CRYSTALLOGRAPHIC COMMUNICATIONS ISSN 2056-9890

Received 27 March 2015
Accepted 2 April 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; co-crystalline adducts; TATD; proton transfer; hydrogen bonding

CCDC reference: 1057775
Supporting information: this article has supporting information at journals.iucr.org/e

# Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ dodecane (TATD)-4-bromophenol (1/2) 

Augusto Rivera, ${ }^{\text {a* }}$ Juan Manuel Uribe, ${ }^{\text {a }}$ Jicli José Rojas, ${ }^{\text {a }}$ Jaime Ríos-Motta ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b }}$

${ }^{a}$ Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany. *Correspondence e-mail: ariverau@unal.edu.co

The structure of the 1:2 co-crystalline adduct $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}$, (I), from the solid-state reaction of 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ dodecane (TATD) and 4-bromophenol, has been determined. The asymmetric unit of the title cocrystalline adduct comprises a half molecule of aminal cage polyamine plus a 4-bromophenol molecule. A twofold rotation axis generates the other half of the adduct. The primary inter-species association in the title compound is through two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In the crystal, the adducts are linked by weak non-conventional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, giving a two-dimensional supramolecular structure parallel to the $b c$ plane.

## 1. Chemical context

The main focus of the research in our laboratory is the synthesis of a variety of molecules using cyclic aminals of the adamantane type. The prototype of these reactions is a Mannich-type reaction involving 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ] dodecane (TATD) (II) with phenols which, in solution, affords di-Mannich bases of type (III) (Rivera et al., 1993, 2005). These are common systems for the investigation of hydrogen bonding and proton transfer. Engaged in the development of greener synthetic pathways, we attempted a synthesis of a di-Mannich base under solvent-free conditions by simply grinding TATD and 4-bromophenol at room temperature without using any solvent in the initial step. We found that the reaction did not provide the di-Mannich base as desired. Instead, the title compound, (I), was obtained in good yield. The reaction is run in the absence of solvent, there are no by-products, and the work-up procedure is easy. Recrystallization in an appropriate solvent gave the title compound in high yield.


OPEN 〇 ACCESS

(I)

(II)

(III)


Figure 1
The molecular structure of the title adduct. Displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix A are generated using the symmetry operator $\left(-x-\frac{1}{2},-y-\frac{1}{2}, z\right)$.

## 2. Structural commentary

Co-crystal (I) crystallized in the space group Fdd2 with one half-molecule of 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane (TATD) and one molecule of 4-bromophenol in the asymmetric unit; a twofold rotation axis generates the other half of the adduct held together by two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds [ $\mathrm{O} \cdots \mathrm{N} 2.705$ (5) $\AA$; O-H $\left.\cdots \mathrm{N} 158(7)^{\circ}\right)$ ] (Fig. 1). Unlike the situation in a related structure (Rivera et al., (2007), where a $1: 1$ adduct formed via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$


Figure 2
The crystal packing of the title compound, showing two of the chains that extend along the crystal $c$-axis direction. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds are drawn as dashed lines.

Table 1
Hydrogen-bond geometry $\left(\mathrm{A},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 11$ | $0.78(7)$ | $1.97(7)$ | $2.705(5)$ | $158(7)$ |
| $\mathrm{C} 3-\mathrm{H} 3 \cdots 1^{\mathrm{i}}$ | 0.95 | 2.42 | $3.347(6)$ | 164 |
| $\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{Br}^{\mathrm{ii}}$ | 0.99 | 2.89 | $3.833(6)$ | 159 |

Symmetry codes: (i) $-x-\frac{1}{2},-y-1, z+\frac{1}{2}$; (ii) $x, y, z-1$.
hydrogen bond between TATD and hydroquinone, the title compound features an 1:2 adduct. Bond lengths in the TATD and 4-bromophenol molecules in (I) are within normal ranges (Allen et al., 1987) and are comparable to those found in similar structures (Rivera et al., 2007; Tse et al., 1977). The H atom of the phenolic -OH group deviates slightly from the benzene ring plane, subtending a torsion angle of $8(5)^{\circ}$.

A significant reduction in the $\mathrm{O} \cdots \mathrm{N}$ distance is observed when the distance and angle in the $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ hydrogen bond $\left[\mathrm{O} \cdots \mathrm{N} 2.705(5) \AA\right.$; $\left.\left.\mathrm{O}-\mathrm{H} \cdots \mathrm{N} 158(7)^{\circ}\right)\right]$ in the title compound are compared to the values found in the TATD:hydroquinone, $1: 1$ adduct [ $\mathrm{O} \cdots \mathrm{N} 2.767$ (2) $\AA$; $\mathrm{O}-$ $\left.\mathrm{H} \cdots \mathrm{N} 156.3(10)^{\circ}\right)$ ] (Rivera et al., 2007). Also, the $\mathrm{C} 1-\mathrm{O} 1$ bond length observed here $[1.355$ (6) $\AA$ ] , is shorter than that in the hydroquinone co-crystal. This indicates an increase in hydrogen-bonding strength in the title compound, which may be due to the considerable differences in the $\mathrm{p} K_{a}$ values between the species involved in the hydrogen bond (Majerz et al., 1997). Compared to hydroquinone ( $\mathrm{p} K_{a}=9.85$ ), $p$-bromophenol is more acidic $\left(\mathrm{p} K_{a}=9.37\right)($ Lide, 2003 $)$.

## 3. Supramolecular features

In the crystal of the title compound, the adducts are weakly linked peripherally through both non-conventional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1) giving a two dimensional supramolecular structure parallel to the $b c$ plane. (Fig. 2). This is similar to the structure of the 4-bromophenol adduct with urotropine (Tse et al., 1977).

## 4. Database survey

A database search (CSD version 5.36, November 2014 plus two updates) for 4-bromophenol yielded 17 hits with 21 fragments. The mean $\mathrm{C}-\mathrm{O}$ bond length in these structures is 1.35 (5) $\AA$ and the mean $\mathrm{C}-\mathrm{Br}$ bond length is 1.91 (3) $\AA$. These values are in excellent agreement with those of the title compound, i.e. $\mathrm{O} 1-\mathrm{C} 11.355$ (6) and $\mathrm{Br} 1-\mathrm{C} 41.907$ (5) Å.

A database search for 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane yielded only three hits, two determinations of the compound itself (Murray-Rust, 1974; Rivera et al., 2014) and a co-crystal of the aminal with hydroquinone (Rivera et al., 2007). While the molecules of 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane itself have $\overline{4} 2 m$ symmetry, the molecules in the co-crystal of TATD with hydroquinone have mirror symmetry. In the title compound, on the other hand, the

Table 2
Experimental details.

| Crystal data |  |
| :---: | :---: |
| Chemical formula | $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}$ |
| $M_{\text {r }}$ | 514.27 |
| Crystal system, space group | Orthorhombic, Fdd2 |
| Temperature (K) | 173 |
| $a, b, c(\AA)$ | 20.693 (2), 21.7954 (18), 9.4649 (9) |
| $V\left(\AA^{3}\right)$ | 4268.8 (7) |
| Z | 8 |
| Radiation type | Mo K $\alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 3.82 |
| Crystal size (mm) | $0.29 \times 0.27 \times 0.23$ |
| Data collection |  |
| Diffractometer | Stoe IPDS II two-circle |
| Absorption correction | Multi-scan (MULABS; Spek, 2009; Blessing, 1995) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.847, 0.972 |
| No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections | 5997, 1996, 1833 |
| $R_{\text {int }}$ | 0.062 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.608 |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 0.032, 0.069, 1.01 |
| No. of reflections | 1996 |
| No. of parameters | 132 |
| No. of restraints | 1 |
| H -atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.24, -0.41 |
| Absolute structure | Flack $x$ determined using 792 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013) |
| Absolute structure parameter | 0.003 (16) |

Computer programs: X-AREA (Stoe \& Cie, 2001), SHELXS97 and XP in SHELXTLPlus (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2006).

1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane molecule displays $C_{2}$ symmetry.

## 5. Synthesis and crystallization

1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane (TATD) (0.21g, $1.25 \mathrm{mmol})$ and 4-bromophenol ( $0.43 \mathrm{~g}, 2.5 \mathrm{mmol}$ ) were manually mixed in a mortar with pestle at room temperature for 20 min as required to complete the reaction (TLC). The mixture was then dissolved in a minimum amount of methanol
and left to crystallize at room temperature. Subsequent recrystallization with MeOH then yielded the title compound as white crystals in $78 \%$ yield, m.p. $=367-368 \mathrm{~K}$.

## 6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in a difference electron density map. The hydroxyl H atom was refined freely, while C -bound H atoms were fixed geometrically $(\mathrm{C}-\mathrm{H}=0.95$ or $0.99 \AA)$ and refined using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}$ of the parent atom.

## Acknowledgements

We acknowledge the financial support provided to us by the Dirección de Investigaciones, Sede Bogotá (DIB) at the Universidad Nacional de Colombia. JMU and JJR thank COLCIENCIAS for a fellowship.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Lide, D. R. (2003). In CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Majerz, I., Malarski, Z. \& Sobczyk, L. (1997). Chem. Phys. Lett. 274, 361-364.
Murray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136-1141.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rivera, A., Gallo, G. I., Gayón, M. E. \& Joseph-Nathan, P. (1993). Synth. Commun. 23 2921-2929.
Rivera, A., Ríos-Motta, J. \& Bolte, M. (2014). Acta Cryst. E70, o266.
Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. \& JosephNathan, P. (2007). J. Mol. Struct. 831, 180-186.
Rivera, A., Ríos-Motta, J., Quevedo, R. \& Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34 105-115.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Tse, C.-S., Wong, Y.-S. \& Mak, T. C. W. (1977). J. Appl. Cryst. 10, 6869.

## supporting information

Acta Cryst. (2015). E71, 463-465 [https://doi.org/10.1107/S2056989015006684]
Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane (TATD)-4-bromophenol (1/2)

Augusto Rivera, Juan Manuel Uribe, Jicli José Rojas, Jaime Ríos-Motta and Michael Bolte

## Computing details

Data collection: $X$ - $A R E A$ (Stoe \& Cie, 2001); cell refinement: $X-A R E A$ (Stoe \& Cie, 2001); data reduction: $X$-AREA (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

## 1,3,6,8-Tetraazatricyclo[4.4.1.1 ${ }^{3,8}$ ]dodecane-4-bromophenol (2/1)

## Crystal data

$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrO}$
$M_{r}=514.27$
Orthorhombic, Fdd2
$a=20.693$ (2) $\AA$
$b=21.7954$ (18) $\AA$
$c=9.4649$ (9) Å
$V=4268.8(7) \AA^{3}$
$Z=8$
$F(000)=2080$

## Data collection

Stoe IPDS II two-circle diffractometer
Radiation source: Genix 3D I $\mu$ S microfocus Xray source
$\omega$ scans
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
$T_{\text {min }}=0.847, T_{\text {max }}=0.972$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.069$
$S=1.01$
1996 reflections
132 parameters
1 restraint
Hydrogen site location: mixed
$D_{\mathrm{x}}=1.600 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7202 reflections
$\theta=3.7-26.0^{\circ}$
$\mu=3.82 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colourless
$0.29 \times 0.27 \times 0.23 \mathrm{~mm}$

5997 measured reflections
1996 independent reflections
1833 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=25.6^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-22 \rightarrow 24$
$k=-25 \rightarrow 26$
$l=-11 \rightarrow 11$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0386 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e} \AA^{-3}$
Absolute structure: Flack $x$ determined using 792 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.003 (16)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ | Occ. $(<1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Brl | -0.11272 (3) | -0.43922 (2) | 1.02771 (5) | 0.03734 (18) |  |
| O1 | -0.2465 (2) | -0.40437 (17) | 0.4684 (4) | 0.0311 (9) |  |
| H1 | -0.233 (4) | -0.375 (3) | 0.432 (7) | 0.036 (18)* |  |
| C1 | -0.2172 (3) | -0.4091 (2) | 0.5959 (5) | 0.0232 (11) |  |
| C2 | -0.2281 (3) | -0.4622 (2) | 0.6734 (6) | 0.0288 (12) |  |
| H2 | -0.2567 | -0.4926 | 0.6379 | 0.035* |  |
| C3 | -0.1978 (3) | -0.4710 (2) | 0.8016 (5) | 0.0281 (11) |  |
| H3 | -0.2048 | -0.5077 | 0.8536 | 0.034* |  |
| C4 | -0.1570 (3) | -0.4262 (2) | 0.8536 (5) | 0.0246 (10) |  |
| C5 | -0.1468 (2) | -0.37234 (18) | 0.7795 (7) | 0.0252 (10) |  |
| H5 | -0.1190 | -0.3416 | 0.8165 | 0.030* |  |
| C6 | -0.1773 (3) | -0.3635 (2) | 0.6514 (5) | 0.0257 (11) |  |
| H6 | -0.1711 | -0.3263 | 0.6009 | 0.031* |  |
| N11 | -0.2299 (2) | -0.30437 (16) | 0.3032 (4) | 0.0241 (9) |  |
| N12 | -0.2997 (2) | -0.2824 (2) | 0.0903 (4) | 0.0276 (10) |  |
| C11 | -0.2500 | -0.2500 | 0.3809 (7) | 0.0278 (16) |  |
| H11A | -0.2137 | -0.2379 | 0.4431 | 0.033* | 0.5 |
| H11B | -0.2863 | -0.2621 | 0.4431 | 0.033* | 0.5 |
| C12 | -0.2756 (3) | -0.3255 (2) | 0.1929 (6) | 0.0354 (14) |  |
| H12A | -0.2542 | -0.3592 | 0.1404 | 0.042* |  |
| H12B | -0.3134 | -0.3436 | 0.2416 | 0.042* |  |
| C13 | -0.1623 (3) | -0.3018 (2) | 0.2559 (7) | 0.0398 (14) |  |
| H13A | -0.1497 | -0.3431 | 0.2227 | 0.048* |  |
| H13B | -0.1349 | -0.2919 | 0.3386 | 0.048* |  |
| C14 | -0.1470 (3) | -0.2560 (3) | 0.1394 (6) | 0.0389 (13) |  |
| H14A | -0.1120 | -0.2287 | 0.1734 | 0.047* |  |
| H14B | -0.1298 | -0.2790 | 0.0574 | 0.047* |  |
| C15 | -0.2500 | -0.2500 | 0.0114 (7) | 0.0314 (16) |  |
| H15A | -0.2282 | -0.2801 | -0.0507 | 0.038* | 0.5 |
| H15B | -0.2718 | -0.2199 | -0.0507 | 0.038* | 0.5 |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br1 | $0.0464(3)$ | $0.0333(2)$ | $0.0323(2)$ | $0.0043(3)$ | $-0.0102(3)$ | $0.0045(2)$ |
| O1 | $0.039(3)$ | $0.0219(18)$ | $0.0323(19)$ | $-0.0044(18)$ | $-0.0097(17)$ | $0.0049(15)$ |
| C1 | $0.021(3)$ | $0.022(2)$ | $0.027(2)$ | $0.004(2)$ | $0.001(2)$ | $-0.0017(19)$ |
| C2 | $0.032(3)$ | $0.020(2)$ | $0.034(3)$ | $-0.003(2)$ | $0.003(2)$ | $0.001(2)$ |
| C3 | $0.034(3)$ | $0.020(2)$ | $0.030(3)$ | $-0.001(2)$ | $0.005(2)$ | $0.005(2)$ |


| C4 | $0.029(3)$ | $0.024(2)$ | $0.021(2)$ | $0.004(2)$ | $0.004(2)$ | $0.0013(18)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C5 | $0.026(3)$ | $0.0200(18)$ | $0.030(2)$ | $-0.0030(18)$ | $0.001(3)$ | $-0.002(3)$ |
| C6 | $0.033(3)$ | $0.018(2)$ | $0.027(2)$ | $-0.003(2)$ | $0.002(2)$ | $0.0007(18)$ |
| N11 | $0.032(2)$ | $0.0210(18)$ | $0.019(2)$ | $-0.0012(17)$ | $0.0013(17)$ | $-0.0048(15)$ |
| N12 | $0.025(2)$ | $0.036(2)$ | $0.0222(19)$ | $-0.009(2)$ | $-0.0016(18)$ | $-0.0016(17)$ |
| C11 | $0.043(5)$ | $0.024(3)$ | $0.016(3)$ | $0.005(3)$ | 0.000 | 0.000 |
| C12 | $0.050(4)$ | $0.027(3)$ | $0.029(3)$ | $-0.014(3)$ | $-0.006(2)$ | $-0.001(2)$ |
| C13 | $0.034(3)$ | $0.041(3)$ | $0.045(4)$ | $0.006(2)$ | $0.002(3)$ | $0.004(3)$ |
| C14 | $0.027(3)$ | $0.061(4)$ | $0.029(3)$ | $-0.006(3)$ | $0.003(2)$ | $0.001(3)$ |
| C15 | $0.034(4)$ | $0.046(4)$ | $0.015(3)$ | $-0.006(3)$ | 0.000 | 0.000 |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Br} 1-\mathrm{C} 4$ | 1.907 (5) | N12-C15 | 1.453 (6) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{C} 1$ | 1.355 (6) | N12-C14 ${ }^{\text {i }}$ | 1.462 (8) |
| $\mathrm{O} 1-\mathrm{H} 1$ | 0.78 (7) | C11-N11 ${ }^{\text {i }}$ | 1.456 (5) |
| C1-C2 | 1.388 (7) | C11-H11A | 0.9900 |
| C1-C6 | 1.393 (7) | C11-H11B | 0.9900 |
| C2-C3 | 1.380 (8) | C12-H12A | 0.9900 |
| C2-H2 | 0.9500 | C12-H12B | 0.9900 |
| C3-C4 | 1.381 (7) | C13-C14 | 1.520 (8) |
| C3-H3 | 0.9500 | C13-H13A | 0.9900 |
| C4-C5 | 1.384 (7) | C13-H13B | 0.9900 |
| C5-C6 | 1.380 (8) | C14-N12 ${ }^{\text {i }}$ | 1.462 (8) |
| C5-H5 | 0.9500 | C14-H14A | 0.9900 |
| C6-H6 | 0.9500 | C14-H14B | 0.9900 |
| N11-C11 | 1.456 (5) | C15-N12 ${ }^{\text {i }}$ | 1.453 (6) |
| N11-C13 | 1.470 (8) | C15-H15A | 0.9900 |
| N11-C12 | 1.482 (7) | C15-H15B | 0.9900 |
| N12-C12 | 1.441 (7) |  |  |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$ | 107 (5) | N11-C11-H11B | 107.5 |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 117.4 (5) | N11- ${ }^{\text {C }} 11-\mathrm{H} 11 \mathrm{~B}$ | 107.5 |
| O1-C1-C6 | 123.1 (5) | H11A-C11-H11B | 107.0 |
| C2-C1-C6 | 119.5 (5) | N12-C12-N11 | 119.5 (4) |
| C3-C2-C1 | 120.4 (5) | N12-C12-H12A | 107.4 |
| C3-C2-H2 | 119.8 | N11-C12-H12A | 107.4 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 119.8 | N12-C12-H12B | 107.4 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 119.6 (4) | N11-C12-H12B | 107.4 |
| C2-C3-H3 | 120.2 | H12A-C12-H12B | 107.0 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$ | 120.2 | N11-C13-C14 | 116.4 (5) |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | 120.8 (5) | N11-C13-H13A | 108.2 |
| C3-C4-Br1 | 119.8 (4) | C14-C13-H13A | 108.2 |
| C5- $\mathrm{C} 4-\mathrm{Br} 1$ | 119.4 (4) | N11-C13-H13B | 108.2 |
| C6-C5-C4 | 119.6 (4) | C14-C13-H13B | 108.2 |
| C6-C5-H5 | 120.2 | H13A-C13-H13B | 107.3 |
| C4-C5-H5 | 120.2 | N12--C14-C13 | 116.6 (5) |
| C5-C6-C1 | 120.1 (4) | N12 ${ }^{\text {- }} \mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$ | 108.1 |


| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$ | 119.9 |
| :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$ | 119.9 |
| $\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 13$ | $113.2(3)$ |
| $\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 12$ | $115.3(4)$ |
| $\mathrm{C} 13-\mathrm{N} 11-\mathrm{C} 12$ | $113.9(4)$ |
| $\mathrm{C} 12-\mathrm{N} 12-\mathrm{C} 15$ | $114.7(4)$ |
| $\mathrm{C} 12-\mathrm{N} 12-\mathrm{C} 14^{\mathrm{i}}$ | $114.9(4)$ |
| $\mathrm{C} 15-\mathrm{N} 12-\mathrm{C} 144^{\mathrm{i}}$ | $119.3(5)$ |
| $\mathrm{N} 11-\mathrm{C} 11-\mathrm{N} 11^{\mathrm{i}}$ | 107.5 |
| $\mathrm{~N} 11-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$ | 107.5 |
| $\mathrm{~N} 11-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$ | $177.5(5)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $-2.7(8)$ |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $1.0(8)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $0.7(8)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $-178.0(4)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$ | $-0.6(8)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $178.1(4)$ |
| $\mathrm{Br} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $-1.2(8)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$ | $-177.4(5)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ | $2.8(8)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ | $82.4(4)$ |
| $\mathrm{C} 13-\mathrm{N} 11-\mathrm{C} 11-\mathrm{N} 11^{\mathrm{i}}$ |  |


| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$ | 108.1 |
| :--- | :--- |
| $\mathrm{~N} 12 \mathrm{C}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$ | 108.1 |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$ | 108.1 |
| $\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$ | 107.3 |
| $\mathrm{~N} 12-\mathrm{C} 15-\mathrm{N} 12$ | $118.2(6)$ |
| $\mathrm{N} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$ | 107.8 |
| N12-C15-H15A | 107.8 |
| N12-C15-H15B | 107.8 |
| N12-C15-H15B | 107.8 |
| H15A-C15-H15B | 107.1 |

C12-N11-C11-N11 ${ }^{\text {i }}$
-51.2 (3)
C15-N12-C12-N11
55.6 (7)

C14-N12-C12-N11
C11-N11-C12-N12
-80.7 (7)

C13-N11-C12—N12
C11—N11-C13-C14 -69.9 (6)
C12—N11-C13-C14 64.4 (6)
$\mathrm{N} 11-\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 12^{\mathrm{i}} \quad 2.4$ (7)
$\mathrm{C} 12-\mathrm{N} 12-\mathrm{C} 15-\mathrm{N} 12^{\mathrm{i}} \quad-53.9(3)$
$\mathrm{C} 14^{\mathrm{i}}-\mathrm{N} 12-\mathrm{C} 15-\mathrm{N} 12^{\mathrm{i}} \quad 82.4$ (4)

Symmetry code: (i) $-x-1 / 2,-y-1 / 2, z$.

Hydrogen-bond geometry (A, ${ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 11$ | $0.78(7)$ | $1.97(7)$ | $2.705(5)$ | $158(7)$ |
| $\mathrm{C} 3 — \mathrm{H} 3 \cdots 1^{\text {ii }}$ | 0.95 | 2.42 | $3.347(6)$ | 164 |
| $\mathrm{C} 13 — \mathrm{H} 13 A \cdots \mathrm{Br}^{\text {iii }}$ | 0.99 | 2.89 | $3.833(6)$ | 159 |

Symmetry codes: (ii) $-x-1 / 2,-y-1, z+1 / 2$; (iii) $x, y, z-1$.

