

Received 9 April 2015 Accepted 12 April 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; bipyridinium cations; polynitrile anions; molecular conformation; hydrogen bonding

CCDC references: 1059034; 1059033 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of 2,2'-bipyridin-1-ium 1,1,3,3tetracyano-2-ethoxyprop-2-en-1-ide and bis(2,2'bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide

Zouaoui Setifi,^{a,b} Arto Valkonen,^c Manuel A. Fernandes,^d Sami Nummelin,^e Habib Boughzala,^f Fatima Setifi^a* and Christopher Glidewell^g*

^aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et, Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, ^cDepartment of Chemistry, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland, ^dSchool of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa, ^eMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland, ^fLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, and ^gSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland. *Correspondence e-mail: fat_setifi@yahoo.fr, cg@st-andrews.ac.uk

In 2,2'-bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide, $C_{10}H_9N_2^+$. $C_{9}H_{5}N_{4}O^{-}$, (I), the ethyl group in the anion is disordered over two sets of atomic sites with occupancies 0.634 (9) and 0.366 (9), and the dihedral angle between the ring planes in the cation is 2.11 (7)°. The two independent $C(CN)_2$ groups in the anion make dihedral angles of 10.60 (6) and 12.44 (4) $^{\circ}$ with the central propenide unit, and the bond distances in the anion provide evidence for extensive electronic delocalization. In bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide [alternative name bis(2,2'-bipyridin-1-ium) tris(dicyanomethylene)methanediide], $2C_{10}H_9N_2^+ \cdot C_{10}N_6^{2-}$ (II), the dihedral angles between the ring planes in the two independent cations are 7.7 (2) and 10.92 (17)°. The anion exhibits approximate C_3 symmetry, consistent with extensive electronic delocalization, and the three independent C(CN)₂ groups make dihedral angles of 23.8 (2), 27.0 (3) and 27.4 (2) $^{\circ}$ with the central plane. The ions in (I) are linked by an N-H···N hydrogen bond and the resulting ion pairs are linked by two independent C-H···N hydrogen bonds, forming a ribbon containing alternating $R_4^4(18)$ and $R_4^4(26)$ rings, where both ring types are centrosymmetric. The ions in (II) are linked by two independent N- $H \cdots N$ hydrogen bonds and the resulting ion triplets are linked by a $C - H \cdots N$ hydrogen bond, forming a $C_2^1(7)$ chain containing anions and only one type of cation, with the other cation linked to the chain by a further C-H···N hydrogen bond.

1. Chemical context

Polynitrile anions have received considerable attention recently because of their importance in both coordination chemistry and in molecular materials chemistry (Miyazaki *et al.*, 2003; Batten & Murray, 2003; Benmansour *et al.*, 2007; Setifi, Domasevitch *et al.*, 2013; Setifi, Setifi *et al.*, 2013; Setifi, Lehchili *et al.*, 2014). These organic anions are interesting for their extensive electronic delocalization, and for their structural versatility, in particular the potential to utilize a variety of coordination modes, including their action as bridging ligands between metal centres in μ_2 -, μ_3 - or μ_4 - modes, so forming polymeric assemblies which can be one-, two- or three-dimensional. Thus such anions readily form binary complexes with transition-metal and ternary complexes in which a transition-metal centre is also coordinated by other

research communications

bridging or chelating ligands, and such materials exhibit interesting magnetic properties (Atmani *et al.*, 2008; Benmansour *et al.*, 2008, 2010, 2012; Setifi *et al.*, 2009).

In view of the possible roles of these versatile anionic ligands, we have been interested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the extensive field of molecular materials exhibiting the spin-crossover (SCO) phenomenon (Dupouy *et al.*, 2008, 2009; Setifi, Charles *et al.*, 2014). During the course of attempts to prepare such complexes, using the anions 1,1,3,3-tetracyano-2-ethoxy-propenide (tcnoet) and tris(dicyanomethylene)methanediide (tcpd), we isolated the two title compounds whose structures are described here.

Figure 1

The independent ionic components of compound (I) showing the atomlabelling scheme and the $N-H\cdots N$ hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Table 1						
Hydrogen-bond	geometry	(Å,	°)	for (I).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} & N11 - H11 \cdots N21 \\ N11 - H11 \cdots N311 \\ C13 - H13 \cdots N331^{i} \\ C16 - H16 \cdots N312^{ii} \end{array}$	0.901 (15) 0.901 (15) 0.95 0.95	2.202 (15) 2.082 (15) 2.52 2.38	2.6306 (15) 2.8268 (17) 3.4294 (18) 3.2238 (18)	108.5 (12) 139.2 (13) 160 148

Symmetry codes: (i) x - 1, y - 1, z - 1; (ii) -x + 1, -y + 2, -z + 1.

 Table 2

 Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N11-H11···N21	0.91 (3)	2.15 (3)	2.621 (4)	111 (3)
N11-H11···N511	0.91 (3)	2.08 (4)	2.874 (5)	145 (3)
N31-H31···N41	0.91 (4)	2.14 (3)	2.627 (4)	113 (3)
N31-H31···N522	0.91 (4)	2.15 (4)	2.888 (5)	138 (3)
C16−H16···N532	0.95	2.56	3.472 (6)	162
$C34{-}H34{\cdots}N522^i$	0.95	2.62	3.391 (5)	139

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

2. Structural commentary

Compound (I) consists of a 2,2'-bipyridin-1-ium cation and a 1,1,3,3-tetracyano-2-ethoxypropenide anion in which the C atoms of the ethyl group are disordered over two sets of sites having occupancies 0.634 (9) and 0.366 (9). In the selected asymmetric unit for (I) (Fig. 1) the two ions are linked by an $N-H\cdots N$ hydrogen bond (Table 1). For compound (II), which consists of two 2,2'-bipyridin-1-ium cations and a single tris(dicyanomethylene)methanediide dianion, it was possible to select an asymmetric unit (Fig. 2) in which the two cations are both linked to the anion by $N-H\cdots N$ hydrogen bonds (Table 2), although an asymmetric unit selected in this way does not fit neatly into the reference unit cell. It will be convenient to refer to the cations of types 1 and 2 respectively.

In none of the cations are the two rings exactly parallel: the dihedral angle between the mean planes of the two rings in the cation of compound (I) is $2.11 (7)^{\circ}$, and the corresponding

Figure 2

The independent ionic components of compound (II) showing the atomlabelling scheme and the $N-H\cdots N$ hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level. angles for the type 1 and 2 cations of compound (II) are 10.92 (17) and 7.7 (2)° respectively. Although each cation contains a short intra-cation $N-H\cdots N$ contact (Tables 1 and 2), the very small $N-H\cdots N$ angles indicate that these contacts are unlikely to be of structural significance (*cf.* Wood *et al.*, 2009).

In the anion of compound (I), the central bonds C31-C32and C32-C33 have lengths which are equal within experimental uncertainly (Table 3). In addition, the four C-C bonds linking the cyano substituents to the central propenide unit are not only similar in length, but all of them are short for their type [mean value (Allen et al., 1987) 1.431 Å, lower quartile value 1.425 Å]; on the other hand, the C–N distances are all similar and long for their type (mean value 1.136 Å, upper quartile value 1.142 Å). These observations point to extensive delocalization of the negative charge in the anion of (I) with the forms (A)–(F) (see scheme below) all playing a role in the overall electronic structure. Accordingly, the N-H···N hydrogen bond linking the two ions within the selected asymmetric unit of (I) is a charge-assisted hydrogen bond (Gilli et al., 1994). The tetracyanopropenide fragment of this anion is not planar: the two C(CN)₂ units are twisted out of the plane of the central C₃O core in a conrotatory fashion, and the dihedral angles between the planes of the C(CN)₂ units and that of the central core are $10.60 (6)^{\circ}$ and $12.44 (4)^{\circ}$ respectively for the two units containing atoms C31 and C33.

In the anion of compound (II), the geometry at the central atom C5 (Fig. 2) is planar, and the three C–C bonds involving atom C5 are similar in length (Table 4). Each of the independent $C(CN)_2$ units is rotated out of the plane of the central four-atom core, with dihedral angles between the planes of these three units and that of the central core of 23.8 (3),

Table 3			
Selected geometric parameters	(Å, °) for (I)).

e 1		, , , ,	
C31-C32	1.3982 (17)	C32-O321	1.3618 (13)
C32-C33	1.3956 (16)	O321-C321	1.428 (2)
C31-C311	1.4136 (16)	C311-N311	1.1471 (17)
C31-C312	1.4224 (16)	C312-N312	1.1498 (16)
C33-C331	1.4261 (17)	C331-N331	1.1504 (16)
C33-C332	1.4181 (16)	C332-N332	1.1522 (16)
C32-C31-C311	119.84 (11)	C32-C33-C331	119.94 (10)
C32-C31-C312	123.31 (10)	C32-C33-C332	124.72 (11)
C311-C31-C312	116.80 (11)	C331-C33-C332	115.15 (10)
N311-C311-C31	178.44 (17)	C31-C32-C33	127.46 (10)
N312-C312-C31	178.53 (13)	O321-C32-C31	118.45 (10)
N331-C331-C33	176.77 (13)	O321-C32-C33	114.02 (10)
N332-C332-C33	175.54 (13)		
C31-C32-C33-C331	-171.92 (11)	C31-C32-O321-C321	76.5 (3)
C31-C32-C33-C332	13.3 (2)	C33-C32-O321-C321	-106.2(3)
C33-C32-C31-C311	-166.68 (12)	$C32\!-\!O321\!-\!C321\!-\!C322$	-156.1 (4)
C33-C32-C31-C312	10.92 (19)		

Table 4					
Selected	geometric	parameters	(Å,	°) for	(II)

C5-C51	1.411 (5)	C53-C532	1.437 (6)
C5-C52	1.413 (5)	C511-N511	1.136 (4)
C5-C53	1.433 (5)	C512-N512	1.140 (5)
C51-C511	1.413 (5)	C521-N521	1.155 (5)
C51-C512	1.439 (5)	C522-N522	1.153 (5)
C52-C521	1.428 (5)	C531-N531	1.129 (5)
C52-C522	1.410 (5)	C532-N532	1.121 (5)
C53-C531	1.428 (6)		
C51-C5-C52	122.1 (3)	C5-C52-C521	121.9 (3)
C51-C5-C53	119.5 (3)	C5-C52-C522	123.0 (3)
C52-C5-C53	118.4 (4)	C521-C52-C522	115.0 (3)
C5-C51-C511	120.9 (3)	C5-C53-C531	121.2 (4)
C5-C51-C512	122.0 (3)	C5-C53-C532	122.0 (4)
C511-C51-C512	117.1 (3)	C531-C53-C532	116.9 (3)
C51 - C5 - C52 - C521	26.5 (6)	C51 - C5 - C53 - C531	_1531(4)
$C_{51} = C_{52} = C_{52} = C_{52}$	150.5(0)	$C_{51} = C_{52} = C_{53} = C_{53}$	-135.1(4)
$C_{51} = C_{52} = C$	-130.3(4)	$C_{51} = C_{52} = C_{53} = C$	1565(0)
$C_{52} = C_{5} = C_{53} = C_{53}$	152.2(0)	$C_{2}^{-}C_{3}^{-}C$	-130.3(4)
$C_{2} = C_{3} = C_{3} = C_{3} = C_{3}$	-132.2(4)	$C_{2} = C_{3} = C_{3} = C_{3} = C_{3}$	22.0(0)
$C_{52} = C_{51} = C_{51} = C_{51}$	23.5(0)	$C_{3} = C_{3} = C_{3$	-133.5(4)
03-03-031-0312	-156.0 (4)	63-63-632-632	27.5 (6)

27.0 (3) and 27.4 (2)°, respectively, for the $C(CN)_2$ units containing atoms C51, C52 and C53. These rotations are in a concerted sense, giving approximate molecular, but not crystallographic, symmetry of D_3 (32) type for the anion. Although the bond distances involving the cyano substituents show some variations (Table 4) the approximate overall D_3 symmetry is consistent with delocalization of the two negative charges over the whole anion, particularly into the cyano groups.

3. Supramolecular interactions

The supramolecular assembly in compound (I) is determined by the linkage of the ion pairs, themselves internally linked by an $N-H\cdots N$ hydrogen bond (Fig. 1), by two independent C- $H\cdots N$ hydrogen bonds both of which involve donors in the

research communications

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded ribbon parallel to [111] in which centrosymmetric $R_4^4(18)$ and $R_4^4(26)$ rings alternate. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

protonated pyridyl ring (Table 1), and both of which therefore can be regarded as charge-assisted hydrogen bonds. The hydrogen bond having atom C13 as the donor links ion pairs related by translation, forming a $C_2^2(12)$ (Bernstein *et al.*, 1995) chain running parallel to the [111] direction (Fig. 3). The hydrogen bond having atom C16 as the donor links ion pairs related by inversion, forming a centrosymmetric $R_4^4(18)$ motif (Fig. 3). The combination of these two interactions generates a ribbon running parallel to [111] in which $R_4^4(18)$ rings centred at $(n - \frac{1}{2}, n, n - \frac{1}{2})$ alternate with $R_4^4(26)$ rings centred at $(n, \frac{1}{2}, n, \frac{1}{2})$ $n + \frac{1}{2}, n$, where *n* represents an integer in both cases (Fig. 3). A single ribbon of this type passes through each unit cell. The crystal structure of compound (I) contains no $C-H\cdots\pi$ hydrogen bonds, but there is a single rather weak π - π stacking interaction between components of adjacent ribbons. The planes of the protonated pyridyl ring of the reference cation and of the unprotonated ring of the cation at (-x, 1-y, 1-z)make a dihedral angle of 2.11 (7)°: the ring-centroid separation is 3.7395 (8) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3413 (5) Å, corresponding to a ring-centroid offset of ca 1.65 Å, so that there is only a very modest overlap of the two rings in question (Fig. 4). If this interaction is regarded as

Figure 4

Part of the crystal structure of compound (I) showing the overlap between pairs of inversion-related cations, viewed normal to the ring planes. For the sake of clarity, the unit-cell outline, the anions, and H atoms bonded to C atoms in the cations have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x, 1 - y, 1 - z).

structurally significant, its effect is to link the ribbons (Fig. 3) into a sheet parallel to $(1\overline{10})$.

Despite the presence of three independent ions in the structure of compound (II), the supramolecular assembly in (II) is somewhat simpler than that in (I). Ion triplets (Fig. 2) which are related by the *c*-glide plane at y = 0.75 are linked by a C-H···N hydrogen bond (Table 2), forming a $C_2^1(7)$ chain running parallel to the [001] direction (Fig. 5). This chain comprises alternating anions and type 2 cations, while the type 1 cations are simply pendent from the chain. Two chains of this type, related to one another by inversion, pass through each unit cell but there are no direction-specific interactions between adjacent chains. Hydrogen bonds of the C-H··· π type are absent from the crystal structure of compound (II) and the only π - π stacking interaction lies within the hydrogen-bonded chain.

4. Database survey

We have recently reported the structures of several salts containing the 2-ethoxy-1,1,3,3-tetracyanopropenide anion, including salts with the bis(2,2'-bi-1H-imidazole)copper(II) cation (Gaamoune *et al.*, 2010), with tris(phenanthroline)-

A stereoview of part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded $C_2^1(7)$ chain parallel to [001] from which the type 1 cations are pendent. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

iron(II) (Setifi, Setifi *et al.*, 2013), with the 1,1'-diethyl-4,4'bipyridine-1,1'-diium dication (Setifi, Lehchili *et al.*, 2014) and with tris(2,2'-bipyridine)iron(II) (Setifi, Setifi *et al.*, 2014). In each of these salts, the cyano substituents in the anion adopt a very similar conformation to that observed here in compound (I) with, in each case, a similar pattern of bond distances and hence of electronic delocalization. Despite the disparate nature of the counter-ions, the anion conformation is almost constant, suggesting that this is determined primarily by intraanion forces, rather than by inter-ion interactions.

The structures of two organic salts containing the 2-dicyanomethylene-1,1,3,3-tetracyaopropenediide anion have been reported. In both the N,N'-dimethyl-4,4-bipyridindiium salt [CSD (Groom & Allen, 2014) refcode BELTER; Nakamura et al., 1981)] and the bis(quinolinium) salt (CSD refcode QUCNPR10; Sakanoue et al., 1971) the anion adopts a conformation having approximately D_3 symmetry, just as found in compound (II) reported here: indeed, the anion in OUCNPR10 lies across a twofold rotation axis in space group *Pbcn*, so that while two of the twofold rotation axes are only approximate, the third is a crystallographic axis. As in compound (II), the C-C and C-N distances in the anions in both BELTER and QUCNPR10 show a degree of variation, but again the approximate symmetry is consistent with extensive electronic delocalization. The structures of the isomorphous salts of this anion with the cations $[Ca(H_2O)_6]^{2+}$ (CSD refcode CAHCYB; Bekoe et al., 1967) and $[Ba(H_2O)_6]^{2+}$ (CSD refcode BACMCP; Bekoe *et al.*, 1963) have been determined, but no atomic coordinates are deposited in the CSD. A number of salts containing the 2,2'-bipyridin-1-ium cation with a range of organic anions have been structurally analysed, but more relevant to the present study are three salts of this cation with simple inorganic anions. In the hydrated monobromide (Bowen *et al.*, 2004), the bromide ions and the water molecules are linked by $O-H\cdots Br$ hydrogen bonds, forming $C_2^1(4)$ chains to which the cations are linked by $N-H\cdots O$ hydrogen bonds. In the thiocyanate salt, in which the cations are disordered over two sets of atomic sites (Kavitha *et al.*, 2006), the ions are linked by a combination of $N-H\cdots N$ and $C-H\cdots N$ hydrogen bonds, forming $C_2^1(6)$ chains, while in the hydrogensulfate salt a combination of five independent hydrogen bonds links the ions into complex sheets (Kavitha *et al.*, 2006).

5. Synthesis and crystallization

The salts K(tcnoet) and K₂(tcpd) were prepared using published methods (Middleton *et al.*, 1958; Middleton & Engelhardt, 1958). Compounds (I) and (II) were prepared under solvothermal conditions in Teflon-lined steel autoclaves (inner volume *ca* 30 cm³). For the synthesis of salt (I), a mixture of iron(II) sulfate heptahydrate (28 mg, 0.1 mmol), 2,2'-bipyridine (16 mg, 0.1 mmol) and Ktcnoet (45 mg, 0.2 mmol) was dissolved in water–ethanol (4:1 ν/ν , 15 cm³) and then held in the autoclave at 393 K for 3 d. After slowly cooling to room temperature, pale-orange crystals of (I) suitable for single-crystal X-ray diffraction were obtained (yield 15%). The synthesis of (II) was similar to that of (I), but using K₂tcpd (50 mg, 0.2 mmol) instead of K(tcnoet), giving yellow crystals suitable for single-crystal X-ray diffraction (yield 40%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms in the cations were located in difference maps. The H atoms bonded to C atoms in the cations were then treated as riding atoms in geometrically idealized positions with C-H distances 0.95 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$: for H atoms bonded to N atoms, the atomic coordinates were refined with $U_{iso}(H) = 1.2U_{eq}(N)$, giving the N-H distances shown in Tables 1 and 2. It was apparent from an early stage that the ethoxy substituent in the anion of compound (I) was disordered over two sets of atomic sites having unequal occupancy. For the minor occupancy component, atoms O341, C341 and C342 (see Fig. 1), the bonded distances and the one angle non-bonded distances were constrained to be identical to the corresponding distances in the major component, atoms O321, C321 and C322, subject to s.u. values of 0.005 and 0.01 Å respectively. In addition, the atomic coordinates and anisotropic displacement parameters of atoms O321 and O341 were constrained to be identical. Subject to these conditions, the site occupancies refined to values of 0.634 (9) and 0.366 (9). The H atoms in the disordered ethyl group of the anion in compound (I) were included in calculated positions with C-H distances of 0.98 Å with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$ for the methyl groups, which were permitted to rotate but not to tilt, and C-H distances of 0.99 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ for the CH₂ groups.

research communications

Table 5 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{10}H_9N_2^+ \cdot C_9H_5N_4O^-$	$2C_{10}H_9N_2^+ \cdot C_{10}N_6^{2-}$
M_r	342.36	518.54
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	123	173
a, b, c (Å)	7.2514 (1), 10.6647 (2), 11.5619 (2)	13.4195 (8), 16.1801 (8), 12.9058 (9)
α, β, γ (°)	100.020 (1), 104.372 (1), 92.590 (1)	90, 116.721 (3), 90
$V(\dot{A}^3)$	849.27 (3)	2503.0 (3)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.09	0.09
Crystal size (mm)	$0.40 \times 0.35 \times 0.13$	$0.21 \times 0.14 \times 0.09$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)	-
T_{\min}, T_{\max}	0.870, 0.988	-
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6234, 4152, 3447	14513, 4607, 2137
R _{int}	0.017	0.086
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667	0.603
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.103, 1.02	0.067, 0.183, 0.98
No. of reflections	4152	4607
No. of parameters	259	367
No. of restraints	3	0
H-atom treatment	H atoms treated by a mixture of indepen-	H atoms treated by a mixture of indepen-
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	dent and constrained refinement 0.25, -0.20	dent and constrained refinement 0.38, -0.26

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), APEX2 and SAINT (Bruker, 2009, SIR2011 (Burla et al., 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). *Inorg. Chem. Commun.* 11, 921–924.
- Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.
- Bekoe, D. A., Gantzel, P. K. & Trueblood, K. N. (1967). Acta Cryst. 22, 657–665.
- Bekoe, D. A., Gauzel, P. K. & Trueblood, K. N. (1963). Acta Cryst. 16, A62.
- Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.
- Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). *Inorg. Chim. Acta*, 361, 3856–3862.
- Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.
- Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). *Eur. J. Inorg. Chem.* pp. 186–194.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bowen, R. J., Fernandes, M. A., Gitari, P. W. & Layh, M. (2004). Acta Cryst. C60, 0113-0114.
- Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). *Chem. Commun.* pp. 3404–3406.
- Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). *Inorg. Chem.* 47, 8921–8931.
- Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). *Acta Cryst.* E66, m1044–m1045.
- Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, 0165–0169.
- Middleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788–2795.
- Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.
- Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). *Synth. Met.* **137**, 1195–1196.
- Nakamura, K., Kai, Y., Yasuoka, N. & Kasai, N. (1981). Bull. Chem. Soc. Jpn, 54, 3300–3303.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sakanoue, S., Yasuoka, N., Kasai, N. & Kakudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 1–8.
- Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). *Inorg. Chem.* 48, 1269–1271.
- Setifi, F., Charles, C., Houille, S., Thétiot, T., Triki, S., Gómez-García, C. J. & Pillet, S. (2014). Polyhedron, 61, 242–247.
- Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.

- Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.
- Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465–469.
- Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Acta Cryst. (2015). E71, 509-515 [https://doi.org/10.1107/S2056989015007306]

Crystal structures of 2,2'-bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2en-1-ide and bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide

Zouaoui Setifi, Arto Valkonen, Manuel A. Fernandes, Sami Nummelin, Habib Boughzala, Fatima Setifi and Christopher Glidewell

Computing details

Data collection: *COLLECT* (Bruker, 2008) for (I); *APEX2* (Bruker, 2009 for (II). Cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997) for (I); *APEX2* and *SAINT* (Bruker, 2009) for (II). Data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997) for (I); *SAINT* (Bruker, 2009) for (II). Program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012) for (I); *SHELXS97* (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

 $wR(F^2) = 0.103$

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide

Crystal data

$C_{10}H_9N_2^+ \cdot C_9H_5N_4O^-$	Z = 2
$M_r = 342.36$	F(000) = 356
Triclinic, $P\overline{1}$	$D_x = 1.339 \text{ Mg m}^{-3}$
a = 7.2514(1) Å	Mo Ka radiation. $\lambda = 0.71073$ Å
b = 10.6647 (2) Å	Cell parameters from 4152 reflections
c = 11.5619(2) Å	$\theta = 2.9 - 28.3^{\circ}$
$\alpha = 100.020 (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 104.372 (1)^{\circ}$	T = 123 K
$\gamma = 92.590(1)^{\circ}$	Plate, pale orange
V = 849.27 (3) Å ³	$0.40 \times 0.35 \times 0.13 \text{ mm}$
Data collection	
Bruker APEXII CCD	6234 measured reflections
diffractometer	4152 independent reflections
Radiation source: fine-focus sealed tube	3447 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.017$
$\varphi \& \omega$ scans	$\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 2003)	$k = -11 \rightarrow 14$
$T_{\min} = 0.870, \ T_{\max} = 0.988$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	$R[F^2 > 2\sigma(F^2)] = 0.042$

Refinement on F^2 Least-squares matrix: full

H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0362P)^2 + 0.2911P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N11	0.21857 (15)	0.52707 (9)	0.43771 (10)	0.0285 (2)	
H11	0.304 (2)	0.5526 (14)	0.5105 (14)	0.034*	
C12	0.13048 (16)	0.40769 (10)	0.41532 (11)	0.0250 (2)	
C13	-0.00916 (18)	0.36846 (12)	0.30713 (11)	0.0300 (3)	
H13	-0.0760	0.2858	0.2891	0.036*	
C14	-0.0511 (2)	0.45071 (13)	0.22510 (12)	0.0354 (3)	
H14	-0.1463	0.4240	0.1505	0.042*	
C15	0.0455 (2)	0.57160 (13)	0.25183 (13)	0.0370 (3)	
H15	0.0191	0.6278	0.1956	0.044*	
C16	0.18018 (19)	0.60851 (12)	0.36102 (13)	0.0347 (3)	
H16	0.2459	0.6917	0.3820	0.042*	
N21	0.33192 (15)	0.39123 (10)	0.60741 (9)	0.0298 (2)	
C22	0.19143 (16)	0.33195 (11)	0.51119 (10)	0.0248 (2)	
C23	0.10772 (18)	0.20973 (12)	0.50218 (12)	0.0316 (3)	
H23	0.0098	0.1704	0.4324	0.038*	
C24	0.1711 (2)	0.14670 (12)	0.59796 (13)	0.0358 (3)	
H24	0.1167	0.0631	0.5949	0.043*	
C25	0.31365 (19)	0.20658 (13)	0.69753 (12)	0.0336 (3)	
H25	0.3585	0.1656	0.7645	0.040*	
C26	0.39027 (18)	0.32811 (13)	0.69780 (12)	0.0334 (3)	
H26	0.4898	0.3686	0.7662	0.040*	
C31	0.63575 (17)	0.92545 (11)	0.75796 (11)	0.0258 (2)	
C32	0.66992 (16)	0.94146 (11)	0.88432 (11)	0.0243 (2)	
C33	0.73776 (16)	1.05351 (11)	0.97022 (10)	0.0252 (2)	
C311	0.52991 (19)	0.81335 (12)	0.68277 (12)	0.0327 (3)	
N311	0.4472 (2)	0.72078 (12)	0.62292 (12)	0.0525 (4)	
C312	0.69653 (17)	1.01940 (11)	0.69840 (11)	0.0278 (3)	
N312	0.74430 (19)	1.09353 (11)	0.64791 (11)	0.0396 (3)	
C331	0.78777 (17)	1.04922 (11)	1.09671 (11)	0.0281 (3)	
N331	0.83067 (17)	1.05186 (11)	1.19987 (10)	0.0365 (3)	
C332	0.74824 (17)	1.17768 (11)	0.94263 (11)	0.0277 (2)	
N332	0.75833 (18)	1.28170 (10)	0.92815 (10)	0.0366 (3)	

O321	0.62639 (12)	0.83982 (8)	0.93268 (8)	0.0279 (2)	0.634 (9)
C321	0.7550 (4)	0.7422 (3)	0.9381 (5)	0.0381 (9)	0.634 (9)
H32A	0.8632	0.7663	1.0117	0.046*	0.634 (9)
H32B	0.8069	0.7308	0.8658	0.046*	0.634 (9)
C322	0.6481 (8)	0.6213 (3)	0.9417 (6)	0.0430 (11)	0.634 (9)
H32C	0.7343	0.5530	0.9458	0.064*	0.634 (9)
H32D	0.5422	0.5977	0.8681	0.064*	0.634 (9)
H32E	0.5974	0.6334	1.0135	0.064*	0.634 (9)
O341	0.62639 (12)	0.83982 (8)	0.93268 (8)	0.0279 (2)	0.366 (9)
C341	0.6787 (17)	0.7134 (5)	0.8864 (6)	0.051 (2)	0.366 (9)
H34A	0.8019	0.7218	0.8647	0.061*	0.366 (9)
H34B	0.5796	0.6712	0.8125	0.061*	0.366 (9)
C342	0.6957 (17)	0.6360 (6)	0.9825 (6)	0.0423 (18)	0.366 (9)
H42C	0.7350	0.5519	0.9541	0.063*	0.366 (9)
H42D	0.5718	0.6252	1.0010	0.063*	0.366 (9)
H42E	0.7914	0.6796	1.0560	0.063*	0.366 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
N11	0.0302 (5)	0.0213 (5)	0.0365 (6)	-0.0010 (4)	0.0157 (4)	0.0026 (4)
C12	0.0269 (6)	0.0197 (5)	0.0310 (6)	0.0016 (4)	0.0148 (5)	0.0016 (4)
C13	0.0346 (6)	0.0245 (6)	0.0316 (6)	0.0005 (5)	0.0123 (5)	0.0021 (5)
C14	0.0414 (7)	0.0367 (7)	0.0310 (6)	0.0075 (6)	0.0142 (6)	0.0065 (5)
C15	0.0456 (8)	0.0347 (7)	0.0422 (7)	0.0120 (6)	0.0257 (6)	0.0161 (6)
C16	0.0394 (7)	0.0243 (6)	0.0491 (8)	0.0029 (5)	0.0261 (6)	0.0097 (5)
N21	0.0296 (5)	0.0285 (5)	0.0301 (5)	-0.0028 (4)	0.0097 (4)	0.0011 (4)
C22	0.0254 (5)	0.0216 (5)	0.0283 (6)	0.0006 (4)	0.0113 (4)	0.0012 (4)
C23	0.0338 (6)	0.0232 (6)	0.0342 (6)	-0.0026 (5)	0.0047 (5)	0.0035 (5)
C24	0.0398 (7)	0.0245 (6)	0.0419 (7)	-0.0003 (5)	0.0076 (6)	0.0084 (5)
C25	0.0326 (6)	0.0342 (7)	0.0361 (7)	0.0068 (5)	0.0092 (5)	0.0107 (5)
C26	0.0293 (6)	0.0373 (7)	0.0313 (6)	-0.0007 (5)	0.0066 (5)	0.0031 (5)
C31	0.0275 (6)	0.0206 (5)	0.0310 (6)	-0.0001 (4)	0.0110 (5)	0.0049 (4)
C32	0.0212 (5)	0.0218 (5)	0.0332 (6)	0.0027 (4)	0.0102 (4)	0.0092 (4)
C33	0.0241 (5)	0.0246 (6)	0.0280 (6)	0.0020 (4)	0.0067 (4)	0.0082 (4)
C311	0.0382 (7)	0.0266 (6)	0.0371 (7)	-0.0017 (5)	0.0197 (5)	0.0027 (5)
N311	0.0676 (9)	0.0374 (7)	0.0510 (8)	-0.0208 (6)	0.0312 (7)	-0.0117 (6)
C312	0.0327 (6)	0.0219 (5)	0.0297 (6)	0.0019 (4)	0.0116 (5)	0.0020 (4)
N312	0.0552 (7)	0.0269 (5)	0.0423 (6)	0.0002 (5)	0.0233 (6)	0.0075 (5)
C331	0.0272 (6)	0.0240 (6)	0.0334 (7)	-0.0001 (4)	0.0071 (5)	0.0082 (5)
N331	0.0447 (7)	0.0315 (6)	0.0314 (6)	-0.0005 (5)	0.0047 (5)	0.0095 (4)
C332	0.0308 (6)	0.0257 (6)	0.0253 (6)	0.0025 (4)	0.0057 (5)	0.0042 (4)
N332	0.0522 (7)	0.0265 (6)	0.0300 (6)	0.0033 (5)	0.0082 (5)	0.0063 (4)
O321	0.0309 (4)	0.0215 (4)	0.0357 (5)	0.0025 (3)	0.0145 (4)	0.0092 (3)
C321	0.0313 (13)	0.0412 (15)	0.055 (2)	0.0185 (11)	0.0194 (12)	0.0291 (14)
C322	0.061 (3)	0.0208 (13)	0.054 (3)	0.0070 (12)	0.027 (2)	0.0080 (15)
O341	0.0309 (4)	0.0215 (4)	0.0357 (5)	0.0025 (3)	0.0145 (4)	0.0092 (3)
C341	0.090 (6)	0.037 (3)	0.039 (3)	0.033 (3)	0.029 (3)	0.019 (2)

<u>C342</u>	0.061 (5)	0.026 (3)	0.043 (4)	0.010 (2)	0.018 (3)	0.007 (2)
Geometr	ric parameters (Å,	, °)				
N11—C	16	1.3361 (17)		C32—C33		1.3956 (16)
N11—C	12	1.3512 (14)		C31—C311		1.4136 (16)
N11—H	11	0.901 (16)		C31—C312		1.4224 (16)
С12—С	13	1.3842 (17)		C33—C331		1.4261 (17)
С12—С	22	1.4755 (17)		C33—C332		1.4181 (16)
С13—С	14	1.3900 (18)		C32—O321		1.3618 (13)
С13—Н	13	0.9500		O321—C321		1.428 (2)
C14—C	15	1.3860 (19)		C311—N311		1.1471 (17)
С14—Н	14	0.9500		C312—N312		1.1498 (16)
С15—С	16	1.372 (2)		C331—N331		1.1504 (16)
С15—Н	15	0.9500		C332—N332		1.1522 (16)
С16—Н	16	0.9500		C321—C322		1.487 (3)
N21—C	26	1.3325 (17)		С321—Н32А		0.9900
N21—C	22	1.3451 (15)		C321—H32B		0.9900
C22—C	23	1.3886 (16)		С322—Н32С		0.9800
C23—C	24	1.3870 (18)		C322—H32D		0.9800
С23—Н	23	0.9500		C322—H32E		0.9800
C24—C	25	1.3767 (19)		C341—C342		1.480 (4)
С24—Н	24	0.9500		C341—H34A		0.9900
C25—C	26	1.3861 (18)		C341—H34B		0.9900
С25—Н	25	0.9500		C342—H42C		0.9800
С26—Н	26	0.9500		C342—H42D		0.9800
C31—C	32	1.3982 (17)		C342—H42E		0.9800
C16—N	11—C12	123.83 (12)		C32—C31—C312		123.31 (10)
C16—N	11—H11	119.5 (10)		C311—C31—C312		116.80 (11)
C12—N	11—H11	116.6 (10)		N311—C311—C31		178.44 (17)
N11-C	12—C13	117.84 (11)		N312—C312—C31		178.53 (13)
N11—C	12—C22	116.02 (11)		N331—C331—C33		176.77 (13)
С13—С	12—C22	126.13 (10)		N332—C332—C33		175.54 (13)
С12—С	13—C14	119.62 (12)		C32—C33—C331		119.94 (10)
С12—С	13—H13	120.2		C32—C33—C332		124.72 (11)
C14—C	13—H13	120.2		C331—C33—C332		115.15 (10)
С15—С	14—C13	120.18 (13)		C31—C32—C33		127.46 (10)
С15—С	14—H14	119.9		O321—C32—C31		118.45 (10)
С13—С	14—H14	119.9		O321—C32—C33		114.02 (10)
С16—С	15—C14	118.72 (12)		C32—O321—C321		117.18 (14)
C16—C	15—H15	120.6		O321—C321—C322		108.2 (3)
C14—C	15—H15	120.6		O321—C321—H32A		110.1
N11—C	16—C15	119.78 (12)		С322—С321—Н32А		110.1
N11—C	16—H16	120.1		O321—C321—H32B		110.1
C15—C	16—H16	120.1		С322—С321—Н32В		110.1
C26—N	21—C22	117.27 (11)		H32A—C321—H32E	}	108.4
N21—C	22—C23	123.22 (11)		C321—C322—H32C		109.5

N21—C22—C12	114.70 (10)	C321—C322—H32D	109.5
C23—C22—C12	122.08 (11)	H32C—C322—H32D	109.5
C24—C23—C22	118.13 (12)	С321—С322—Н32Е	109.5
C24—C23—H23	120.9	H32C—C322—H32E	109.5
С22—С23—Н23	120.9	H32D—C322—H32E	109.5
C25—C24—C23	119.32 (12)	C342—C341—H34A	110.0
C25—C24—H24	120.3	C342—C341—H34B	110.0
C23—C24—H24	120.3	H34A—C341—H34B	108.4
C24—C25—C26	118.46 (12)	C341—C342—H42C	109.5
C24—C25—H25	120.8	C341—C342—H42D	109.5
С26—С25—Н25	120.8	H42C—C342—H42D	109.5
N21—C26—C25	123.59 (12)	С341—С342—Н42Е	109.5
N21—C26—H26	118.2	H42C—C342—H42E	109.5
C25—C26—H26	118.2	H42D—C342—H42E	109.5
C32—C31—C311	119.84 (11)		
C16—N11—C12—C13	-0.79 (17)	C22—C23—C24—C25	-0.2 (2)
C16—N11—C12—C13 C16—N11—C12—C22	-0.79 (17) -179.72 (10)	C22—C23—C24—C25 C23—C24—C25—C26	-0.2 (2) -0.6 (2)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14	-0.79 (17) -179.72 (10) 1.28 (17)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25	-0.2 (2) -0.6 (2) -0.31 (18)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14	-0.79 (17) -179.72 (10) 1.28 (17) -179.92 (11)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15	-0.79 (17) -179.72 (10) 1.28 (17) -179.92 (11) -0.39 (19)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16	-0.79 (17) -179.72 (10) 1.28 (17) -179.92 (11) -0.39 (19) -1.02 (19)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321 C312—C31—C32—O321	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17) -172.13 (11)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15	-0.79 (17) -179.72 (10) 1.28 (17) -179.92 (11) -0.39 (19) -1.02 (19) -0.64 (18)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321 C312—C31—C32—O321 O321—C32—C33—C331	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17) -172.13 (11) 11.01 (16)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11	-0.79 (17) -179.72 (10) 1.28 (17) -179.92 (11) -0.39 (19) -1.02 (19) -0.64 (18) 1.53 (19)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321 C312—C31—C32—O321 O321—C32—C33—C331 O321—C32—C33—C332	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17) -172.13 (11) 11.01 (16) -163.73 (11)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23	-0.79 (17) -179.72 (10) 1.28 (17) -179.92 (11) -0.39 (19) -1.02 (19) -0.64 (18) 1.53 (19) -0.53 (17)	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321 C312—C31—C32—O321 O321—C32—C33—C331 O321—C32—C33—C331	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17) -172.13 (11) 11.01 (16) -163.73 (11) -171.92 (11)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23 C26—N21—C22—C12	$\begin{array}{c} -0.79 \ (17) \\ -179.72 \ (10) \\ 1.28 \ (17) \\ -179.92 \ (11) \\ -0.39 \ (19) \\ -1.02 \ (19) \\ -0.64 \ (18) \\ 1.53 \ (19) \\ -0.53 \ (17) \\ 178.83 \ (10) \end{array}$	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321 C312—C31—C32—O321 O321—C32—C33—C331 O321—C32—C33—C331 C31—C32—C33—C332	$\begin{array}{c} -0.2 (2) \\ -0.6 (2) \\ -0.31 (18) \\ 0.9 (2) \\ 10.27 (17) \\ -172.13 (11) \\ 11.01 (16) \\ -163.73 (11) \\ -171.92 (11) \\ 13.3 (2) \end{array}$
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23 C26—N21—C22—C12 N11—C12—C22—N21	$\begin{array}{c} -0.79 \ (17) \\ -179.72 \ (10) \\ 1.28 \ (17) \\ -179.92 \ (11) \\ -0.39 \ (19) \\ -1.02 \ (19) \\ -0.64 \ (18) \\ 1.53 \ (19) \\ -0.53 \ (17) \\ 178.83 \ (10) \\ -1.88 \ (15) \end{array}$	C22—C23—C24—C25 C23—C24—C25—C26 C22—N21—C26—C25 C24—C25—C26—N21 C311—C31—C32—O321 C312—C31—C32—O321 O321—C32—C33—C331 O321—C32—C33—C331 C31—C32—C33—C331 C31—C32—C33—C332 C33—C32—C31—C311	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17) -172.13 (11) 11.01 (16) -163.73 (11) -171.92 (11) 13.3 (2) -166.68 (12)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23 C26—N21—C22—C12 N11—C12—C22—N21 C13—C12—C22—N21	$\begin{array}{c} -0.79 \ (17) \\ -179.72 \ (10) \\ 1.28 \ (17) \\ -179.92 \ (11) \\ -0.39 \ (19) \\ -1.02 \ (19) \\ -0.64 \ (18) \\ 1.53 \ (19) \\ -0.53 \ (17) \\ 178.83 \ (10) \\ -1.88 \ (15) \\ 179.30 \ (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.2 (2) -0.6 (2) -0.31 (18) 0.9 (2) 10.27 (17) -172.13 (11) 11.01 (16) -163.73 (11) -171.92 (11) 13.3 (2) -166.68 (12) 10.92 (19)
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23 C26—N21—C22—C12 N11—C12—C22—N21 C13—C12—C22—N21 N11—C12—C22—C23	$\begin{array}{c} -0.79 \ (17) \\ -179.72 \ (10) \\ 1.28 \ (17) \\ -179.92 \ (11) \\ -0.39 \ (19) \\ -1.02 \ (19) \\ -0.64 \ (18) \\ 1.53 \ (19) \\ -0.53 \ (17) \\ 178.83 \ (10) \\ -1.88 \ (15) \\ 179.30 \ (11) \\ 177.49 \ (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.2 (2) \\ -0.6 (2) \\ -0.31 (18) \\ 0.9 (2) \\ 10.27 (17) \\ -172.13 (11) \\ 11.01 (16) \\ -163.73 (11) \\ -171.92 (11) \\ 13.3 (2) \\ -166.68 (12) \\ 10.92 (19) \\ 76.5 (3) \end{array}$
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23 C26—N21—C22—C12 N11—C12—C22—N21 C13—C12—C22—N21 N11—C12—C22—N21 N11—C12—C22—C23 C13—C12—C22—C23	$\begin{array}{c} -0.79 \ (17) \\ -179.72 \ (10) \\ 1.28 \ (17) \\ -179.92 \ (11) \\ -0.39 \ (19) \\ -1.02 \ (19) \\ -0.64 \ (18) \\ 1.53 \ (19) \\ -0.53 \ (17) \\ 178.83 \ (10) \\ -1.88 \ (15) \\ 179.30 \ (11) \\ 177.49 \ (11) \\ -1.34 \ (18) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.2 (2) \\ -0.6 (2) \\ -0.31 (18) \\ 0.9 (2) \\ 10.27 (17) \\ -172.13 (11) \\ 11.01 (16) \\ -163.73 (11) \\ -171.92 (11) \\ 13.3 (2) \\ -166.68 (12) \\ 10.92 (19) \\ 76.5 (3) \\ -106.2 (3) \end{array}$
C16—N11—C12—C13 C16—N11—C12—C22 N11—C12—C13—C14 C22—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—N11—C16—C15 C14—C15—C16—N11 C26—N21—C22—C23 C26—N21—C22—C23 C13—C12—C22—N21 N11—C12—C22—N21 N11—C12—C22—C23 C13—C12—C22—C23 N21—C22—C23—C24	$\begin{array}{c} -0.79 \ (17) \\ -179.72 \ (10) \\ 1.28 \ (17) \\ -179.92 \ (11) \\ -0.39 \ (19) \\ -1.02 \ (19) \\ -0.64 \ (18) \\ 1.53 \ (19) \\ -0.53 \ (17) \\ 178.83 \ (10) \\ -1.88 \ (15) \\ 179.30 \ (11) \\ 177.49 \ (11) \\ -1.34 \ (18) \\ 0.76 \ (19) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.2 (2) \\ -0.6 (2) \\ -0.31 (18) \\ 0.9 (2) \\ 10.27 (17) \\ -172.13 (11) \\ 11.01 (16) \\ -163.73 (11) \\ -171.92 (11) \\ 13.3 (2) \\ -166.68 (12) \\ 10.92 (19) \\ 76.5 (3) \\ -106.2 (3) \\ -156.1 (4) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N11—H11…N21	0.901 (15)	2.202 (15)	2.6306 (15)	108.5 (12)
N11—H11…N311	0.901 (15)	2.082 (15)	2.8268 (17)	139.2 (13)
C13—H13…N331 ⁱ	0.95	2.52	3.4294 (18)	160
C16—H16…N312 ⁱⁱ	0.95	2.38	3.2238 (18)	148

Symmetry codes: (i) *x*-1, *y*-1, *z*-1; (ii) -*x*+1, -*y*+2, -*z*+1.

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide

Crystal data	
$2C_{10}H_9N_2^+ \cdot C_{10}N_6^{2-}$	<i>a</i> = 13.4195 (8) Å
$M_r = 518.54$	b = 16.1801 (8) Å
Monoclinic, $P2_1/c$	c = 12.9058 (9) Å

Cell parameters from 5568 reflections

 $\theta = 1.7 - 28.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block, yellow

 $0.21 \times 0.14 \times 0.09 \text{ mm}$

 $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

2137 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.086$

 $h = -13 \rightarrow 16$ $k = -18 \rightarrow 19$ $l = -15 \rightarrow 14$

 $\beta = 116.721 (3)^{\circ}$ $V = 2503.0 (3) \text{ Å}^3$ Z = 4 F(000) = 1072 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi \& \omega$ scans
14513 measured reflections
4607 independent reflections

Refinement

Kejinemeni	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.067$	and constrained refinement
$wR(F^2) = 0.183$	$w = 1/[\sigma^2(F_o^2) + (0.0713P)^2]$
S = 0.98	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4607 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
367 parameters	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.26 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic cod	ordinates and isotropic	or equivalent i	sotropic displacem	ent parameters $(Å^2)$
	1	1	1 1	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N11	0.3903 (2)	0.52309 (19)	0.3636 (3)	0.0206 (8)	
H11	0.383 (3)	0.483 (2)	0.409 (3)	0.025*	
C12	0.3951 (3)	0.4944 (2)	0.2684 (3)	0.0209 (9)	
C13	0.4011 (3)	0.5512 (2)	0.1917 (3)	0.0245 (10)	
H13	0.4047	0.5330	0.1234	0.029*	
C14	0.4019 (3)	0.6344 (3)	0.2146 (4)	0.0320 (11)	
H14	0.4044	0.6737	0.1612	0.038*	
C15	0.3990 (3)	0.6611 (2)	0.3151 (4)	0.0317 (11)	
H15	0.4006	0.7184	0.3317	0.038*	
C16	0.3937 (3)	0.6040 (2)	0.3895 (4)	0.0250 (10)	
H16	0.3925	0.6210	0.4593	0.030*	
N21	0.3977 (3)	0.36187 (19)	0.3483 (3)	0.0273 (9)	
C22	0.3892 (3)	0.4033 (2)	0.2542 (4)	0.0235 (10)	
C23	0.3719 (3)	0.3648 (2)	0.1524 (4)	0.0300 (11)	
H23	0.3679	0.3958	0.0882	0.036*	
C24	0.3604 (3)	0.2798 (3)	0.1462 (4)	0.0401 (12)	

110.4	0.0465	0.0510	0.07()	0.040*
H24	0.3465	0.2513	0.0766	0.048*
C25	0.3694 (4)	0.2373 (3)	0.2413 (5)	0.0409 (12)
H25	0.3622	0.1789	0.2392	0.049*
C26	0.3890 (3)	0.2808 (3)	0.3404 (4)	0.0369 (12)
H26	0.3966	0.2507	0.4067	0.044*
N31	0.1131 (3)	0.62657 (19)	1.1404 (3)	0.0246 (9)
H31	0.115 (3)	0.592 (2)	1.086 (3)	0.030*
C32	0.1142 (3)	0.5861 (2)	1.2326 (3)	0.0185 (9)
C33	0.1241 (3)	0.6335 (2)	1.3253 (4)	0.0285 (10)
H33	0.1266	0.6075	1.3924	0.034*
C34	0.1307 (3)	0.7188 (2)	1.3214 (4)	0.0329 (11)
H34	0.1378	0.7510	1.3859	0.039*
C35	0.1269 (3)	0.7569 (2)	1.2248 (4)	0.0292 (11)
H35	0.1295	0.8154	1.2209	0.035*
C36	0.1195 (3)	0.7089 (2)	1.1343 (4)	0.0316 (11)
H36	0.1188	0.7339	1.0674	0.038*
N41	0.1140 (3)	0.46447 (19)	1.1296 (3)	0.0227 (8)
C42	0.1077 (3)	0.4958 (2)	1.2227 (3)	0.0207 (9)
C43	0.0985 (3)	0.4463 (2)	1.3062 (4)	0.0283 (10)
H43	0.0916	0.4702	1.3699	0.034*
C44	0.0998 (3)	0.3618 (2)	1.2944 (4)	0.0307 (11)
H44	0.0965	0.3264	1.3515	0.037*
C45	0.1060 (3)	0.3294 (3)	1.1987 (4)	0.0299 (11)
H45	0.1053	0.2713	1.1875	0.036*
C46	0.1132 (3)	0.3834 (2)	1.1198 (4)	0.0285 (11)
H46	0.1178	0.3608	1.0542	0.034*
C5	0.2470 (3)	0.5068 (2)	0.7478 (3)	0.0208 (9)
C51	0.2195 (3)	0.4600 (2)	0.6463 (3)	0.0236 (10)
C511	0.2894 (3)	0.4602(2)	0.5908 (3)	0.0200 (9)
N511	0.3457 (3)	0.4592(2)	0.5464 (3)	0.0344(9)
C512	0.1214 (4)	0.4089(3)	0.5963 (4)	0.0290 (11)
N512	0.0434(3)	0 3695 (2)	0.5487(3)	0.0435(11)
C52	0.2057(3)	0.4868(2)	0.8279(3)	0.0255(11)
C521	0.2037(3) 0.1746(3)	0.4044(3)	0.8275(3) 0.8405(4)	0.0233(10) 0.0271(10)
N521	0.1740(3) 0.1522(3)	0 3395 (2)	0.8607 (3)	0.0271(10) 0.0375(10)
C522	0.1322(3) 0.1872(3)	0.5393(2)	0.8007(3) 0.8970(4)	0.0373(10)
N522	0.1672(3)	0.5404(2) 0.5942(2)	0.8570(4) 0.9524(3)	0.0255(10)
C53	0.1000(3)	0.5786(2)	0.7524(5) 0.7605(4)	0.0331(9)
C531	0.3101(3) 0.3830(1)	0.5700(2) 0.6070(3)	0.7095(+) 0.8840(4)	0.0271(10) 0.0304(11)
N521	0.3039(+) 0.4417(3)	0.0070(3)	0.0079(7)	0.030+(11)
C522	0.7717(3)	0.0310(2)	0.9730(3)	0.0430(11)
UJJZ N522	0.3220(3)	0.0243(2)	0.0//1(4)	0.0201(10)
IN332	0.3242 (3)	0.0042 (2)	0.0070(3)	0.0331 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	0.0184 (19)	0.023 (2)	0.023 (2)	-0.0027 (15)	0.0117 (17)	-0.0006 (16)
C12	0.015 (2)	0.035 (2)	0.014 (2)	-0.0003 (17)	0.0069 (19)	-0.0038 (19)

C13	0.024 (3)	0.036 (3)	0.017 (2)	-0.0011 (19)	0.012 (2)	0.004 (2)
C14	0.023 (3)	0.037 (3)	0.031 (3)	-0.001 (2)	0.007 (2)	0.010 (2)
C15	0.028 (3)	0.022 (2)	0.042 (3)	0.0000 (18)	0.013 (2)	0.001 (2)
C16	0.020 (2)	0.030 (2)	0.023 (3)	0.0050 (18)	0.009 (2)	0.000 (2)
N21	0.031 (2)	0.025 (2)	0.027 (2)	0.0023 (15)	0.0142 (19)	0.0049 (16)
C22	0.015 (2)	0.030 (2)	0.025 (3)	0.0011 (18)	0.010 (2)	-0.003 (2)
C23	0.027 (3)	0.043 (3)	0.025 (3)	-0.005 (2)	0.016 (2)	-0.006 (2)
C24	0.032 (3)	0.045 (3)	0.040 (3)	0.005 (2)	0.012 (3)	-0.016 (2)
C25	0.034 (3)	0.030 (3)	0.055 (4)	-0.003 (2)	0.017 (3)	-0.006 (3)
C26	0.041 (3)	0.029 (3)	0.037 (3)	0.001 (2)	0.014 (3)	0.001 (2)
N31	0.035 (2)	0.022 (2)	0.022 (2)	0.0014 (15)	0.0167 (19)	-0.0069 (16)
C32	0.015 (2)	0.028 (2)	0.014 (2)	0.0015 (17)	0.007 (2)	-0.0003 (19)
C33	0.030 (3)	0.039 (3)	0.021 (3)	0.006 (2)	0.015 (2)	0.004 (2)
C34	0.035 (3)	0.038 (3)	0.033 (3)	-0.005 (2)	0.021 (2)	-0.013 (2)
C35	0.033 (3)	0.025 (2)	0.039 (3)	0.0009 (18)	0.024 (2)	0.000 (2)
C36	0.040 (3)	0.028 (3)	0.035 (3)	0.002 (2)	0.024 (3)	0.003 (2)
N41	0.023 (2)	0.026 (2)	0.020 (2)	-0.0006 (15)	0.0112 (17)	-0.0023 (16)
C42	0.018 (2)	0.022 (2)	0.023 (3)	-0.0001 (16)	0.009 (2)	0.0065 (19)
C43	0.023 (3)	0.042 (3)	0.018 (3)	0.0018 (19)	0.007 (2)	0.000 (2)
C44	0.030 (3)	0.029 (3)	0.033 (3)	-0.0034 (19)	0.013 (2)	0.008 (2)
C45	0.022 (3)	0.031 (2)	0.035 (3)	-0.0032 (18)	0.011 (2)	0.000 (2)
C46	0.021 (3)	0.033 (3)	0.031 (3)	-0.0029 (18)	0.011 (2)	-0.007 (2)
C5	0.016 (2)	0.027 (2)	0.023 (2)	-0.0003 (16)	0.0113 (19)	0.0029 (18)
C51	0.020 (2)	0.026 (2)	0.024 (3)	0.0013 (18)	0.010 (2)	0.000 (2)
C511	0.021 (2)	0.022 (2)	0.020 (2)	-0.0016 (17)	0.011 (2)	-0.0003 (18)
N511	0.029 (2)	0.049 (2)	0.028 (2)	0.0044 (17)	0.015 (2)	-0.0028 (18)
C512	0.030 (3)	0.036 (3)	0.028 (3)	-0.002 (2)	0.019 (2)	-0.007 (2)
N512	0.047 (3)	0.051 (2)	0.038 (3)	-0.017 (2)	0.023 (2)	-0.005 (2)
C52	0.032 (3)	0.025 (2)	0.023 (3)	0.0061 (18)	0.016 (2)	0.0042 (19)
C521	0.023 (3)	0.035 (3)	0.024 (3)	-0.004 (2)	0.012 (2)	0.001 (2)
N521	0.050 (3)	0.035 (2)	0.032 (3)	-0.0127 (18)	0.022 (2)	-0.0073 (18)
C522	0.028 (3)	0.024 (2)	0.019 (2)	-0.0046 (18)	0.012 (2)	-0.003 (2)
N522	0.038 (2)	0.046 (2)	0.025 (2)	0.0089 (19)	0.017 (2)	0.0015 (19)
C53	0.032 (3)	0.028 (2)	0.025 (3)	-0.0022 (19)	0.017 (2)	0.003 (2)
C531	0.034 (3)	0.037 (3)	0.023 (3)	-0.005 (2)	0.015 (3)	0.000 (2)
N531	0.050 (3)	0.052 (2)	0.031 (3)	-0.023 (2)	0.014 (2)	-0.008 (2)
C532	0.024 (3)	0.029 (2)	0.026 (3)	-0.0022 (18)	0.012 (2)	0.002 (2)
N532	0.043 (2)	0.028 (2)	0.035 (3)	-0.0075 (17)	0.024 (2)	-0.0010 (18)

Geometric parameters (Å, °)

N11—C12	1.342 (4)	C34—H34	0.9500	
N11-C16	1.346 (5)	C35—C36	1.368 (6)	
N11—H11	0.91 (4)	С35—Н35	0.9500	
C12—C13	1.379 (5)	C36—H36	0.9500	
C12—C22	1.483 (5)	N41—C46	1.317 (5)	
C13—C14	1.378 (5)	N41—C42	1.341 (5)	
С13—Н13	0.9500	C42—C43	1.392 (5)	

C14—C15	1.384 (6)	C43—C44	1.375 (5)
C14—H14	0.9500	C43—H43	0.9500
C15—C16	1.357 (5)	C44—C45	1.379 (6)
С15—Н15	0.9500	C44—H44	0.9500
C16—H16	0.9500	C45—C46	1.378 (5)
N21—C26	1.316 (5)	C45—H45	0.9500
N21—C22	1.346 (5)	C46—H46	0.9500
C22—C23	1.375 (5)	C5—C51	1.411 (5)
C23—C24	1.383 (6)	C5—C52	1.413 (5)
C23—H23	0.9500	C5—C53	1.433 (5)
C24—C25	1.364 (6)	C51—C511	1.413 (5)
C24—H24	0.9500	C51—C512	1.439 (5)
C_{25} C_{26}	1.378 (6)	C52—C521	1.428 (5)
C25—H25	0.9500	C52—C522	1.410 (5)
C26—H26	0.9500	C53—C531	1 428 (6)
N31—C36	1,340(5)	C_{53} $-C_{532}$	1 437 (6)
N31—C32	1.310(5) 1.353(5)	C511—N511	1.137(0) 1.136(4)
N31—H31	0.90(4)	C512 - N512	1.130(1) 1.140(5)
C_{32} C_{33}	1,375(5)	C521 - N521	1.140(5) 1.155(5)
C_{32} C_{33} C_{42}	1.575 (5)	$C_{522} = N_{522}$	1.153(5)
$C_{32} = C_{42}$	1.400(5) 1 386(5)	C531—N531	1.135 (5)
C33_H33	0.9500	C_{532} N532	1.129(5) 1.121(5)
C_{34} C_{35}	1 371 (6)	0332 11032	1.121 (5)
	1.571 (0)		
C12 N11 C1(~~~	100.0 (1)
	123.5 (3)	C35 - C34 - C33	120.3(4)
C12—N11—C16 C12—N11—H11	123.5 (3)	C35—C34—C33 C35—C34—H34	120.3 (4) 119.9
C12—N11—C16 C12—N11—H11 C16—N11—H11	123.5 (3) 114 (2) 123 (2)	C35—C34—C33 C35—C34—H34 C33—C34—H34	120.3 (4) 119.9 119.9
C12—N11—C16 C12—N11—H11 C16—N11—H11 N11—C12—C13	123.5 (3) 114 (2) 123 (2) 118.0 (4)	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34	120.3 (4) 119.9 119.9 118.7 (4)
C12—N11—C16 C12—N11—H11 C16—N11—H11 N11—C12—C13 N11—C12—C22	123.5 (3) 114 (2) 123 (2) 118.0 (4) 115.8 (3)	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34 C36—C35—H35	120.3 (4) 119.9 119.9 118.7 (4) 120.7
C12—N11—C16 C12—N11—H11 C16—N11—H11 N11—C12—C13 N11—C12—C22 C13—C12—C22	123.5 (3) 114 (2) 123 (2) 118.0 (4) 115.8 (3) 126.2 (4)	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34 C36—C35—H35 C34—C35—H35	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7
C12—N11—C16 C12—N11—H11 C16—N11—H11 N11—C12—C13 N11—C12—C22 C13—C12—C22 C14—C13—C12	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34 C36—C35—H35 C34—C35—H35 N31—C36—C35	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 119.8 (4)
C12—N11—C16 C12—N11—H11 C16—N11—H11 N11—C12—C13 N11—C12—C22 C13—C12—C22 C14—C13—C12 C14—C13—H13	123.5 (3) 114 (2) 123 (2) 118.0 (4) 115.8 (3) 126.2 (4) 119.6 (4) 120.2	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34 C36—C35—H35 C34—C35—H35 N31—C36—C35 N31—C36—H36	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 119.8 (4) 120.1
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13	123.5 (3) 114 (2) 123 (2) 118.0 (4) 115.8 (3) 126.2 (4) 119.6 (4) 120.2 120.2	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34 C36—C35—H35 C34—C35—H35 N31—C36—C35 N31—C36—H36 C35—C36—H36	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 119.8 (4) 120.1
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14C15	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$	C35—C34—C33 C35—C34—H34 C33—C34—H34 C36—C35—C34 C36—C35—H35 C34—C35—H35 N31—C36—C35 N31—C36—H36 C35—C36—H36 C46—N41—C42	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 119.8 (4) 120.1 120.1 120.1 117.5 (3)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14C15 C13C14H14	123.5 (3) 114 (2) 123 (2) 118.0 (4) 115.8 (3) 126.2 (4) 119.6 (4) 120.2 120.2 120.4 (4) 119.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14H14 C15C14H14	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 120.2 $120.4 (4)$ 119.8 119.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14H14 C15C14H14 C16C15C14	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 119.8 $118.9 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14H14 C15C14H14 C16C15C14 C16C15H15	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 119.8 $118.9 (4)$ 120.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13H13 C12C13H13 C13C14H14 C15C14H14 C16C15H15 C14C15H15	123.5 (3) 114 (2) 123 (2) 118.0 (4) 115.8 (3) 126.2 (4) 119.6 (4) 120.2 120.2 120.4 (4) 119.8 119.8 119.8 118.9 (4) 120.6 120.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8
C12—N11—C16 C12—N11—H11 C16—N11—H11 N11—C12—C13 N11—C12—C22 C13—C12—C22 C14—C13—C12 C14—C13—H13 C12—C13—H13 C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14 C16—C15—H15 C14—C15—H15 N11—C16—C15	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 $119.6 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14C15 C13C14H14 C16C15H15 N11C16C15 N11C16H16	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 $119.6 (4)$ 120.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8 119.1 (4)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14C15 C13C14H14 C16C15H15 C14C15H15 N11C16H16 C15C16H16	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 $120.4 (4)$ 119.8 119.8 119.8 $118.9 (4)$ 120.6 120.6 $119.6 (4)$ 120.2 120.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8 119.1 (4) 120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 $120.4 (4)$ 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 120.6 $119.6 (4)$ 120.2 120.2 120.2 $117.3 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8 119.1 (4) 120.5 120.5
C12-N11-C16 $C12-N11-H11$ $C16-N11-H11$ $N11-C12-C13$ $N11-C12-C22$ $C13-C12-C22$ $C14-C13-C12$ $C14-C13-H13$ $C12-C13-H13$ $C12-C13-H13$ $C13-C14-C15$ $C13-C14-H14$ $C15-C14-H14$ $C16-C15-C14$ $C16-C15-H15$ $N11-C16-H15$ $N11-C16-H16$ $C15-C16-H16$ $C26-N21-C22$ $N21-C22-C23$	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 $119.6 (4)$ 120.2 120.2 120.2 $117.3 (4)$ $123.0 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8 119.1 (4) 120.5 120.5 118.2 (4)
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14C15 C13C14H14 C16C15H15 N11C16H15 N11C16H16 C15C16H16 C15C16H16 C26N21C22 N21C22C23 N21C22C12	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 $119.6 (4)$ 120.2 120.2 120.2 $117.3 (4)$ $123.0 (4)$ $113.9 (3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8 120.8 120.8 119.1 (4) 120.5 118.2 (4) 120.9
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14C15 C13C14H14 C16C15H15 C14C15H15 N11C16H16 C15C16H16 C16C15C12 N21C22C22 N21C22C12 C23C22C12	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 $119.6 (4)$ 120.2 120.2 $117.3 (4)$ $123.0 (4)$ $113.9 (3)$ $123.0 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 119.1 (4) 120.5 120.5 118.2 (4) 120.9 120.9
C12N11C16 C12N11H11 C16N11H11 N11C12C13 N11C12C22 C13C12C22 C14C13C12 C14C13H13 C12C13H13 C13C14H14 C15C14H14 C16C15H15 N11C16H15 N11C16H16 C15C16H16 C26N21C22 N21C22C12 C23C22C12 C22C23C24	123.5 (3) $114 (2)$ $123 (2)$ $118.0 (4)$ $115.8 (3)$ $126.2 (4)$ $119.6 (4)$ 120.2 120.2 $120.4 (4)$ 119.8 119.8 $118.9 (4)$ 120.6 120.6 120.6 120.6 120.6 $119.6 (4)$ 120.2 120.2 $117.3 (4)$ $123.0 (4)$ $113.9 (3)$ $123.0 (4)$ $118.2 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4) 119.9 119.9 118.7 (4) 120.7 120.7 120.7 119.8 (4) 120.1 120.1 117.5 (3) 122.6 (4) 115.4 (3) 121.9 (4) 118.5 (4) 120.8 120.8 120.8 120.8 120.5 118.2 (4) 120.5 118.2 (4) 120.9 120.9 124.1 (4)

C24—C23—H23	120.9	C45—C46—H46	117.9
C25—C24—C23	119.1 (4)	C51—C5—C52	122.1 (3)
C25—C24—H24	120.5	C51—C5—C53	119.5 (3)
C23—C24—H24	120.5	C52—C5—C53	118.4 (4)
C24—C25—C26	118.7 (4)	C5—C51—C511	120.9 (3)
C24—C25—H25	120.6	C5—C51—C512	122.0 (3)
С26—С25—Н25	120.6	C511—C51—C512	117.1 (3)
N21—C26—C25	123.6 (4)	N511—C511—C51	179.0 (4)
N21—C26—H26	118.2	N512—C512—C51	174.8 (5)
C25—C26—H26	118.2	C5—C52—C521	121.9 (3)
C36—N31—C32	123.8 (4)	C5—C52—C522	123.0 (3)
C36—N31—H31	123 (2)	C521—C52—C522	115.0 (3)
C32—N31—H31	112 (2)	N521—C521—C52	174.0 (4)
N31—C32—C33	117.0 (4)	N522—C522—C52	177.7 (4)
N31—C32—C42	115.4 (3)	C5—C53—C531	121.2 (4)
C33—C32—C42	127.5 (4)	C5—C53—C532	122.0 (4)
C32—C33—C34	120.4 (4)	C531—C53—C532	116.9 (3)
С32—С33—Н33	119.8	N531—C531—C53	175.7 (5)
С34—С33—Н33	119.8	N532—C532—C53	176.0 (4)
C16—N11—C12—C13	-1.6 (5)	C32—N31—C36—C35	-0.4 (6)
C16—N11—C12—C22	-179.5 (3)	C34—C35—C36—N31	1.7 (6)
N11—C12—C13—C14	-0.1 (5)	C46—N41—C42—C43	-1.2 (5)
C22—C12—C13—C14	177.6 (4)	C46—N41—C42—C32	177.3 (3)
C12—C13—C14—C15	1.4 (6)	N31—C32—C42—N41	7.0 (5)
C13—C14—C15—C16	-1.0 (6)	C33—C32—C42—N41	-171.0 (4)
C12—N11—C16—C15	2.0 (5)	N31—C32—C42—C43	-174.5(3)
C14—C15—C16—N11	-0.7 (6)	C33—C32—C42—C43	7.4 (6)
C26—N21—C22—C23	0.1 (6)	N41—C42—C43—C44	2.3 (6)
C26—N21—C22—C12	177.5 (3)	C32—C42—C43—C44	-176.1 (4)
N11—C12—C22—N21	-10.0(5)	C42—C43—C44—C45	-2.3 (6)
C13—C12—C22—N21	172.3 (4)	C43—C44—C45—C46	1.4 (6)
N11—C12—C22—C23	167.4 (3)	C42—N41—C46—C45	0.2 (6)
C13—C12—C22—C23	-10.3 (6)	C44—C45—C46—N41	-0.4 (6)
N21—C22—C23—C24	1.5 (6)	C51—C5—C52—C521	26.5 (6)
C12—C22—C23—C24	-175.8 (3)	C51—C5—C52—C522	-150.5 (4)
C22—C23—C24—C25	-1.6 (6)	C52—C5—C53—C531	28.8 (6)
C23—C24—C25—C26	0.4 (6)	C52—C5—C53—C532	-152.2 (4)
C22—N21—C26—C25	-1.4 (6)	C53—C5—C51—C511	25.5 (6)
C24—C25—C26—N21	1.3 (7)	C53—C5—C51—C512	-156.0 (4)
C36—N31—C32—C33	-1.0 (5)	C51—C5—C53—C531	-153.1 (4)
C36—N31—C32—C42	-179.3 (3)	C51—C5—C53—C532	25.9 (6)
N31—C32—C33—C34	1.1 (5)	C52—C5—C51—C511	-156.5 (4)
C42—C32—C33—C34	179.1 (4)	C52—C5—C51—C512	22.0 (6)
C32—C33—C34—C35	0.2 (6)	C53—C5—C52—C521	-155.5 (4)
C33—C34—C35—C36	-1.6 (6)	C53—C5—C52—C522	27.5 (6)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N11—H11…N21	0.91 (3)	2.15 (3)	2.621 (4)	111 (3)
N11—H11…N511	0.91 (3)	2.08 (4)	2.874 (5)	145 (3)
N31—H31…N41	0.91 (4)	2.14 (3)	2.627 (4)	113 (3)
N31—H31…N522	0.91 (4)	2.15 (4)	2.888 (5)	138 (3)
C16—H16…N532	0.95	2.56	3.472 (6)	162
C34—H34…N522 ⁱ	0.95	2.62	3.391 (5)	139

Hydrogen-bond geometry (Å, °)

Symmetry code: (i) x, -y+3/2, z+1/2.