C4—C5—N1	-149.1 (2)
C7—C4—C3—C2	-141.0(2)	C7—C4—C5—N1	2.2 (2)

supporting information

C8-C7-C6-N1 178 4 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2 (3) 57.5 (2) -25.4 (3) 7.1 (3) -95.8 (2) -0.8 (4) -177.1 (2) 78 4 (2)	C6—C7—C8—C9 C4—C7—C8—C9 C7—C6—C11—C10 N1—C6—C11—C10 C6—C11—C10—C9 C11—C10—C9—C8 C7—C8—C9—C10	0.9 (4) 176.2 (3) 0.5 (4) -178.5 (2) -0.3 (5) 0.5 (5) -0.7 (4)
-----------------------	--	---	--	--

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>	
C3—H3…O3 ⁱ	0.95 (3)	2.52 (3)	3.414 (3)	157 (2)	
С9—Н9…О1 ^{іі}	0.93	2.43	3.335 (4)	163	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*, *z*+1.