research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[bis­­(μ-nicotinamide-κ2N1:O)bis­­(μ-4-nitro­benzoato-κ2O1:O1′)zinc]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cAksaray University, Department of Physics, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 March 2015; accepted 31 March 2015; online 11 April 2015)

The asymmetric unit of the title coordination polymer, [Zn(C7H4NO4)2(C6H6N2O)2]n, contains two 4-nitro­benzoate (NB) anions and two nicotinamide (NA) ligands. The ZnII atom has a slightly distorted octa­hedral coordination sphere. In the equatorial plane, it is coordinated by three carboxyl­ate O atoms of the NB anions and one O atom of one of the two NA ligands. The axial positions are occupied by the pyridine N atoms of the two NA ligands. In the two NB anions, the carboxyl­ate groups are twisted away from the attached benzene rings by 13.8 (2) and 13.4 (2)°, while the benzene rings are oriented at a dihedral angle of 11.5 (2)°. The dihedral angle between the NA rings is 10.3 (1)°. Only one of the two NB anions and one of the two NA ligands bridge adjacent ZnII ions through eight- and twelve-membered rings, respectively, forming polymeric chains running along the a-axis direction. In the crystal, N—H ⋯ O hydrogen bonds link adjacent chains, enclosing R(16), R22(20) and R66(16) ring motifs, forming layers parallel to (01-1). The layers are linked via a number of C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). Trans­ition metal complexes with biochemical mol­ecules show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid deriv­atives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title polymeric compound contains two 4-nitro­benzoate (NB) anions and two nicotinamide (NA) ligands; the NB anions act as monodentate ligands (Fig. 1[link]). Only one of the two NB anions and one of the two NA ligands bridge the adjacent ZnII ions through eight- and twelve-membered rings, respectively, forming polymeric chains running along the a-axis direction (Fig. 2[link]). In the eight- and twelve-membered rings, the distances between the symmetry related ions [Zn1⋯Zn1a, N5⋯N5a, O10⋯O10a, and Zn1⋯Zn1b, O5⋯O5b, O6⋯O6b are 7.3237 (6), 5.855 (4), 4.480 (3) Å and 4.67 (6), 3.668 (4), 4.256 (4) Å, respectively [symmetry codes (a) = −x + 1, − y, −z; (b) − x + 2, −y, − z]; see Fig. 3[link].

[Figure 1]
Figure 1
The asymmetric unit of the title mol­ecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (a) −x + 1, −y, −z; (b) −x + 2, −y, −z].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Part of the crystal packing of the title compound, showing the eight- and twelve-membered rings [symmetry codes (a) −x + 1, −y, −z; (b) −x + 2, −y, −z]. H atoms have been omitted for clarity.

The three carboxyl­ate O atoms (O2, O5 and O6) of the three NB anions and one O atom (O10) of one of the two NA ligands in the equatorial plane around the ZnII cation form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms (N3 and N5) of the two NA ligands in the axial positions (Table 1[link] and Fig. 3[link]).

Table 1
Selected bond lengths (Å)

Zn1—O2 2.140 (2) Zn1—O10ii 2.280 (2)
Zn1—O5i 2.142 (2) Zn1—N3 2.288 (3)
Zn1—O6 2.160 (2) Zn1—N5 2.282 (3)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z.

The near equality of the C1—O1 [1.247 (4) Å], C1—O2 [1.261 (4) Å], C8—O5 [1.248 (4) Å] and C8—O6 [1.255 (4) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Zn—Ocarboxyl­ate and Zn—N distances are 2.147 (2) Å and 2.285 (3) Å, respectively, while Zn1—O10 distance is 2.280 (2) Å. The Zn1 atom lies 1.4330 (4) Å and 0.1897 (4) Å above the planar (O1/O2/C1) and (O5/O6/C8) carboxyl­ate groups, respectively. The average O—Zn—O and O—Zn—N bond angles are 89.93 (10) and 89.99 (10)°, respectively.

The dihedral angles between the planar carboxyl­ate groups [(O1/O2/C1) and (O5/O6/C8)] and the adjacent benzene rings [A (C2—C7) and B (C9—C14)] are 13.8 (2) and 13.4 (2)°, respectively, while the benzene rings are oriented at a dihedral angle of 11.5 (2)°. The dihedral angle between the nicotin­amide rings [C (N3/C15—C19) and D (N5/C21—C25)] is 10.3 (1)°, and they are oriented with respect to benzene rings A and B at dihedral angles of A/C = 17.3 (1), A/D = 7.7 (1), B/C = 28.8 (1) and B/D = 18.9 (1)°.

3. Supra­molecular features

In the crystal, strong N—H⋯Oc (c = carboxylate) and N—H⋯On (n = nicotinamide) hydrogen bonds (Table 2[link]) link adjacent chains through R(16), R22(20) and R66(16) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) into layers parallel to (01[\overline{1}]) (Fig. 4[link]). Weak intra­molecular C—Hn⋯Oc and inter­mol­ec­ular C—Hn⋯Onb (nb = nitro­benzoate) and C—Hn⋯On hydrogen bonds (Table 1[link]) link the layers into a three-dimensional framework.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1i 0.86 2.20 2.851 (4) 132
N6—H6A⋯O1ii 0.86 1.98 2.814 (4) 164
N6—H6B⋯O9iii 0.86 2.09 2.880 (4) 153
C15—H15⋯O6 0.93 2.45 3.079 (4) 125
C19—H19⋯O3iv 0.93 2.57 3.238 (7) 130
C21—H21⋯O10ii 0.93 2.38 3.058 (4) 130
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z; (iv) x-1, y-1, z.
[Figure 4]
Figure 4
Part of the crystal packing of the title compound with the N—H⋯O hydrogen bonds shown as dashed lines (see Table 1[link] for details; other H atoms have been omitted for clarity).

4. Synthesis and crystallization

The title compound was prepared by the reaction of ZnSO4·H2O (0.89 g, 5 mmol) in H2O (25 ml) and nicotinamide (1.22 g, 10 mmol) in H2O (25 ml) with sodium 4-nitro­benzoate (1.90 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving yellow block-like crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). The highest residual electron density and the deepest hole were found 0.29 Å and 0.48 Å from atoms N6 and Zn1, respectively.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C6H6N2O)2(C7H4NO4)2]
Mr 641.87
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.5118 (3), 10.5591 (3), 14.5326 (5)
α, β, γ (°) 109.846 (4), 93.618 (3), 104.815 (4)
V3) 1309.11 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.01
Crystal size (mm) 0.50 × 0.37 × 0.33
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.635, 0.705
No. of measured, independent and observed [I > 2σ(I)] reflections 34333, 6520, 5816
Rint 0.023
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.238, 1.09
No. of reflections 6520
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.29, −0.60
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Poly[bis(µ-nicotinamide-κ2N1:O)bis(µ-4-nitrobenzoato-κ2O1:O1')zinc] top
Crystal data top
[Zn(C6H6N2O)2(C7H4NO4)2]Z = 2
Mr = 641.87F(000) = 656
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5118 (3) ÅCell parameters from 9922 reflections
b = 10.5591 (3) Åθ = 2.5–28.4°
c = 14.5326 (5) ŵ = 1.01 mm1
α = 109.846 (4)°T = 296 K
β = 93.618 (3)°Block, yellow
γ = 104.815 (4)°0.50 × 0.37 × 0.33 mm
V = 1309.11 (9) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
6520 independent reflections
Radiation source: fine-focus sealed tube5816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1212
Tmin = 0.635, Tmax = 0.705k = 1314
34333 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.149P)2 + 3.1586P]
where P = (Fo2 + 2Fc2)/3
6520 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.88909 (4)0.14132 (4)0.11465 (3)0.02880 (19)
O10.8671 (3)0.4391 (3)0.3500 (2)0.0410 (8)
O20.9117 (3)0.3588 (3)0.19518 (19)0.0266 (5)
O31.5920 (5)0.8555 (6)0.3452 (4)0.0923 (19)
O41.5777 (4)0.8861 (4)0.4965 (3)0.0560 (10)
O51.1523 (3)0.0826 (2)0.05180 (18)0.0230 (5)
O61.1170 (3)0.2086 (3)0.09758 (19)0.0266 (5)
O71.8536 (4)0.5337 (5)0.0411 (4)0.0741 (14)
O81.8302 (4)0.6372 (4)0.1922 (4)0.0651 (12)
O91.4003 (3)0.3463 (3)0.3975 (2)0.0315 (6)
O100.3467 (2)0.0828 (3)0.14454 (17)0.0235 (5)
N11.5271 (4)0.8314 (4)0.4092 (3)0.0437 (9)
N21.7850 (4)0.5475 (4)0.1102 (4)0.0464 (10)
N30.9685 (3)0.1292 (3)0.2625 (2)0.0209 (5)
N41.3297 (3)0.4235 (4)0.5466 (2)0.0301 (7)
H4A1.41520.48300.57330.036*
H4B1.26050.41710.58160.036*
N50.7923 (3)0.1216 (3)0.0391 (2)0.0192 (5)
N60.3979 (3)0.2171 (3)0.2888 (2)0.0257 (6)
H6A0.30900.27220.30760.031*
H6B0.46330.23150.32630.031*
C10.9464 (4)0.4401 (3)0.2850 (3)0.0231 (6)
C21.0981 (4)0.5454 (3)0.3168 (2)0.0212 (6)
C31.1568 (4)0.6153 (4)0.4178 (3)0.0337 (8)
H31.10080.59810.46480.040*
C41.2969 (5)0.7097 (5)0.4486 (3)0.0377 (9)
H41.33560.75660.51570.045*
C51.3777 (4)0.7324 (4)0.3772 (3)0.0295 (8)
C61.3225 (4)0.6662 (5)0.2774 (3)0.0351 (8)
H61.37860.68510.23090.042*
C71.1821 (4)0.5709 (4)0.2470 (3)0.0298 (8)
H71.14440.52410.17980.036*
C81.1944 (3)0.1804 (3)0.0309 (2)0.0161 (5)
C91.3506 (3)0.2755 (3)0.0529 (2)0.0170 (6)
C101.4151 (4)0.3680 (4)0.1489 (3)0.0291 (7)
H101.36130.37070.20040.035*
C111.5580 (4)0.4561 (5)0.1691 (3)0.0359 (9)
H111.60080.51760.23330.043*
C121.6357 (4)0.4502 (4)0.0910 (3)0.0300 (8)
C131.5764 (4)0.3579 (4)0.0052 (3)0.0334 (8)
H131.63140.35470.05620.040*
C141.4334 (4)0.2706 (4)0.0237 (3)0.0269 (7)
H141.39190.20790.08790.032*
C151.1025 (3)0.2154 (3)0.3102 (2)0.0198 (6)
H151.16370.25970.27580.024*
C161.1542 (3)0.2416 (3)0.4080 (2)0.0188 (6)
C171.0644 (4)0.1754 (4)0.4601 (3)0.0308 (8)
H171.09460.19350.52660.037*
C180.9282 (4)0.0815 (5)0.4100 (3)0.0363 (9)
H180.86710.03190.44170.044*
C190.8841 (4)0.0623 (4)0.3123 (3)0.0275 (7)
H190.79200.00020.27990.033*
C201.3046 (3)0.3414 (3)0.4512 (2)0.0203 (6)
C210.6540 (3)0.0355 (3)0.0750 (2)0.0176 (6)
H210.59760.00970.03070.021*
C220.5908 (3)0.0170 (3)0.1739 (2)0.0154 (5)
C230.6756 (4)0.0196 (4)0.2406 (3)0.0247 (7)
H230.63860.01700.30810.030*
C240.8167 (4)0.1120 (4)0.2041 (3)0.0299 (8)
H240.87460.14110.24660.036*
C250.8706 (3)0.1609 (4)0.1032 (3)0.0241 (7)
H250.96510.22340.07940.029*
C260.4345 (3)0.1097 (3)0.2019 (2)0.0156 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0193 (3)0.0303 (3)0.0256 (3)0.00170 (18)0.00168 (17)0.00104 (19)
O10.0224 (13)0.0400 (16)0.0361 (16)0.0070 (11)0.0135 (11)0.0058 (12)
O20.0249 (12)0.0188 (11)0.0245 (12)0.0026 (9)0.0005 (9)0.0028 (9)
O30.045 (2)0.110 (4)0.081 (3)0.040 (3)0.011 (2)0.031 (3)
O40.0332 (17)0.050 (2)0.062 (2)0.0093 (15)0.0172 (16)0.0128 (18)
O50.0187 (11)0.0177 (11)0.0223 (11)0.0009 (9)0.0003 (9)0.0014 (9)
O60.0118 (11)0.0315 (13)0.0234 (12)0.0019 (9)0.0054 (9)0.0002 (10)
O70.0295 (18)0.081 (3)0.101 (4)0.0137 (18)0.022 (2)0.040 (3)
O80.0286 (17)0.046 (2)0.096 (3)0.0137 (15)0.0084 (19)0.018 (2)
O90.0135 (11)0.0370 (14)0.0249 (12)0.0004 (10)0.0065 (9)0.0068 (10)
O100.0099 (10)0.0289 (12)0.0188 (11)0.0011 (9)0.0031 (8)0.0038 (9)
N10.0233 (16)0.0369 (19)0.059 (2)0.0085 (14)0.0031 (16)0.0177 (18)
N20.0146 (15)0.040 (2)0.085 (3)0.0043 (14)0.0024 (17)0.033 (2)
N30.0121 (12)0.0215 (13)0.0204 (13)0.0026 (10)0.0018 (9)0.0036 (10)
N40.0171 (13)0.0356 (17)0.0186 (14)0.0027 (12)0.0024 (10)0.0055 (12)
N50.0084 (11)0.0199 (12)0.0218 (13)0.0016 (9)0.0011 (9)0.0034 (10)
N60.0143 (12)0.0277 (15)0.0193 (13)0.0015 (10)0.0047 (10)0.0054 (11)
C10.0163 (14)0.0167 (14)0.0266 (16)0.0015 (11)0.0037 (12)0.0015 (12)
C20.0168 (14)0.0168 (14)0.0223 (15)0.0006 (11)0.0027 (11)0.0012 (11)
C30.0270 (18)0.038 (2)0.0215 (16)0.0058 (15)0.0042 (13)0.0036 (15)
C40.030 (2)0.041 (2)0.0248 (18)0.0070 (17)0.0043 (15)0.0061 (16)
C50.0173 (15)0.0241 (17)0.039 (2)0.0046 (13)0.0007 (14)0.0107 (15)
C60.0282 (19)0.037 (2)0.034 (2)0.0034 (15)0.0099 (15)0.0140 (16)
C70.0275 (18)0.0305 (18)0.0213 (16)0.0030 (14)0.0043 (13)0.0055 (14)
C80.0091 (12)0.0141 (13)0.0211 (14)0.0007 (10)0.0018 (10)0.0037 (11)
C90.0098 (12)0.0141 (13)0.0237 (15)0.0011 (10)0.0036 (11)0.0044 (11)
C100.0178 (15)0.0339 (19)0.0231 (16)0.0056 (13)0.0014 (12)0.0052 (14)
C110.0220 (17)0.037 (2)0.0325 (19)0.0087 (15)0.0044 (14)0.0066 (16)
C120.0115 (14)0.0246 (17)0.053 (2)0.0024 (12)0.0013 (14)0.0205 (16)
C130.0211 (17)0.036 (2)0.047 (2)0.0062 (15)0.0187 (16)0.0191 (18)
C140.0214 (16)0.0251 (16)0.0289 (17)0.0023 (13)0.0110 (13)0.0056 (13)
C150.0125 (13)0.0224 (15)0.0176 (14)0.0010 (11)0.0008 (10)0.0035 (11)
C160.0115 (13)0.0202 (14)0.0176 (14)0.0003 (11)0.0003 (10)0.0020 (11)
C170.0218 (16)0.041 (2)0.0258 (17)0.0033 (15)0.0018 (13)0.0171 (16)
C180.0227 (17)0.045 (2)0.037 (2)0.0087 (16)0.0014 (15)0.0245 (18)
C190.0145 (14)0.0291 (17)0.0321 (18)0.0062 (12)0.0023 (12)0.0133 (14)
C200.0119 (13)0.0220 (15)0.0178 (14)0.0015 (11)0.0009 (10)0.0009 (12)
C210.0087 (12)0.0214 (14)0.0163 (13)0.0003 (10)0.0006 (10)0.0028 (11)
C220.0083 (12)0.0182 (13)0.0172 (13)0.0027 (10)0.0024 (10)0.0041 (11)
C230.0169 (15)0.0356 (18)0.0205 (15)0.0023 (13)0.0042 (12)0.0129 (14)
C240.0168 (15)0.041 (2)0.0340 (19)0.0005 (14)0.0056 (13)0.0225 (16)
C250.0106 (13)0.0252 (16)0.0347 (18)0.0020 (11)0.0005 (12)0.0150 (14)
C260.0085 (12)0.0188 (13)0.0142 (12)0.0013 (10)0.0008 (9)0.0019 (11)
Geometric parameters (Å, º) top
Zn1—O22.140 (2)C5—C61.377 (6)
Zn1—O5i2.142 (2)C6—H60.9300
Zn1—O62.160 (2)C7—C61.389 (5)
Zn1—O10ii2.280 (2)C7—H70.9300
Zn1—N32.288 (3)C8—C91.509 (4)
Zn1—N52.282 (3)C9—C101.392 (5)
O1—C11.247 (4)C9—C141.399 (4)
O2—C11.261 (4)C10—C111.385 (5)
O4—N11.208 (6)C10—H100.9300
O5—Zn1i2.142 (2)C11—H110.9300
O5—C81.248 (4)C12—C111.384 (6)
O6—C81.255 (4)C13—C121.384 (6)
O9—C201.239 (4)C13—C141.384 (5)
O10—Zn1ii2.280 (2)C13—H130.9300
N1—O31.210 (6)C14—H140.9300
N2—O71.220 (7)C15—C161.383 (4)
N2—O81.210 (7)C15—H150.9300
N2—C121.469 (4)C16—C171.388 (5)
N3—C151.342 (4)C16—C201.489 (4)
N3—C191.341 (4)C17—H170.9300
N4—H4A0.8600C18—C171.388 (5)
N4—H4B0.8600C18—H180.9300
N5—C211.345 (4)C19—C181.384 (5)
N5—C251.337 (4)C19—H190.9300
N6—C261.332 (4)C20—N41.329 (4)
N6—H6A0.8600C21—H210.9300
N6—H6B0.8600C22—C211.384 (4)
C1—C21.510 (4)C22—C231.391 (4)
C2—C31.401 (5)C23—C241.387 (5)
C2—C71.384 (5)C23—H230.9300
C3—C41.383 (5)C24—H240.9300
C3—H30.9300C25—C241.391 (5)
C4—H40.9300C25—H250.9300
C5—N11.468 (5)C26—O101.233 (4)
C5—C41.379 (6)C26—C221.497 (4)
O2—Zn1—O5i170.95 (10)O5—C8—O6125.6 (3)
O2—Zn1—O686.90 (10)O5—C8—C9117.8 (3)
O2—Zn1—O10ii89.70 (10)O6—C8—C9116.6 (3)
O2—Zn1—N387.21 (10)C10—C9—C8121.1 (3)
O2—Zn1—N599.61 (10)C10—C9—C14119.0 (3)
O5i—Zn1—O699.77 (10)C14—C9—C8119.9 (3)
O5i—Zn1—O10ii83.34 (9)C9—C10—H10119.4
O5i—Zn1—N386.87 (10)C11—C10—C9121.1 (3)
O5i—Zn1—N585.89 (10)C11—C10—H10119.4
O6—Zn1—O10ii175.66 (8)C10—C11—H11120.9
O6—Zn1—N388.43 (10)C12—C11—C10118.3 (4)
O6—Zn1—N595.75 (10)C12—C11—H11120.9
O10ii—Zn1—N388.71 (9)C11—C12—N2119.1 (4)
O10ii—Zn1—N587.48 (9)C13—C12—N2118.6 (4)
N5—Zn1—N3172.16 (10)C13—C12—C11122.3 (3)
C1—O2—Zn1135.7 (2)C12—C13—H13120.7
C8—O5—Zn1i138.9 (2)C14—C13—C12118.5 (3)
C8—O6—Zn1137.8 (2)C14—C13—H13120.7
C26—O10—Zn1ii147.3 (2)C9—C14—H14119.6
O3—N1—C5117.1 (4)C13—C14—C9120.8 (3)
O4—N1—O3123.5 (4)C13—C14—H14119.6
O4—N1—C5119.3 (4)N3—C15—C16123.3 (3)
O7—N2—C12117.3 (4)N3—C15—H15118.3
O8—N2—O7124.5 (4)C16—C15—H15118.3
O8—N2—C12118.2 (4)C15—C16—C17119.0 (3)
C15—N3—Zn1116.4 (2)C15—C16—C20117.1 (3)
C19—N3—Zn1125.3 (2)C17—C16—C20123.9 (3)
C19—N3—C15117.4 (3)C16—C17—H17121.0
C20—N4—H4A120.0C18—C17—C16118.0 (3)
C20—N4—H4B120.0C18—C17—H17121.0
H4A—N4—H4B120.0C17—C18—H18120.3
C21—N5—Zn1115.9 (2)C19—C18—C17119.3 (3)
C25—N5—Zn1124.9 (2)C19—C18—H18120.3
C25—N5—C21117.3 (3)N3—C19—C18122.9 (3)
C26—N6—H6A120.0N3—C19—H19118.5
C26—N6—H6B120.0C18—C19—H19118.5
H6A—N6—H6B120.0O9—C20—N4122.6 (3)
O1—C1—O2125.5 (3)O9—C20—C16119.4 (3)
O1—C1—C2117.3 (3)N4—C20—C16118.0 (3)
O2—C1—C2117.1 (3)N5—C21—C22123.9 (3)
C3—C2—C1119.9 (3)N5—C21—H21118.0
C7—C2—C1120.6 (3)C22—C21—H21118.0
C7—C2—C3119.4 (3)C21—C22—C23118.2 (3)
C2—C3—H3119.5C21—C22—C26117.5 (3)
C4—C3—C2120.9 (3)C23—C22—C26124.3 (3)
C4—C3—H3119.5C22—C23—H23120.8
C3—C4—H4120.9C24—C23—C22118.4 (3)
C5—C4—C3118.2 (4)C24—C23—H23120.8
C5—C4—H4120.9C23—C24—C25119.4 (3)
C6—C5—C4122.2 (3)C23—C24—H24120.3
C6—C5—N1119.2 (4)C25—C24—H24120.3
C4—C5—N1118.7 (4)N5—C25—C24122.7 (3)
C5—C6—C7119.3 (3)N5—C25—H25118.7
C5—C6—H6120.4C24—C25—H25118.7
C7—C6—H6120.4O10—C26—N6123.5 (3)
C2—C7—C6120.0 (3)O10—C26—C22119.1 (3)
C2—C7—H7120.0N6—C26—C22117.4 (3)
C6—C7—H7120.0
O6—Zn1—O2—C191.7 (3)C1—C2—C7—C6178.9 (4)
O10ii—Zn1—O2—C185.6 (3)C3—C2—C7—C60.7 (6)
N3—Zn1—O2—C13.1 (3)C2—C3—C4—C50.4 (7)
N5—Zn1—O2—C1173.0 (3)C4—C5—N1—O3175.7 (5)
O2—Zn1—O6—C8138.6 (4)C4—C5—N1—O42.9 (6)
O5i—Zn1—O6—C847.6 (4)C6—C5—N1—O33.8 (7)
N3—Zn1—O6—C8134.1 (4)C6—C5—N1—O4177.6 (4)
N5—Zn1—O6—C839.2 (4)N1—C5—C4—C3179.4 (4)
O2—Zn1—N3—C1559.4 (2)C6—C5—C4—C31.0 (7)
O2—Zn1—N3—C19108.8 (3)N1—C5—C6—C7179.0 (4)
O5i—Zn1—N3—C15127.5 (2)C4—C5—C6—C71.5 (7)
O5i—Zn1—N3—C1964.4 (3)C2—C7—C6—C51.3 (6)
O6—Zn1—N3—C1527.6 (2)O5—C8—C9—C10167.0 (3)
O6—Zn1—N3—C19164.2 (3)O5—C8—C9—C1412.4 (4)
O10ii—Zn1—N3—C15149.2 (2)O6—C8—C9—C1014.2 (5)
O10ii—Zn1—N3—C1919.0 (3)O6—C8—C9—C14166.4 (3)
O2—Zn1—N5—C21115.0 (2)C8—C9—C10—C11179.5 (4)
O2—Zn1—N5—C2581.2 (3)C14—C9—C10—C111.1 (6)
O5i—Zn1—N5—C2157.8 (2)C8—C9—C14—C13179.4 (3)
O5i—Zn1—N5—C25106.0 (3)C10—C9—C14—C131.2 (5)
O6—Zn1—N5—C21157.2 (2)C9—C10—C11—C120.1 (6)
O6—Zn1—N5—C256.6 (3)N2—C12—C11—C10177.2 (4)
O10ii—Zn1—N5—C2125.7 (2)C13—C12—C11—C101.3 (6)
O10ii—Zn1—N5—C25170.5 (3)C14—C13—C12—N2177.2 (4)
Zn1—O2—C1—O173.4 (5)C14—C13—C12—C111.2 (6)
Zn1—O2—C1—C2105.2 (4)C12—C13—C14—C90.1 (6)
Zn1i—O5—C8—O677.3 (4)N3—C15—C16—C170.4 (5)
Zn1i—O5—C8—C9104.0 (3)N3—C15—C16—C20179.1 (3)
Zn1—O6—C8—O57.5 (6)C15—C16—C17—C182.4 (6)
Zn1—O6—C8—C9171.2 (2)C20—C16—C17—C18178.1 (4)
O7—N2—C12—C11175.7 (5)C15—C16—C20—O933.3 (5)
O7—N2—C12—C135.9 (6)C15—C16—C20—N4145.8 (3)
O8—N2—C12—C115.8 (6)C17—C16—C20—O9147.2 (4)
O8—N2—C12—C13172.6 (4)C17—C16—C20—N433.7 (5)
Zn1—N3—C15—C16166.7 (3)C19—C18—C17—C163.0 (7)
C19—N3—C15—C162.4 (5)N3—C19—C18—C171.0 (7)
C15—N3—C19—C181.7 (6)C23—C22—C21—N50.9 (5)
Zn1—N3—C19—C18166.4 (3)C26—C22—C21—N5178.9 (3)
Zn1—N5—C21—C22163.3 (2)C21—C22—C23—C243.0 (5)
C25—N5—C21—C221.8 (5)C26—C22—C23—C24176.8 (3)
Zn1—N5—C25—C24161.1 (3)C22—C23—C24—C252.3 (6)
C21—N5—C25—C242.6 (5)N5—C25—C24—C230.5 (6)
O1—C1—C2—C313.6 (5)N6—C26—O10—Zn1ii1.0 (7)
O1—C1—C2—C7168.2 (4)C22—C26—O10—Zn1ii178.5 (3)
O2—C1—C2—C3165.0 (4)O10—C26—C22—C2136.8 (4)
O2—C1—C2—C713.1 (5)O10—C26—C22—C23142.9 (3)
C1—C2—C3—C4178.5 (4)N6—C26—C22—C21143.6 (3)
C7—C2—C3—C40.3 (6)N6—C26—C22—C2336.6 (5)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1iii0.862.202.851 (4)132
N6—H6A···O1ii0.861.982.814 (4)164
N6—H6B···O9i0.862.092.880 (4)153
C15—H15···O60.932.453.079 (4)125
C19—H19···O3iv0.932.573.238 (7)130
C21—H21···O10ii0.932.383.058 (4)130
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x1, y1, z.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds