CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 13 April 2015
Accepted 16 April 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; synchrotron radiation; cyclam; thiocyanate ligand; trans-III configuration; chromium(III) complex; hydrogen bonding

CCDC reference: 1059896
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis[trans-(1,4,8,11-tetraaza-cyclotetradecane- $\kappa^{4} N$)bis(thiocyanato- κN)chromium(III)] tetrachloridozincate from synchrotron data

Dohyun Moon, ${ }^{\text {a }}$ Keon Sang Ryoo ${ }^{\text {b }}$ and Jong-Ha Choi ${ }^{\text {b* }}$

${ }^{\text {a }}$ Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The structure of the title compound, $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\text { cyclam })\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$ (cyclam $=$ 1,4,8,11-tetraazacyclotetradecane, $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}$), has been determined from synchrotron data. The asymmetric unit contains two independent halves of the $\mathrm{Cr}^{\text {III }}$ complex cations and half of a tetrachloridozincate anion. In each complex cation, the $\mathrm{Cr}^{\mathrm{III}}$ atom is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and by two N -bound NCS^{-}anions in a trans axial arrangement, displaying a distorted octahedral geometry with crystallographic inversion symmetry. The mean $\mathrm{Cr}-\mathrm{N}$ (cyclam) and $\mathrm{Cr}-\mathrm{N}(\mathrm{NCS})$ bond lengths are 2.065 (4) and 1.995 (6) \AA, respectively. The macrocyclic cyclam moieties adopt centrosymmetric trans-III configurations with six- and five-membered chelate rings in chair and gauche configurations, respectively. The $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion, which lies about a twofold rotation axis, has a slightly distorted tetrahedral geometry. The crystal packing is stabilized by hydrogen-bonding interactions between the $\mathrm{N}-\mathrm{H}$ groups of the cyclam ligands, the S atoms of the NCS^{-}groups and the Cl^{-}ligands of the anion.

1. Chemical context

In recent years, it has been found that cyclam (1,4,8,11-tetraazacyclotetradecane, $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}$) derivatives and their metal complexes exhibit anti-HIV activity (Ronconi \& Sadler, 2007; De Clercq, 2010; Ross et al., 2012). The cyclam derivatives inhibit the entry of the virus into white cells by binding to CXCR4, a chemokine receptor in the outer membrane. The strength of binding to the CXCR4 receptor correlates with the anti-HIV activity. The cyclam ligand has a moderately flexible
structure, and can adopt both planar (trans) and folded (cis) configurations (Poon \& Pun, 1980). There are five configurational trans isomers for this type of macrocycle, Fig. 1, that differ in the chirality of the sec-NH groups (Choi, 2009). The trans- V configuration can also fold to form the cis- V isomer (Subhan et al., 2011). In addition, the thiocyanate anion can be present in complexes as either a ligand or a non-coordinating anion (Moon et al., 2013). Furthermore it can coordinate to metals as a terminal ligand through either the nitrogen or the sulfur atoms, or can use both donor atoms and function as a bridging ligand.

Counter-anionic species play a very important role in the coordination chemistry, pharmacy and biology (Fabbrizzi \& Poggi, 2013) of metal complexes. Thus, we describe here the synthesis and structural characterization of trans$\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\text { cyclam })\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$, (I).

2. Structural commentary

Each of the two trans $-\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\text { cyclam })\right]^{+}$cations in the structure of the title compound are generated by inversion symmetry, hence the configurations of the cyclam ligands can be described as trans-III, Fig. 1. The $\mathrm{Cr}^{\text {III }}$ cations, which are located on discrete inversion centres, are coordinated by the nitrogen atoms of the cyclam ligands that occupy equatorial

Figure 2
A perspective view (30% probability ellipsoids) of the two independent chromium(III) complex cations and the tetrachloridozincate anion in (I). [Symmetry codes: ($\left.\mathrm{A}^{\prime}\right) x-1, y, z ;\left(\mathrm{B}^{\prime}\right) x,-y, z+\frac{1}{2}$; ($\left.\mathrm{C}^{\prime}\right)-x+1,-y+1$, $-z+2$.]

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{Cl} 2 C^{\mathrm{i}}$	0.98	2.66	$3.4510(12)$	138
$\mathrm{~N} 2 A-\mathrm{H} 2 A \cdots \mathrm{~S} 1 A^{\text {ii }}$	0.98	2.60	$3.4884(13)$	151
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{Cl} C^{\mathrm{i}}$	0.98	2.58	$3.4120(12)$	143
$\mathrm{~N} 2 B-\mathrm{H} 2 B \cdots \mathrm{Cl} 1 C^{\mathrm{iii}}$	0.98	2.57	$3.3944(13)$	142

Symmetry codes: (i) $x-1, y, z$; (ii) $x,-y, z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z+2$.
sites. Two thiocyanate anions complete the distorted octahedral coordination sphere binding through their N atoms in a trans configuration. The single $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion, which lies about a twofold rotation axis, has slightly distorted tetrahedral geometry and completes the complex salt. Fig. 2 shows an ellipsoid plot of (I), with the atom-numbering scheme. This is a second example of the structure of a trans $-[\mathrm{Cr}(\mathrm{NCS})]_{2^{-}}$ (cyclam) $]^{+}$salt, but the previous example had a perchlorate counter-anion (Friesen et al., 1997).

The $\mathrm{Cr}-\mathrm{N}$ bond lengths from the donor atoms of the cyclam ligand range from 2.0614 (10) to $2.0700(10) \AA$, and these lengths are comparable to those found in a range of related $\left[\mathrm{Cr} L_{2} \text { (cyclam) }\right]^{+}$complexes (Flores-Velez et al., 1991; Friesen et al., 1997; Choi, 2009; Choi, Oh, Suzuki et al., 2004; Subhan et al., 2011; Choi, Oh, Lim et al., 2004). However, they are shorter than the bonds to a primary amine as found in the related complex trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right]_{2}\left[\mathrm{ZnCl}_{4}\right]\left(\mathrm{Me}_{2} \mathrm{tn}=[2,2-\right.$ dimethylpropane-1,3-diamine]; Choi et al., 2011). Furthermore, the mean $\mathrm{Cr}-\mathrm{N}(\mathrm{NCS})$ distance of 1.9951 (11) \AA is close the values found in other trans $/$ cis- $\left[\mathrm{Cr}(\mathrm{NCS})_{2} \mathrm{~N}_{4}\right]^{+}$cations (Moon \& Choi, 2015; Choi \& Lee, 2009; Moon et al., 2013). As is normally found with cyclam complexes, the five-membered

Figure 3
The molecular packing in (I), viewed along the a axis. Dashed lines represent hydrogen-bonding interactions $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ (cyan) and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ (purple), respectively. H atoms bound to C have been omitted.
chelate rings adopt gauche configurations while the sixmembered rings are in chair configurations. The average bite angles of the five- and six-membered chelate rings around the chromium(III) atoms are 85.51 (4) and 94.49 (4) ${ }^{\circ}$, respectively. The N-coordinated NCS ligands are almost linear, with N-$\mathrm{C}-\mathrm{S}$ angles of $177.42(12)^{\circ}$ in cation A and 178.66 (12) ${ }^{\circ}$ in cation B. The $\mathrm{C} 6 A-\mathrm{S} 1 A$ bond length $[1.6126$ (12) \AA] in the $\mathrm{Cr} 1 A$ complex cation is slightly longer than the $\mathrm{C} 6 B-\mathrm{S} 1 B$ bond length $[1.6056$ (12) \AA] in the $\mathrm{Cr} 2 B$ complex cation. This elongation may be attributed to the weak hydrogen bond formed by $\mathrm{S} 1 A$ with the $\mathrm{N} 2 A-\mathrm{H} 2 A$ group of the cyclam ligand.

3. Supramolecular features

Each complex molecule forms three classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between the amine groups of the cyclam ligand in each complex cation and the Cl atoms of the tetrachloridozincate anion, Table 1 (Steed \& Atwood, 2009). These hydrogen bonds link the cations and anions into a threedimensional network as shown in Fig. 3 and help to stabilize the crystal structure.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom \& Allen, 2014) gave only three hits for the $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\text { cyclam })\right]^{+}$cation. Of these structures, trans $-\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\right.$ cyclam $\left.)\right]\left(\mathrm{ClO}_{4}\right)$ (Friesen et al., 1997) adopts the trans-III configuration, similar to that adopted by the title compound, while cis $-\left[\mathrm{Cr}(\mathrm{NCS})_{2}{ }^{-}\right.$ (cyclam)] $\left(\mathrm{ClO}_{4}\right)$ (Friesen et al., 1997) and cis-[Cr(NCS) 2^{-} (cyclam)](NCS) (Moon et al., 2013), both adopt the folded cisV configuration. No structure of a salt of $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\text { cyclam })\right]^{+}$ with the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion was found.

5. Synthesis and crystallization

The free ligand cyclam was purchased from Strem Chemicals and used as provided. All chemicals were reagent-grade materials and were used without further purification. The starting material, trans- $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\right.$ cyclam $\left.)\right] \mathrm{ClO}_{4}$, was prepared according to the literature (Friesen et al., 1997). The perchlorate salt $(0.33 \mathrm{~g})$ was dissolved in 10 mL of 0.1 M HCl at 333 K and added to 7.5 mL of 6 M HCl containing 0.75 g of solid ZnCl_{2}. The resulting solution was filtered, and allowed to stand at room temperature for two days to give pale-yellow crystals of (I) suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ of the parent atoms.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$
M_{r}	944.15
Crystal system, space group	Monoclinic, $P 2 / c$
Temperature (K)	260
$a, b, c(\AA)$	$7.9990(16), 16.532(3), 15.430(3)$
$\beta\left({ }^{\circ}\right)$	$101.36(3)$
$V\left(\mathrm{~A}^{3}\right)$	$2000.5(7)$
Z	2
Radiation type	Synchrotron, $\lambda=0.610 \AA$
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.07
Crystal size (mm)	$0.22 \times 0.19 \times 0.12$
Data collection	ADSC Q210 CCD area detector
Diffractometer	diffractometer
	Empirical $($ using intensity
Absorption correction	measurements $)(H K L 3000 s m$
	Minor, 1997$)$
$T_{\text {min }}, T_{\text {max }}$	$0.801,0.883$
No. of measured, independent and	$20982,5738,5500$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.018
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.706
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.025,0.072,1.06$
No. of reflections	5738
No. of parameters	217
H-atom treatment	$\mathrm{H}-$ atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.60,-0.58$

Computer programs: PAL ADSC Quantum-210 ADX (Arvai \& Nielsen, 1983), HKL3000sm (Otwinowski \& Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), DIAMOND (Putz \& Brandenburg, 2014) nd publCIF (Westrip, 2010).

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2DSMC beamline was supported in part by MSIP and POSTECH.

References

Arvai, A. J. \& Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.
Choi, J.-H., Joshi, T. \& Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.
Choi, J.-H. \& Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.
Choi, J.-H., Oh, I.-G., Lim, W.-T. \& Park, K.-M. (2004). Acta Cryst. C60, m238-m240.
Choi, J.-H., Oh, I.-G., Suzuki, T. \& Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.
De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.
Fabbrizzi, L. \& Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.
Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. \& Toscanoh, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243-3247.
Friesen, D. A., Quail, J. W., Waltz, W. L. \& Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Moon, D. \& Choi, J.-H. (2015). Acta Cryst. E71, 100-103.

Moon, D., Choi, J.-H., Ryoo, K. S. \& Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Poon, C. K. \& Pun, K. C. (1980). Inorg. Chem. 19, 568-569.
Putz, H. \& Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Ronconi, L. \& Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.

Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. \& Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Steed, J. W. \& Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., New York: John Wiley \& Sons.
Subhan, M. A., Choi, J.-H. \& Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of bis[trans-($1,4,8,11$-tetraazacyclotetradecane- $\kappa^{4} N$)bis(thio-cyanato- $\kappa \mathrm{N}$)chromium(III)] tetrachloridozincate from synchrotron data

Dohyun Moon, Keon Sang Ryoo and Jong-Ha Choi

Computing details

Data collection: PAL ADSC Quantum-210 ADX (Arvai \& Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski \& Minor, 1997); data reduction: HKL3000sm (Otwinowski \& Minor, 1997); program(s) used to solve structure:
SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz \& Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[trans-(1,4,8,11-tetraazacyclotetradecane- $\left.\kappa^{4} N\right)$ bis(thiocyanato- κN)chromium(III)] tetrachloridozincate

Crystal data

$\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$
$F(000)=972$
$M_{r}=944.15$
Monoclinic, $P 2 / c$
$a=7.9990(16) \AA$
$b=16.532(3) \AA$
$c=15.430$ (3) \AA
$\beta=101.36(3)^{\circ}$
$V=2000.5(7) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.567 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.610 \AA$
Cell parameters from 92486 reflections
$\theta=0.4-33.7^{\circ}$
$\mu=1.07 \mathrm{~mm}^{-1}$
$T=260 \mathrm{~K}$
Block, pale yellow
$0.22 \times 0.19 \times 0.12 \mathrm{~mm}$

Data collection

ADSC Q210 CCD area-detector diffractometer
Radiation source: PLSII 2D bending magnet ω scan
Absorption correction: empirical (using
intensity measurements)
(HKL3000sm Scalepack; Otwinowski \& Minor, 1997)

20982 measured reflections
5738 independent reflections
5500 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-23 \rightarrow 23$
$l=-21 \rightarrow 21$
$T_{\text {min }}=0.801, T_{\text {max }}=0.883$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.072$
$S=1.06$
5738 reflections
217 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0404 P)^{2}+0.6258 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.60$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.58$ e \AA^{-3}

Extinction correction: SHELXL2014/7
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cr1A	0.0000	0.0000	0.5000	$0.01897(7)$
S1A	$0.26852(5)$	$0.12583(3)$	$0.28897(3)$	$0.04579(10)$
N1A	$0.02449(13)$	$0.11498(5)$	$0.55355(7)$	$0.02520(18)$
H1A	-0.0189	0.1129	0.6086	0.030^{*}
N2A	$0.22186(12)$	$-0.04305(6)$	$0.57760(7)$	$0.02639(18)$
H2A	0.1956	-0.0559	0.6355	0.032^{*}
N3A	$0.12441(13)$	$0.03450(6)$	$0.40583(7)$	$0.0289(2)$
C1A	$-0.09496(17)$	$0.16709(7)$	$0.49075(9)$	$0.0327(2)$
H1A1	-0.0461	0.1798	0.4396	0.039^{*}
H1A2	-0.1155	0.2174	0.5193	0.039^{*}
C2A	$0.20038(17)$	$0.14817(7)$	$0.57588(9)$	$0.0340(3)$
H2A1	0.1976	0.2001	0.6049	0.041^{*}
H2A2	0.2421	0.1571	0.5217	0.041^{*}
C3A	$0.32286(17)$	$0.09229(9)$	$0.63584(10)$	$0.0386(3)$
H3A1	0.4276	0.1217	0.6577	0.046^{*}
H3A2	0.2733	0.0786	0.6865	0.046^{*}
C4A	$0.36743(16)$	$0.01431(9)$	$0.59357(10)$	$0.0359(3)$
H4A1	0.4006	0.0267	0.5378	0.043^{*}
H4A2	0.4639	-0.0110	0.6319	0.043^{*}
C5A	$0.26019(17)$	$-0.12134(7)$	$0.53750(9)$	$0.0334(2)$
H5A1	0.3391	-0.1528	0.5803	0.040^{*}
H5A2	0.3122	-0.1113	0.4868	0.040^{*}
C6A	$0.18232(14)$	$0.07189(7)$	$0.35542(8)$	$0.0263(2)$
Cr2B	0.5000	0.5000	1.0000	$0.01881(7)$
S1B	$0.26292(6)$	$0.31238(2)$	$1.17097(3)$	$0.04295(10)$
N1B	$0.33254(12)$	$0.45724(6)$	$0.89068(6)$	$0.02683(18)$
H1B	0.2412	0.4284	0.9118	0.032^{*}
N2B	$0.35373(12)$	$0.60051(6)$	$1.01461(7)$	$0.02692(19)$
H2B	0.2655	0.5822	1.0461	0.032^{*}
N3B	$0.37356(14)$	$0.43650(7)$	$1.07593(7)$	$0.0310(2)$
C1B	$0.43163(18)$	$0.39638(8)$	$0.85091(8)$	$0.0351(3)$
H1B1	0.5087	0.4235	0.8191	0.042^{*}
H1B2	0.3548	0.3627	0.8095	0.042^{*}
C2B	$0.25141(18)$	$0.51949(9)$	$0.82674(9)$	$0.0377(3)$
H2B1	0.1736	0.4934	0.7787	0.045^{*}

H2B2	0.3385	0.5468	0.8020	0.045^{*}
C3B	$0.15434(18)$	$0.58129(10)$	$0.87041(10)$	$0.0429(3)$
H3B1	0.0815	0.5525	0.9034	0.051^{*}
H3B2	0.0809	0.6119	0.8244	0.051^{*}
C4B	$0.26361(18)$	$0.64063(8)$	$0.93259(10)$	$0.0379(3)$
H4B1	0.3467	0.6650	0.9026	0.045^{*}
H4B2	0.1917	0.6834	0.9479	0.045^{*}
C5B	$0.46800(18)$	$0.65534(8)$	$1.07613(9)$	$0.0353(3)$
H5B1	0.4012	0.6952	1.1006	0.042^{*}
H5B2	0.5447	0.6835	1.0450	0.042^{*}
C6B	$0.32530(14)$	$0.38445(7)$	$1.11521(8)$	$0.0262(2)$
Zn1C	1.0000	$0.28259(2)$	0.7500	$0.02829(7)$
Cl1C	$0.94451(4)$	$0.36436(2)$	$0.86092(2)$	$0.03394(8)$
C12C	$0.77981(5)$	$0.20141(2)$	$0.68975(3)$	$0.04336(9)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1A	$0.02262(11)$	$0.01669(11)$	$0.01964(12)$	$-0.00101(7)$	$0.00917(8)$	$0.00082(7)$
S1A	$0.0498(2)$	$0.0544(2)$	$0.03621(19)$	$-0.01306(16)$	$0.01597(15)$	$0.01604(15)$
N1A	$0.0311(4)$	$0.0197(4)$	$0.0267(4)$	$-0.0016(3)$	$0.0104(4)$	$-0.0017(3)$
N2A	$0.0272(4)$	$0.0272(4)$	$0.0255(5)$	$0.0023(3)$	$0.0069(3)$	$-0.0002(3)$
N3A	$0.0344(5)$	$0.0289(4)$	$0.0269(5)$	$-0.0025(4)$	$0.0142(4)$	$0.0021(4)$
C1A	$0.0423(6)$	$0.0199(5)$	$0.0370(6)$	$0.0043(4)$	$0.0105(5)$	$0.0026(4)$
C2A	$0.0372(6)$	$0.0261(5)$	$0.0404(7)$	$-0.0106(4)$	$0.0122(5)$	$-0.0077(5)$
C3A	$0.0330(6)$	$0.0408(7)$	$0.0402(7)$	$-0.0073(5)$	$0.0030(5)$	$-0.0122(5)$
C4A	$0.0248(5)$	$0.0400(6)$	$0.0426(7)$	$-0.0012(5)$	$0.0059(5)$	$-0.0065(5)$
C5A	$0.0346(6)$	$0.0278(5)$	$0.0381(6)$	$0.0093(4)$	$0.0079(5)$	$-0.0004(4)$
C6A	$0.0269(5)$	$0.0287(5)$	$0.0246(5)$	$0.0001(4)$	$0.0080(4)$	$0.0015(4)$
Cr2B	$0.02030(11)$	$0.02070(11)$	$0.01588(12)$	$0.00103(7)$	$0.00471(8)$	$0.00120(7)$
S1B	$0.0606(2)$	$0.02721(15)$	$0.0445(2)$	$-0.01031(14)$	$0.01873(16)$	$0.00437(13)$
N1B	$0.0273(4)$	$0.0307(5)$	$0.0210(4)$	$-0.0015(3)$	$0.0011(3)$	$-0.0001(3)$
N2B	$0.0268(4)$	$0.0263(4)$	$0.0282(5)$	$0.0053(3)$	$0.0067(3)$	$-0.0006(3)$
N3B	$0.0345(5)$	$0.0326(5)$	$0.0276(5)$	$-0.0021(4)$	$0.0106(4)$	$0.0039(4)$
C1B	$0.0422(6)$	$0.0376(6)$	$0.0252(6)$	$-0.0019(5)$	$0.0058(5)$	$-0.0106(5)$
C2B	$0.0404(7)$	$0.0427(7)$	$0.0243(6)$	$0.0018(5)$	$-0.0070(5)$	$0.0040(5)$
C3B	$0.0340(6)$	$0.0483(8)$	$0.0407(7)$	$0.0109(6)$	$-0.0067(5)$	$0.0067(6)$
C4B	$0.0388(6)$	$0.0322(6)$	$0.0404(7)$	$0.0132(5)$	$0.0024(5)$	$0.0062(5)$
C5B	$0.0401(6)$	$0.0274(5)$	$0.0390(7)$	$0.0029(5)$	$0.0087(5)$	$-0.0086(5)$
C6B	$0.0292(5)$	$0.0258(5)$	$0.0244(5)$	$-0.0010(4)$	$0.0073(4)$	$-0.0035(4)$
Zn1C	$0.03449(11)$	$0.02582(10)$	$0.02644(11)$	0.000	$0.01061(7)$	0.000
C11C	$0.03853(15)$	$0.03419(15)$	$0.03262(15)$	$-0.00012(11)$	$0.01562(12)$	$-0.00580(10)$
C12C	$0.05010(19)$	$0.04102(17)$	$0.04059(19)$	$-0.01715(14)$	$0.01290(14)$	$-0.00567(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cr1A-N3A			
Cr1A—N3A	$1.9991(11)$	Cr2B-N1B	$2.0614(11)$
	$1.9991(11)$	Cr2B-N1B	$2.0614(11)$

Cr1A-N2A	2.0622 (11)
Cr1A-N2A ${ }^{\text {i }}$	2.0623 (11)
Cr1A-N1A ${ }^{\text {i }}$	2.0664 (10)
Cr1A-N1A	2.0665 (10)
S1A-C6A	1.6126 (12)
N1A-C2A	1.4861 (16)
N1A-C1A	1.4931 (16)
N1A-H1A	0.9800
N2A-C4A	1.4842 (16)
N2A-C5A	1.4921 (15)
N2A-H2A	0.9800
N3A-C6A	1.1591 (15)
C1A-C5A ${ }^{\text {i }}$	1.5106 (19)
C1A-H1A1	0.9700
C1A-H1A2	0.9700
C2A-C3A	1.521 (2)
C2A-H2A1	0.9700
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	0.9700
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	1.5186 (19)
C3A-H3A1	0.9700
C3A-H3A2	0.9700
C4A-H4A1	0.9700
C4A-H4A2	0.9700
C5A- $\mathrm{Cl}^{\text {A }}$	1.5107 (19)
C5A-H5A1	0.9700
C5A-H5A2	0.9700
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}^{\text {ii }}$	1.9911 (11)
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	1.9911 (11)
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	180.0
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	88.52 (4)
N3A-Cr1A-N2A	91.48 (4)
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	91.48 (5)
N3A-Cr1A-N2A ${ }^{\text {i }}$	88.52 (4)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\text {i }}$	180.0
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N}^{\text {d }}{ }^{\mathrm{i}}$	90.38 (4)
N3A-Cr1A-N1A ${ }^{\text {i }}$	89.62 (4)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}^{\text {i }}$	85.28 (4)
N2A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}$	94.72 (4)
N3A ${ }^{\text {i }}$ - Cr1A-N1A	89.62 (4)
N3A-Cr1A-N1A	90.38 (4)
N2A-Cr1A-N1A	94.72 (4)
N2A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	85.28 (4)
N1A ${ }^{\text {i }}$ Cr1A-N1A	180.0
C2A-N1A-C1A	113.14 (10)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}$	116.31 (7)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}$	105.85 (7)
C2A-N1A-H1A	107.0

2.0623 (11)
2.0664 (10)
2.0665 (10)
1.6126 (12)
1.4861 (16)
1.4931 (16)
0.9800
1.4842 (16)
1.4921 (15)
0.9800
1.1591 (15)
1.5106 (19)
0.9700
0.9700
1.521 (2)
0.9700
0.9700
1.5186 (19)
0.9700
0.9700
0.9700
0.9700
1.5107 (19)
0.9700
0.9700
1.9911 (11)
180.0
88.52 (4)
91.48 (4)
91.48 (5)
88.52 (4)
180.0
90.38 (4)
89.62 (4)
85.28 (4)
94.72 (4)
89.62 (4)
90.38 (4)
94.72 (4)
85.28 (4)
180.0
113.14 (10)
16.31 (7)
107.0

$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\mathrm{ii}}$	2.0700 (10)
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	2.0700 (10)
S1B-C6B	1.6056 (12)
N1B-C2B	1.4836 (16)
N1B-C1B	1.4861 (16)
N1B-H1B	0.9800
N2B-C4B	1.4838 (17)
N2B-C5B	1.4887 (17)
N2B-H2B	0.9800
N3B-C6B	1.1614 (16)
C1B-C5B ${ }^{\text {ii }}$	1.512 (2)
C1B-H1B1	0.9700
C1B-H1B2	0.9700
C2B-C3B	1.519 (2)
C2B-H2B1	0.9700
$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	0.9700
C3B-C4B	1.522 (2)
C3B-H3B1	0.9700
C3B-H3B2	0.9700
C4B-H4B1	0.9700
C4B-H4B2	0.9700
C5B-C1B ${ }^{\text {ii }}$	1.512 (2)
C5B-H5B1	0.9700
C5B-H5B2	0.9700
$\mathrm{Zn} 1 \mathrm{C}-\mathrm{Cl2C}^{\text {iii }}$	2.2632 (6)
$\mathrm{Zn} 1 \mathrm{C}-\mathrm{Cl2C}$	2.2632 (6)
$\mathrm{Zn} 1 \mathrm{C}-\mathrm{Cl1C}{ }^{\text {iii }}$	2.2919 (5)
Zn1C-Cl1C	2.2919 (5)
$\mathrm{N} 3 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	91.31 (5)
N3B-Cr2B-N1B	88.69 (5)
N1B ${ }^{\text {ii }}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	180.0
$\mathrm{N} 3 \mathrm{Bi}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\mathrm{ii}}$	89.75 (5)
$\mathrm{N} 3 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\mathrm{ii}}$	90.25 (5)
$\mathrm{N} 1 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\mathrm{ii}}$	94.26 (4)
$\mathrm{N} 1 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\text {ii }}$	85.74 (4)
$\mathrm{N} 3 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	90.25 (5)
$\mathrm{N} 3 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	89.75 (5)
$\mathrm{N} 1 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	85.74 (4)
$\mathrm{N} 1 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	94.26 (4)
$\mathrm{N} 2 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	180.0
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	113.21 (10)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}$	115.78 (8)
C1B-N1B-Cr2B	104.87 (7)
C2B-N1B-H1B	107.5
C1B-N1B-H1B	107.5
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	107.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	113.94 (10)

$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	107.0
Cr1A-N1A-H1A	107.0
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	113.86 (10)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}$	115.67 (8)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}$	106.39 (8)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	106.8
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	106.8
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	106.8
C6A-N3A-Cr1A	164.12 (10)
N1A-C1A-C5A ${ }^{\text {i }}$	108.06 (10)
N1A-C1A-H1A1	110.1
C5A - C1A-H1A1	110.1
N1A-C1A-H1A2	110.1
C5A - C1A-H1A2	110.1
H1A1-C1A-H1A2	108.4
N1A-C2A-C3A	112.57 (10)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	109.1
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	109.1
N1A-C2A-H2A2	109.1
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	109.1
$\mathrm{H} 2 \mathrm{~A} 1-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	107.8
C4A-C3A-C2A	115.59 (12)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	108.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	108.4
C4A-C3A-H3A2	108.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 2$	108.4
H3A1-C3A-H3A2	107.4
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	111.76 (10)
N2A-C4A-H4A1	109.3
C3A-C4A-H4A1	109.3
N2A-C4A-H4A2	109.3
C3A-C4A-H4A2	109.3
H4A1-C4A-H4A2	107.9
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C}^{\text {A }}{ }^{\text {i }}$	108.33 (10)
N2A-C5A-H5A1	110.0
C1A - C5A-H5A1	110.0
N2A-C5A-H5A2	110.0
C1A - C5A-H5A2	110.0
H5A1-C5A-H5A2	108.4
N3A-C6A-S1A	177.42 (12)
$\mathrm{N} 3 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	180.00 (5)
$\mathrm{N} 3 \mathrm{~B}{ }^{\text {ii }}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}^{\text {ii }}$	88.69 (5)
$\mathrm{N} 3 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}^{\text {ii }}$	91.31 (4)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}^{\mathrm{i}}$	171.46 (10)
Cr1A-N1A-C1A-C5A ${ }^{\text {i }}$	42.96 (11)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-176.86 (10)
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-53.99 (13)

$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}$	117.13 (8)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}$	105.60 (7)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	106.5
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	106.5
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	106.5
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{Cr} 2 \mathrm{~B}$	163.19 (10)
N1B-C1B-C5B ${ }^{\text {ii }}$	108.88 (10)
N1B-C1B-H1B1	109.9
C5Bii-C1B-H1B1	109.9
N1B-C1B-H1B2	109.9
C5B ${ }^{\text {iii }}$ - $\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 2$	109.9
$\mathrm{H} 1 \mathrm{~B} 1-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 2$	108.3
N1B-C2B-C3B	111.50 (11)
N1B-C2B-H2B1	109.3
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 1$	109.3
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.3
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.3
$\mathrm{H} 2 \mathrm{~B} 1-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	108.0
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	115.66 (12)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	108.4
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	108.4
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.4
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.4
H3B1-C3B-H3B2	107.4
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	111.82 (11)
N2B-C4B-H4B1	109.3
C3B-C4B-H4B1	109.3
N2B-C4B-H4B2	109.3
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	109.3
$\mathrm{H} 4 \mathrm{~B} 1-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	107.9
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\mathrm{ii}}$	107.44 (10)
N2B-C5B-H5B1	110.2
C1Bii-C5B-H5B1	110.2
N2B-C5B-H5B2	110.2
C1B ${ }^{\text {iii }}$ - 5 B- H 5 B 2	110.2
H5B1-C5B-H5B2	108.5
N3B-C6B-S1B	178.66 (12)
$\mathrm{Cl2C}{ }^{\text {iii- }} \mathrm{Zn} 1 \mathrm{C}-\mathrm{Cl2C}$	107.27 (3)
$\mathrm{Cl2C}{ }^{\text {iii }}-\mathrm{Zn1C}-\mathrm{Cl1C}^{\text {iii }}$	114.02 (2)
$\mathrm{Cl2C}-\mathrm{ZnlC}-\mathrm{Cl1C}^{\text {iii }}$	107.01 (2)
Cl2Ciii- $\mathrm{Zn} 1 \mathrm{C}-\mathrm{Cl1C}$	107.01 (2)
$\mathrm{Cl2C-Zn1C-Cl1C}$	114.02 (2)
Cl1Ciii-Zn1C-Cl1C	107.71 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}^{\mathrm{ii}}$	170.70 (11)
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}^{\text {ii }}$	43.59 (12)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-178.93 (11)
$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-57.79 (14)

$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$69.83(15)$	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$72.48(16)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-179.00(11)$	$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$177.65(11)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$57.31(14)$	$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$53.73(14)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$-71.67(16)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$-69.85(17)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}^{\mathrm{i}}$	$-169.58(11)$	$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\mathrm{ii}}$	$-172.02(11)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-{\mathrm{C} 1 A^{\mathrm{i}}}$	$-40.99(11)$	$\mathrm{Cr} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\mathrm{ii}}$	$-42.08(11)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z+2$; (iii) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 A — \mathrm{H} 1 A \cdots \mathrm{Cl} 2 C^{\mathrm{iv}}$	0.98	2.66	$3.4510(12)$	138
$\mathrm{~N} 2 A — \mathrm{H} 2 A \cdots \mathrm{~S} 1 A^{\mathrm{v}}$	0.98	2.60	$3.4884(13)$	151
$\mathrm{~N} 1 B — \mathrm{H} 1 B \cdots \mathrm{Cl1} C^{\mathrm{iv}}$	0.98	2.58	$3.4120(12)$	143
$\mathrm{~N} 2 B — \mathrm{H} 2 B \cdots \mathrm{Cl1C} C^{\mathrm{ii}}$	0.98	2.57	$3.3944(13)$	142

Symmetry codes: (ii) $-x+1,-y+1,-z+2$; (iv) $x-1, y, z$; (v) $x,-y, z+1 / 2$.

