

CRYSTALLOGRAPHIC

Crystal structure of 2-chloro-N-(3fluorophenyl)acetamide

S. Sreenivasa,^a P. A. Suchetan,^b* S. Naveen,^c N. K. Lokanath^d and K. S. Srivishnu^e

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, India, ^bDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 013, India, ^cInstitution of Excellence, University of Mysore, Mysuru-6, India, ^dDepartment of Physics, University of Mysore, Mysuru-6, India, and ^eUniversity College of Science, Tumkur, India. *Correspondence e-mail: pasuchetan@yahoo.co.in

Received 7 April 2015; accepted 11 April 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, C₈H₇ClFNO, the F atom is disordred over the *meta* positions of the benzene ring in a 0.574 (4):0.426 (4) ratio and the Cl atom is syn to the O atom $[O-C-C-C] = 5.6 (3)^{\circ}]$. A short intramolecular $C-H \cdots O$ contact occurs. In the crystal, molecules are linked into amide C(4) chains propagating in [101] by N-H···O hydrogen bonds.

Keywords: crystal structure; disordered F atom; N-arylamides; hydrogen bonding.

CCDC reference: 1049536

1. Related literature

For compounds in which the meta fluorine substituent of a benzene ring exhibits positional disorder, see: Navak et al. (2012); Sanjeevarayappa et al. (2015).

2. Experimental 2.1. Crystal data

```
C<sub>8</sub>H<sub>7</sub>ClFNO
```

 $M_r = 187.60$

Monoclinic, $P2_1/n$ a = 5.0441 (2) Å b = 18.2374 (7) Å c = 8.8653 (3) Å $\beta = 99.843 \ (1)^{\circ}$ V = 803.53 (5) Å³

OPEN d ACCESS

2.2. Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.368, \ T_{\max} = 0.472$ 6045 measured reflections 1304 independent reflections

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.105$	independent and constrained
S = 1.15	refinement
1304 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
123 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ \AA}^{-3}$
1 restraint	

Z = 4

Cu $K\alpha$ radiation

 $0.31 \times 0.24 \times 0.19 \text{ mm}$

1297 reflections with $I > 2\sigma(I)$

1 standard reflections every 1

intensity decay: 1%

 $\mu = 3.95 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.041$

reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2 - H2 \cdots O1$ $N1 - H1 \cdots O1^{i}$	0.93 0.89 (2)	2.33 1.99 (3)	2.885 (3) 2.843 (2)	118 160 (2)
Symmetry code: (i)	$r = \frac{1}{2} = v \pm \frac{1}{2} = z = \frac{1}{2}$	1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7400).

References

- Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Nayak, S. K., Reddy, M. K., Chopra, D. & Guru Row, T. N. (2012). CrystEngComm, 14, 200-210.
- Sanjeevarayappa, C., Iyengar, P., Manoj Kumar, K. E. & Suchetan, P. A. (2015). Mol. Cryst. Liq. Cryst. 607, 232-241.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2015). E71, o315 [https://doi.org/10.1107/S2056989015007240]

Crystal structure of 2-chloro-N-(3-fluorophenyl)acetamide

S. Sreenivasa, P. A. Suchetan, S. Naveen, N. K. Lokanath and K. S. Srivishnu

S1. Synthesis and crystallization

The title compound (scheme 1) was synthesized by the reaction of 2-chloroacetyl chloride with 3-fluoroaniline at room temperature. The reaction mixture was poured into crushed ice and the resulting solid was washed thoroughly with water, dilute hydrochloric acid and filtered.

A small portion of the resulting compound was taken in a 10.0 ml beaker and dissolved in a 1:1 ratio of a mixture of EtOH/H₂O to obtain colourless prisms by a slow evaporation method at \sim 24°C.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the *U*eq of the parent atom).

Figure 1

A view of the molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2 Crystal packing of (I). N—H…O hydrogen bonds are shown as dotted lines.

2-Chloro-N-(3-fluorophenyl)acetamide

Crystal data C₈H₇ClFNO $M_r = 187.60$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.0441 (2) Å b = 18.2374 (7) Å c = 8.8653 (3) Å $\beta = 99.843$ (1)° V = 803.53 (5) Å³ Z = 4F(000) = 384

Prism $D_x = 1.551 \text{ Mg m}^{-3}$ Melting point: 385 K Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 1297 reflections $\theta = 5.6-64.3^{\circ}$ $\mu = 3.95 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.31 \times 0.24 \times 0.19 \text{ mm}$ Data collection

Bruker APEXII	1304 independent reflections
diffractometer	1297 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Graphite monochromator	$\theta_{\rm max} = 64.3^\circ, \ \theta_{\rm min} = 5.6^\circ$
phi and φ scans	$h = -5 \rightarrow 5$
Absorption correction: multi-scan	$k = -21 \rightarrow 21$
(SADABS; Bruker, 2009)	$l = -9 \rightarrow 10$
$T_{\min} = 0.368, T_{\max} = 0.472$	1 standard reflections every 1 reflections
6045 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.105$	neighbouring sites
<i>S</i> = 1.15	H atoms treated by a mixture of independent
1304 reflections	and constrained refinement
123 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0565P)^2 + 0.4965P]$

1 restraint

Primary atom site location: structure-invariant direct methods

Special details

Experimental. Melting point was determined by using open capillary. FT—IR Spectrum was recorded on Jasco FT—IR Spectrometer. ¹H-NMR and ¹³C-NMR spectra were recorded on Jeol-400 MHz NMR instrument using DMSO-d6 as solvent. Chemical shift values were expressed in δ (p.p.m.) relative to tetramethylsilane (TMS) as an internal reference standard. Mass spectrum of the compound was recorded on Shimadzu LC-2010EV with ESI probe. The analysis of various spectra are as follows.

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3}$

IR wavenumbers (cm⁻¹): C=O 1674.9, C—N 1348–1060, N—H 3510–3120, C—N—C 515–409, C—Cl 850–550, C—Cl 650–515. ¹H-NMR (399.6 MHz, DMSO-d6) δ: 10.49 (s, 1H, NH), 7.57–7,55 (dd, 1H, Ar—H), 7.34–7.27 (m, 2H, Ar—H), 6.88–6.83 (m, 1H, Ar—H), 2.47 (s, 2H, –CH2-). ¹³C-NMR (100 MHz, DMSO-d6) δ: 165.41, 163.76, 140.67, 130.89, 115.54, 110.80, 106.77, 43.92. MS: Predicted Mass: 187.07; Obtained Mass 188.07 (*M*+1).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
H1	-0.643 (5)	0.2133 (14)	0.515 (3)	0.032 (7)*	
Cl1	-0.02090 (10)	0.34713 (3)	0.71994 (6)	0.0279 (2)	
01	-0.3206 (3)	0.22817 (8)	0.83631 (16)	0.0277 (4)	
N1	-0.5907 (3)	0.19920 (9)	0.61148 (19)	0.0191 (4)	
C1	-0.7435 (4)	0.14033 (11)	0.6567 (2)	0.0193 (4)	
C7	-0.3994 (4)	0.23849 (10)	0.7000 (2)	0.0200 (4)	
C6	-0.9766 (4)	0.12164 (11)	0.5553 (2)	0.0222 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H6	-1.0266	0.1475	0.4645	0.027*	
C2	-0.6672 (4)	0.10139 (11)	0.7913 (2)	0.0220 (5)	
H2	-0.5110	0.1133	0.8589	0.026*	
C4	-1.0643 (4)	0.02475 (12)	0.7255 (3)	0.0286 (5)	
H4	-1.1717	-0.0135	0.7496	0.034*	
C8	-0.2919 (4)	0.29966 (12)	0.6089 (2)	0.0271 (5)	
H8A	-0.4359	0.3340	0.5733	0.032*	
H8B	-0.2326	0.2787	0.5198	0.032*	
C5	-1.1321 (4)	0.06407 (12)	0.5923 (3)	0.0271 (5)	
Н5	-1.2875	0.0516	0.5247	0.033*	0.574 (4)
F1A	-1.3441 (5)	0.04244 (15)	0.5018 (3)	0.0275 (9)	0.426 (4)
C3	-0.8308 (5)	0.04424 (12)	0.8222 (3)	0.0273 (5)	
H3	-0.7808	0.0178	0.9122	0.033*	0.426 (4)
F1	-0.7655 (5)	0.00473 (14)	0.9442 (3)	0.0394 (8)	0.574 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0277 (3)	0.0285 (4)	0.0258 (4)	-0.00754 (18)	-0.0003 (2)	-0.00248 (19)
01	0.0374 (9)	0.0285 (8)	0.0142 (8)	-0.0067 (6)	-0.0040 (6)	0.0009 (6)
N1	0.0232 (9)	0.0215 (8)	0.0118 (9)	-0.0014 (6)	0.0003 (6)	0.0004 (6)
C1	0.0211 (10)	0.0193 (9)	0.0185 (10)	0.0015 (8)	0.0065 (8)	-0.0045 (8)
C7	0.0231 (10)	0.0214 (10)	0.0148 (10)	0.0020 (8)	0.0017 (8)	-0.0019 (8)
C6	0.0231 (10)	0.0247 (11)	0.0187 (10)	0.0012 (8)	0.0036 (8)	-0.0030 (8)
C2	0.0234 (10)	0.0259 (10)	0.0172 (10)	0.0009 (8)	0.0046 (8)	-0.0022 (8)
C4	0.0306 (12)	0.0244 (11)	0.0348 (13)	-0.0028 (9)	0.0166 (10)	-0.0036 (9)
C8	0.0321 (12)	0.0276 (11)	0.0193 (11)	-0.0079 (9)	-0.0020 (9)	0.0015 (9)
C5	0.0229 (11)	0.0278 (11)	0.0319 (12)	-0.0040(8)	0.0080 (9)	-0.0111 (9)
F1A	0.0209 (15)	0.0318 (17)	0.0282 (17)	-0.0062 (11)	-0.0001 (11)	-0.0039 (12)
C3	0.0348 (12)	0.0252 (11)	0.0252 (11)	0.0023 (9)	0.0143 (9)	0.0017 (9)
F1	0.0487 (16)	0.0436 (15)	0.0266 (13)	-0.0043 (11)	0.0082 (10)	0.0146 (11)

Geometric parameters (Å, °)

Cl1—C8	1.768 (2)	C2—H2	0.9300
01—C7	1.221 (2)	C4—C5	1.374 (3)
N1—C7	1.342 (3)	C4—C3	1.380 (3)
N1C1	1.419 (3)	C4—H4	0.9300
N1—H1	0.89 (2)	C8—H8A	0.9700
C1—C2	1.386 (3)	C8—H8B	0.9700
C1—C6	1.394 (3)	C5—F1A	1.284 (4)
С7—С8	1.530 (3)	С5—Н5	0.9300
C6—C5	1.383 (3)	C3—F1	1.295 (3)
С6—Н6	0.9300	С3—Н3	0.9300
C2—C3	1.385 (3)		
C7—N1—C1	127.59 (17)	С3—С4—Н4	121.3
C7—N1—H1	118.2 (17)	C7—C8—Cl1	111.91 (14)

C1—N1—H1	113.9 (17)	С7—С8—Н8А	109.2
C2—C1—C6	120.61 (19)	Cl1—C8—H8A	109.2
C2-C1-N1	123.14 (18)	C7—C8—H8B	109.2
C6C1N1	116.23 (18)	Cl1—C8—H8B	109.2
O1—C7—N1	125.18 (19)	H8A—C8—H8B	107.9
O1—C7—C8	123.40 (18)	F1AC5C4	115.8 (2)
N1—C7—C8	111.42 (16)	F1A—C5—C6	122.1 (2)
C5—C6—C1	118.9 (2)	C4—C5—C6	122.1 (2)
С5—С6—Н6	120.6	С4—С5—Н5	118.9
С1—С6—Н6	120.6	С6—С5—Н5	118.9
C3—C2—C1	117.9 (2)	F1—C3—C4	116.4 (2)
С3—С2—Н2	121.0	F1—C3—C2	120.6 (2)
C1—C2—H2	121.0	C4—C3—C2	123.1 (2)
C5—C4—C3	117.4 (2)	С4—С3—Н3	118.5
С5—С4—Н4	121.3	С2—С3—Н3	118.5
C7—N1—C1—C2	-18.4(3)	N1—C7—C8—C11	-175.19(14)
C7—N1—C1—C6	163.16 (19)	C3-C4-C5-F1A	177.0 (2)
C1—N1—C7—O1	1.9 (3)	C3—C4—C5—C6	-0.8 (3)
C1—N1—C7—C8	-177.30 (18)	C1—C6—C5—F1A	-177.6 (2)
C2-C1-C6-C5	0.7 (3)	C1—C6—C5—C4	0.0 (3)
N1-C1-C6-C5	179.19 (17)	C5—C4—C3—F1	-177.5 (2)
C6—C1—C2—C3	-0.7 (3)	C5—C4—C3—C2	0.8 (3)
N1—C1—C2—C3	-179.04 (18)	C1—C2—C3—F1	178.1 (2)
O1—C7—C8—C11	5.6 (3)	C1—C2—C3—C4	-0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C2—H2…O1	0.93	2.33	2.885 (3)	118
N1—H1···O1 ⁱ	0.89 (2)	1.99 (3)	2.843 (2)	160 (2)

Symmetry code: (i) *x*-1/2, -*y*+1/2, *z*-1/2.