



OPEN access

# Crystal structure of 1,1'-{(dodecane-1,12-divl)bis[(azaniumvlylidene)methanylylidene]}bis(naphthalen-2olate)

### Kamel Ouari,<sup>a</sup>\* Moufida Merzougui,<sup>a</sup> Sabrina Bendia<sup>a</sup> and Corinne Bailly<sup>b</sup>

<sup>a</sup>Laboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif, 19000 Sétif, Algeria, and <sup>b</sup>Service de Radiocristallographie, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Unistra, 1 rue Blaise Pascal, Strasbourg 67008, France. \*Correspondence e-mail: k ouari@vahoo.fr

Received 20 March 2015; accepted 21 April 2015

Edited by J. T. Mague, Tulane University, USA

The title compound, C<sub>34</sub>H<sub>40</sub>N<sub>2</sub>O<sub>2</sub>, exists in an extended conformation and has crystallographically imposed centrosymmetry. The crystal packing can be described as being composed of parallel layers stacked along [010]. The zwitterionic structure is stabilized by an intramolecular N-H···O hydrogen-bond interaction.

Keywords: crystal structure; 1,12-diaminododecane; 2-hydroxy-1-naphthaldehyde; hydrogen bonds.

CCDC reference: 1032833

#### 1. Related literature

The compound is synthesized using two procedures, the ultrasound and the conventional methods. We found that the ultrasound irradiation method is more convenient and efficient. For conventional synthesis of similar compounds, see: Ouari et al. (2015a); Mohammadi & Rastegari (2012); Bhowmik et al. (2011). For ultrasonic synthesis of similar compounds, see: Rayati & Abdolalian (2013); Khan et al. (2014); Kanagarajan et al. (2011). For related crystal structures, see: Ouari et al. (2010, 2015b); Popović et al. (2001); Friscic et al. (1998); Bi et al. (2012); Temel et al. (2010). For their applications, see: Köse et al. (2015); Grivani et al. (2013); Amin et al. (2010); Panneerselvam et al. (2009); Nasr et al. (2009); Nejo et al. (2009); Taha et al. (2012).



V = 2746.6 (4) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.50 \times 0.14 \times 0.06 \text{ mm}$ 

17506 measured reflections

3271 independent reflections

2313 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 173 K

 $R_{\rm int}=0.036$ 

Z = 4

#### 2. Experimental

2.1. Crystal data

C34H40N2O2  $M_r = 508.68$ Monoclinic, C2/c a = 54.400 (5) Åb = 4.7465 (4) Å c = 10.7022 (9) Å  $\beta = 96.318 \ (2)^{\circ}$ 

#### 2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008)  $T_{\rm min}=0.682,\;T_{\rm max}=0.746$ 

2.3. Refinement  $R[F^2 > 2\sigma(F^2)] = 0.048$ wĥ *S* =

| $R(F^2) = 0.125$ | independent and constrained                                |
|------------------|------------------------------------------------------------|
| = 1.04           | refinement                                                 |
| 71 reflections   | $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 6 parameters     | $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ |

Table 1 Hydrogen-bond geometry (Å, °).

32

17

| $D - H \cdots A$     | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------|----------|-------------------------|--------------|------------------|
| $N1 - H1N \cdots O1$ | 0.94 (2) | 1.75 (2)                | 2.5498 (18)  | 140.6 (19)       |

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

#### Acknowledgements

The authors gratefully acknowledge the financial support from The Algerian Ministry of Higher Education and Scientific Research. They also acknowledge the help of Dr Jean WEISS from CLAC laboratory at the University of Strasbourg, France.

Supporting information for this paper is available from the IUCr electronic archives (Reference: MW2131).

#### References

- Amin, R., Krammer, B., Abdel-Kader, N., Verwanger, T. & El-Ansary, A. (2010). Eur. J. Med. Chem. 45, 372–378.
- Bhowmik, P., Drew, M. G. B. & Chattopadhyay, S. (2011). *Inorg. Chim. Acta*, **366**, 62–67.
- Bi, S., Wang, A., Bi, C., Fan, Y., Xiao, Y., Liu, S. & Wang, Q. (2012). Inorg. Chem. Commun. 15, 167–171.
- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Friscic, T., Kaitner, B. & Mestrovic, E. (1998). Croat. Chem. Acta, 71, 87-98.
- Grivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82–87.
- Kanagarajan, V., Ezhilarasi, M. R. & Gopalakrishnan, M. (2011). Spectrochim. Acta Part A, 78, 635–639.
- Khan, K. M., Jamil, W., Ambreen, N., Taha, M., Perveen, S. & Morales, G. A. (2014). Ultrason. Sonochem. 21, 1200–1205.
- Köse, M., Ceyhan, G., Tümer, M., Demirtaş, I., İbrahim, Gönül, Alyas, & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477–485.
- Mohammadi, K. & Rastegari, M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 711–716.

- Nasr, G., Petit, E., Supuran, C. T., Winum, J. Y. & Barboiu, M. (2009). Bioorg. Med. Chem. Lett. 19, 6014–6017.
- Nejo, A. A., Kolawole, G. A., Opoku, A. R., Wolowska, J. & O'Brien, P. (2009). *Inorg. Chim. Acta*, **362**, 3993–4001.
- Ouari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, 051–052.
- Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015a). Spectrochim. Acta Part A, 135, 624–631.
- Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836. Panneerselvam, P., Rather, B. A., Ravi Sankar Reddy, D. & Ramesh Kumar, N.
- (2009). Eur. J. Med. Chem. 44, 2328–2333.
- Popović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39–47.
- Rayati, S. & Abdolalian, P. (2013). Appl. Catal. A, 456, 240-248.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Taha, Z. A., Ajlouni, A. M. & Al Momani, W. (2012). J. Lumin. 132, 2832-2841.
- Temel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.

# supporting information

*Acta Cryst.* (2015). E71, o351–o352 [https://doi.org/10.1107/S2056989015007938]

Crystal structure of 1,1'-{(dodecane-1,12-diyl)bis[(azaniumylylidene)methanylylidene]}bis(naphthalen-2-olate)

## Kamel Ouari, Moufida Merzougui, Sabrina Bendia and Corinne Bailly

## S0.1. Synthesis and crystallization

#### Ultrasonication method

A reaction flask containing 0.344g (2mmol) of 2-hydroxy-1-naphthaldehyde and 0.508g (1mmol) of 1,12-diaminododecane, mixed and ground to a fine powder in a mortar, was immersed in an ultrasonic bath containing water at a temperature of 50 °C. The reaction mixture was exposed to ultrasound irradiation for 40 min. Upon completion, based on TLC analysis (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 9.5/0.5, V/V) the product was washed with methanol (3 x 3 mL) and diethyl ether (3 x 3 mL) and filtered. Single crystals, suitable for X-ray diffraction, were obtained after 2 days of crystallization from DMSO/MeOH.

Color: Yellow, Yield: 88 %, mp: 148°C. Analysis calculated for C<sub>34</sub>H<sub>40</sub>N<sub>2</sub>O<sub>2</sub>: C, 80.27; H, 7.92; N, 5.50%; found: C, 80.06; H, 7.80; N, 5.78%.

#### **Conventional method**

To a solution of 0.172 g (1mmol) of 2-hydroxy-1-naphthaldehyde in 5 mL of methanol was added 0.254 g (0.5 mmol) of 1,2-diaminododecane dissolved in 5 mL of the same solvent. The mixture was stirred and refluxed for 3 hours under a nitrogen atmosphere. At completion, based on TLC analysis, the resulting compound was filtered and washed with methanol and diethyl ether to afford pure product in 62% yield.

## S0.2. Refinement

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.95 Å (CH) or 0.99 Å (CH<sub>2</sub>) with Uiso(H) = 1.2Ueq (C-Har.).

## S1. Results and discussion

Schiff base ligands can be easily synthesized using conventional or ultrasonic irradiation methods by reacting primary amines and carbonyl compounds in which the azomethine bond is formed and they can used to form complexes (Ouari *et al.*, 2015a., Mohammadi *et al.*, 2012; Bhowmik *et al.*, 2011., Grivani *et al.*, 2013; Nejo *et al.*, 2009., Rayati *et al.*, 2013., Khan *et al.*, 2014., Kanagarajan *et al.*, 2011).

The synthesis via ultrasound irradiation is an efficient, fast, high yielding method and is a more economical synthetic process for the preparation of the Schiff base compound than the conventional method.

The azomethine group >C=N of the Schiff base can form stable metal complexes by coordinating through the nitrogen atom (Ouari *et al.*, 2015b., Ouari *et al.*, 2010). Schiff base ligands have many applications including anti-microbial agents (Köse *et al.*, 2015., Taha *et al.*;2012., Panneerselvam *et al.*, 2009), anti-tumor agents, (Nasr *et al.*, 2009) and as xanthine oxidase inhibitors (Amin *et al.*, 2010).

This compound crystallized in the monoclinic space group  $C_2/c$ , whereas the related compounds( $C_{26}H_{24}N_2O_2$ ,  $C_{28}H_{28}N_2O_2$ ) (Friscic *et al.*, 1998), ( $C_{28}H_{26}N_2O_2$ ) (Bi *et al.*, 2012) and ( $C_{28}H_{20}N_2O_2$ —CHCL<sub>3</sub>) (Popović *et al.*, 2001) crystallized in the orthorhombic space groups Pbca, Pbcn, P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, and P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, respectively. The hydrogen atom in the title compound is located on the nitrogen atom (Fig.1). The C1—O1 bond length of 1.2802 (19)Å indicates double-bond character while the N1—C11 bond length of 1.2994 (19)Å indicates single-bond character thus confirming the zwitterionic formulation. Similar results have been reported (Temel *et al.*, 2010]. The crystal packing can be described as parallel chains along the *c* axis (Fig. 2). It is stabilized by intramolecular N—H···O hydrogen bonding (Table 1) and by weak intermolecular C—H···*π* ring interactions. These interactions link the molecules within the layers and also link the layers together thereby reinforcing the cohesion of the ionic structure.



#### Figure 1

The title compound with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.



Figure 2

Crystal packing of the title compound viewed along the c axis.

1,1'-{(Dodecane-1,12-diyl)bis[(azaniumylylidene)methanylylidene]}bis(naphthalen-2-olate)

| b = 4.7465 (4) Å               |
|--------------------------------|
| c = 10.7022 (9)  Å             |
| $\beta = 96.318 \ (2)^{\circ}$ |
| V = 2746.6 (4) Å <sup>3</sup>  |
|                                |

Z = 4 F(000) = 1096  $D_x = 1.230 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3931 reflections

Data collection

| Bruker APEXII CCD                      | 17506 measured reflections                                      |
|----------------------------------------|-----------------------------------------------------------------|
| diffractometer                         | 3271 independent reflections                                    |
| Radiation source: sealed tube          | 2313 reflections with $I > 2\sigma(I)$                          |
| Triumph monochromator                  | $R_{\rm int} = 0.036$                                           |
| $\varphi$ and $\omega$ scans           | $\theta_{\rm max} = 27.9^\circ, \ \theta_{\rm min} = 2.3^\circ$ |
| Absorption correction: multi-scan      | $h = -70 \rightarrow 70$                                        |
| (SADABS; Bruker, 2008)                 | $k = -6 \rightarrow 5$                                          |
| $T_{\min} = 0.682, \ T_{\max} = 0.746$ | $l = -14 \rightarrow 14$                                        |
|                                        |                                                                 |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.048$                 | Hydrogen site location: mixed                              |
| $wR(F^2) = 0.125$                               | H atoms treated by a mixture of independent                |
| S = 1.04                                        | and constrained refinement                                 |
| 3271 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 2.2119P]$          |
| 176 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta = 3.0 - 27.8^{\circ}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

Prism, yellow

 $0.50 \times 0.14 \times 0.06 \text{ mm}$ 

T = 173 K

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|-------------|-------------|--------------|-----------------------------|--|
| C1 | 0.11107 (3) | -0.3639 (3) | 1.08101 (14) | 0.0273 (3)                  |  |
| C2 | 0.09446 (3) | -0.5389 (3) | 1.14296 (15) | 0.0345 (4)                  |  |
| H2 | 0.1011      | -0.6682     | 1.2056       | 0.041*                      |  |
| C3 | 0.06975 (3) | -0.5229 (4) | 1.11383 (17) | 0.0386 (4)                  |  |
| H3 | 0.0594      | -0.6413     | 1.1570       | 0.046*                      |  |
| C4 | 0.05853 (3) | -0.3340 (4) | 1.02027 (16) | 0.0329 (4)                  |  |
| C5 | 0.03264 (3) | -0.3230 (4) | 0.99173 (19) | 0.0448 (5)                  |  |
| Н5 | 0.0225      | -0.4413     | 1.0362       | 0.054*                      |  |
| C6 | 0.02183 (3) | -0.1460 (5) | 0.90169 (19) | 0.0478 (5)                  |  |
| H6 | 0.0043      | -0.1410     | 0.8833       | 0.057*                      |  |
| C7 | 0.03675 (3) | 0.0275 (4)  | 0.83679 (19) | 0.0434 (4)                  |  |
| H7 | 0.0293      | 0.1510      | 0.7737       | 0.052*                      |  |
| C8 | 0.06204 (3) | 0.0223 (4)  | 0.86294 (16) | 0.0357 (4)                  |  |
| H8 | 0.0718      | 0.1428      | 0.8175       | 0.043*                      |  |
| C9 | 0.07384 (3) | -0.1580 (3) | 0.95574 (14) | 0.0267 (3)                  |  |
|    |             |             |              |                             |  |

| C10  | 0.10041 (3) | -0.1712 (3) | 0.98713 (13) | 0.0248 (3) |
|------|-------------|-------------|--------------|------------|
| C11  | 0.11636 (3) | 0.0138 (3)  | 0.93099 (14) | 0.0261 (3) |
| H11  | 0.1092      | 0.1468      | 0.8714       | 0.031*     |
| C12  | 0.15676 (3) | 0.2039 (3)  | 0.90007 (15) | 0.0287 (3) |
| H12A | 0.1668      | 0.3092      | 0.9673       | 0.034*     |
| H12B | 0.1468      | 0.3419      | 0.8467       | 0.034*     |
| C13  | 0.17384 (3) | 0.0464 (3)  | 0.82076 (15) | 0.0280 (3) |
| H13A | 0.1638      | -0.0594     | 0.7537       | 0.034*     |
| H13B | 0.1838      | -0.0912     | 0.8743       | 0.034*     |
| C14  | 0.19108 (3) | 0.2470 (3)  | 0.76130 (15) | 0.0284 (3) |
| H14A | 0.2013      | 0.3492      | 0.8288       | 0.034*     |
| H14B | 0.1810      | 0.3879      | 0.7102       | 0.034*     |
| C15  | 0.20806 (3) | 0.0982 (3)  | 0.67812 (14) | 0.0282 (3) |
| H15A | 0.2186      | -0.0370     | 0.7301       | 0.034*     |
| H15B | 0.1978      | -0.0108     | 0.6129       | 0.034*     |
| C16  | 0.22456 (3) | 0.2977 (3)  | 0.61412 (14) | 0.0289 (3) |
| H16A | 0.2346      | 0.4090      | 0.6793       | 0.035*     |
| H16B | 0.2140      | 0.4308      | 0.5611       | 0.035*     |
| C17  | 0.24187 (3) | 0.1500 (3)  | 0.53257 (14) | 0.0292 (3) |
| H17A | 0.2526      | 0.0186      | 0.5858       | 0.035*     |
| H17B | 0.2319      | 0.0369      | 0.4680       | 0.035*     |
| N1   | 0.14027 (2) | 0.0119 (3)  | 0.95644 (12) | 0.0288 (3) |
| 01   | 0.13443 (2) | -0.3838 (3) | 1.11158 (11) | 0.0359 (3) |
| H1N  | 0.1458 (4)  | -0.130 (5)  | 1.014 (2)    | 0.065 (7)* |
|      |             |             |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C1  | 0.0341 (8)  | 0.0276 (7)  | 0.0212 (7)  | -0.0011 (6) | 0.0076 (6)  | -0.0064 (6)  |
| C2  | 0.0435 (10) | 0.0325 (8)  | 0.0281 (8)  | -0.0035 (7) | 0.0066 (7)  | 0.0023 (7)   |
| C3  | 0.0423 (10) | 0.0389 (9)  | 0.0367 (9)  | -0.0129 (8) | 0.0131 (8)  | 0.0029 (8)   |
| C4  | 0.0314 (8)  | 0.0353 (9)  | 0.0335 (9)  | -0.0074 (7) | 0.0105 (7)  | -0.0075 (7)  |
| C5  | 0.0312 (9)  | 0.0536 (11) | 0.0510 (12) | -0.0139 (8) | 0.0115 (8)  | -0.0061 (9)  |
| C6  | 0.0245 (9)  | 0.0620 (13) | 0.0568 (12) | -0.0024 (8) | 0.0033 (8)  | -0.0112 (10) |
| C7  | 0.0336 (9)  | 0.0506 (11) | 0.0449 (11) | 0.0052 (8)  | -0.0008 (8) | -0.0043 (9)  |
| C8  | 0.0300 (9)  | 0.0396 (9)  | 0.0377 (9)  | -0.0007 (7) | 0.0048 (7)  | 0.0002 (7)   |
| C9  | 0.0273 (8)  | 0.0277 (8)  | 0.0262 (7)  | -0.0021 (6) | 0.0075 (6)  | -0.0076 (6)  |
| C10 | 0.0271 (8)  | 0.0262 (7)  | 0.0221 (7)  | -0.0016 (6) | 0.0077 (6)  | -0.0050 (6)  |
| C11 | 0.0281 (8)  | 0.0282 (7)  | 0.0231 (7)  | 0.0020 (6)  | 0.0073 (6)  | -0.0030 (6)  |
| C12 | 0.0267 (8)  | 0.0326 (8)  | 0.0286 (8)  | -0.0028 (6) | 0.0107 (6)  | -0.0011 (6)  |
| C13 | 0.0259 (8)  | 0.0324 (8)  | 0.0271 (8)  | 0.0001 (6)  | 0.0097 (6)  | -0.0008 (6)  |
| C14 | 0.0233 (7)  | 0.0346 (8)  | 0.0286 (8)  | 0.0003 (6)  | 0.0087 (6)  | -0.0003 (6)  |
| C15 | 0.0265 (7)  | 0.0341 (8)  | 0.0253 (8)  | 0.0002 (6)  | 0.0092 (6)  | -0.0001 (6)  |
| C16 | 0.0256 (8)  | 0.0366 (8)  | 0.0259 (8)  | 0.0003 (6)  | 0.0093 (6)  | -0.0023 (6)  |
| C17 | 0.0270 (8)  | 0.0354 (8)  | 0.0267 (8)  | 0.0002 (6)  | 0.0096 (6)  | -0.0008 (6)  |
| N1  | 0.0259 (7)  | 0.0345 (7)  | 0.0275 (7)  | -0.0004 (6) | 0.0096 (5)  | 0.0016 (6)   |
| 01  | 0.0323 (6)  | 0.0435 (7)  | 0.0317 (6)  | 0.0024 (5)  | 0.0026 (5)  | 0.0042 (5)   |
|     |             |             |             |             |             |              |

Geometric parameters (Å, °)

| <u></u> <u>C101</u> | 1.2802 (19) | C12—N1               | 1.4553 (19) |
|---------------------|-------------|----------------------|-------------|
| C1—C10              | 1.433 (2)   | C12—C13              | 1.522 (2)   |
| C1—C2               | 1.442 (2)   | C12—H12A             | 0.9900      |
| C2—C3               | 1.348 (2)   | C12—H12B             | 0.9900      |
| C2—H2               | 0.9500      | C13—C14              | 1.524 (2)   |
| C3—C4               | 1.430 (2)   | C13—H13A             | 0.9900      |
| С3—Н3               | 0.9500      | C13—H13B             | 0.9900      |
| C4—C5               | 1.409 (2)   | C14—C15              | 1.525 (2)   |
| C4—C9               | 1.413 (2)   | C14—H14A             | 0.9900      |
| C5—C6               | 1.362 (3)   | C14—H14B             | 0.9900      |
| С5—Н5               | 0.9500      | C15—C16              | 1.518 (2)   |
| C6—C7               | 1.394 (3)   | C15—H15A             | 0.9900      |
| С6—Н6               | 0.9500      | C15—H15B             | 0.9900      |
| C7—C8               | 1.374 (2)   | C16—C17              | 1.5232 (19) |
| С7—Н7               | 0.9500      | C16—H16A             | 0.9900      |
| C8—C9               | 1.411 (2)   | C16—H16B             | 0.9900      |
| С8—Н8               | 0.9500      | C17—C17 <sup>i</sup> | 1.518 (3)   |
| C9—C10              | 1.449 (2)   | C17—H17A             | 0.9900      |
| C10—C11             | 1.414 (2)   | C17—H17B             | 0.9900      |
| C11—N1              | 1.2994 (19) | N1—H1N               | 0.94 (2)    |
| С11—Н11             | 0.9500      |                      |             |
| O1—C1—C10           | 122.68 (14) | N1—C12—H12B          | 109.3       |
| 01-C1-C2            | 119.65 (15) | C13—C12—H12B         | 109.3       |
| C10-C1-C2           | 117.67 (14) | H12A—C12—H12B        | 108.0       |
| C3—C2—C1            | 121.38 (16) | C12—C13—C14          | 111.58 (13) |
| С3—С2—Н2            | 119.3       | С12—С13—Н13А         | 109.3       |
| C1—C2—H2            | 119.3       | C14—C13—H13A         | 109.3       |
| C2—C3—C4            | 122.38 (15) | C12—C13—H13B         | 109.3       |
| С2—С3—Н3            | 118.8       | C14—C13—H13B         | 109.3       |
| С4—С3—Н3            | 118.8       | H13A—C13—H13B        | 108.0       |
| C5—C4—C9            | 120.10 (17) | C13—C14—C15          | 113.24 (13) |
| C5—C4—C3            | 120.99 (16) | C13—C14—H14A         | 108.9       |
| C9—C4—C3            | 118.92 (15) | C15—C14—H14A         | 108.9       |
| C6—C5—C4            | 121.31 (17) | C13—C14—H14B         | 108.9       |
| С6—С5—Н5            | 119.3       | C15—C14—H14B         | 108.9       |
| C4—C5—H5            | 119.3       | H14A—C14—H14B        | 107.7       |
| C5—C6—C7            | 119.16 (17) | C16—C15—C14          | 113.62 (13) |
| С5—С6—Н6            | 120.4       | C16—C15—H15A         | 108.8       |
| С7—С6—Н6            | 120.4       | C14—C15—H15A         | 108.8       |
| C8—C7—C6            | 120.85 (18) | C16—C15—H15B         | 108.8       |
| С8—С7—Н7            | 119.6       | C14—C15—H15B         | 108.8       |
| С6—С7—Н7            | 119.6       | H15A—C15—H15B        | 107.7       |
| C7—C8—C9            | 121.47 (17) | C15—C16—C17          | 113.89 (13) |
| С7—С8—Н8            | 119.3       | C15—C16—H16A         | 108.8       |
| С9—С8—Н8            | 119.3       | C17—C16—H16A         | 108.8       |

| 117.11 (14)  | C15—C16—H16B                                                                                                                                                                                                                                                                                                                                                                       | 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 123.66 (14)  | C17—C16—H16B                                                                                                                                                                                                                                                                                                                                                                       | 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 119.23 (14)  | H16A—C16—H16B                                                                                                                                                                                                                                                                                                                                                                      | 107.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 118.31 (14)  | C17 <sup>i</sup> —C17—C16                                                                                                                                                                                                                                                                                                                                                          | 113.82 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 121.19 (14)  | C17 <sup>i</sup> —C17—H17A                                                                                                                                                                                                                                                                                                                                                         | 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 120.43 (13)  | С16—С17—Н17А                                                                                                                                                                                                                                                                                                                                                                       | 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 123.61 (15)  | C17 <sup>i</sup> —C17—H17B                                                                                                                                                                                                                                                                                                                                                         | 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 118.2        | С16—С17—Н17В                                                                                                                                                                                                                                                                                                                                                                       | 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 118.2        | H17A—C17—H17B                                                                                                                                                                                                                                                                                                                                                                      | 107.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 111.46 (13)  | C11—N1—C12                                                                                                                                                                                                                                                                                                                                                                         | 123.87 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 109.3        | C11—N1—H1N                                                                                                                                                                                                                                                                                                                                                                         | 112.7 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 109.3        | C12—N1—H1N                                                                                                                                                                                                                                                                                                                                                                         | 123.4 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 179.64 (16)  | C2-C1-C10-C11                                                                                                                                                                                                                                                                                                                                                                      | 176.23 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.1 (2)      | O1—C1—C10—C9                                                                                                                                                                                                                                                                                                                                                                       | 179.73 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.2 (3)      | C2-C1-C10-C9                                                                                                                                                                                                                                                                                                                                                                       | -0.7 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 179.79 (17)  | C8—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                      | 4.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1 (2)      | C4—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                      | -175.79 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.5 (3)      | C8—C9—C10—C1                                                                                                                                                                                                                                                                                                                                                                       | -178.81 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -179.20 (17) | C4—C9—C10—C1                                                                                                                                                                                                                                                                                                                                                                       | 1.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.1 (3)     | C1-C10-C11-N1                                                                                                                                                                                                                                                                                                                                                                      | 2.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.2 (3)     | C9-C10-C11-N1                                                                                                                                                                                                                                                                                                                                                                      | 179.54 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.1 (3)      | N1-C12-C13-C14                                                                                                                                                                                                                                                                                                                                                                     | 179.84 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.3 (2)      | C12—C13—C14—C15                                                                                                                                                                                                                                                                                                                                                                    | -178.46 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -179.84 (16) | C13-C14-C15-C16                                                                                                                                                                                                                                                                                                                                                                    | 177.58 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.5 (2)     | C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                    | 179.05 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 179.13 (15)  | C15—C16—C17—C17 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                       | 179.32 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 179.57 (15)  | C10-C11-N1-C12                                                                                                                                                                                                                                                                                                                                                                     | -179.25 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.8 (2)     | C13—C12—N1—C11                                                                                                                                                                                                                                                                                                                                                                     | -116.21 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -3.3 (2)     |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 117.11 (14)<br>123.66 (14)<br>119.23 (14)<br>118.31 (14)<br>121.19 (14)<br>120.43 (13)<br>123.61 (15)<br>118.2<br>118.2<br>111.46 (13)<br>109.3<br>109.3<br>179.64 (16)<br>0.1 (2)<br>0.2 (3)<br>179.79 (17)<br>0.1 (2)<br>0.5 (3)<br>-179.20 (17)<br>-0.1 (3)<br>-0.2 (3)<br>0.1 (3)<br>0.3 (2)<br>-179.84 (16)<br>-0.5 (2)<br>179.13 (15)<br>179.57 (15)<br>-0.8 (2)<br>-3.3 (2) | 117.11 (14) $C15-C16-H16B$ 123.66 (14) $C17-C16-H16B$ 119.23 (14) $H16A-C16-H16B$ 119.23 (14) $C17^{i}-C17-C16$ 121.19 (14) $C17^{i}-C17-H17A$ 120.43 (13) $C16-C17-H17A$ 123.61 (15) $C17^{i}-C17-H17B$ 118.2 $C16-C17-H17B$ 118.2 $H17A-C17-H17B$ 118.2 $H17A-C17-H17B$ 118.2 $H17A-C17-H17B$ 111.46 (13) $C11-N1-C12$ 109.3 $C12-N1-H1N$ 109.3 $C12-N1-H1N$ 179.64 (16) $C2-C1-C10-C9$ 0.2 (3) $C2-C1-C10-C9$ 179.79 (17) $C8-C9-C10-C11$ 0.1 (2) $C4-C9-C10-C11$ 0.1 (2) $C4-C9-C10-C11$ 0.1 (3) $C12-C13-C14-C15$ -179.20 (17) $C4-C9-C10-C1$ -0.1 (3) $C12-C13-C14$ 0.3 (2) $C12-C13-C14-C15$ -179.84 (16) $C13-C14-C15-C16$ -0.5 (2) $C14-C15-C16-C17$ -179.13 (15) $C15-C16-C17-C17^i$ 179.57 (15) $C10-C11-N1-C12$ -0.8 (2) $C13-C12-N1-C11$ -3.3 (2) $C12-C13-C14-C15$ |

Symmetry code: (i) -x+1/2, -y+1/2, -z+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A            | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|--------------------|-------------|----------|--------------|-------------------------|
| N1—H1 <i>N</i> …O1 | 0.94 (2)    | 1.75 (2) | 2.5498 (18)  | 140.6 (19)              |