

Z = 8

Cu K α radiation

 $0.16 \times 0.05 \times 0.02 \text{ mm}$

10293 measured reflections

3770 independent reflections

3559 reflections with $I > 2\sigma(I)$

-3

Flack (1983),

parameter:

 $\mu = 15.83 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.033$

OPEN d ACCESS

Crystal structure of (E)-1-(4-tert-butylphenyl)-2-(4-iodophenyl)ethene

Zhiwei Chen^a and Graeme J. Moxey^{a,b}*

^aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China, and ^bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. *Correspondence e-mail: Graeme.Moxey@anu.edu.au

Received 1 April 2015; accepted 10 April 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, $C_{18}H_{19}I$, crystallized with two independent molecules (A and B) in the asymmetric unit. Both molecules have an *E* conformation about the bridging C = Cbond. They differ in the orientation of the two benzene rings; the dihedral angle being $12.3 (5)^{\circ}$ in molecule A, but only $1.0~(6)^{\circ}$ in molecule B. In the crystal, the individual molecules are linked by $C-I \cdots \pi$ interactions forming zigzag A and zigzag B chains propagating along [001]. The structure was refined as an inversion twin [Flack parameter = 0.48 (2)].

Keywords: crystal structure; stilbene; iodoarene; C—I··· π interactions.

CCDC reference: 1053466

1. Related literature

For the syntheses of arylalkynes by Sonogashira crosscoupling of iodoarenes, see: Takahashi et al. (1980). For desilylation of the resultant trialkylsilylethynylarenes and the use of ethynylarenes in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Marras et al. (2006); Mariaca et al. (2009).

2. Experimental 2.1. Crystal data C18H19I

 $M_r = 362.23$

Orthorhombic, Pca21 a = 32.5385 (9) Å b = 6.10513 (15) Åc = 15.8615(3) Å $V = 3150.91 (14) \text{ Å}^3$

2.2. Data collection

Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer Absorption correction: analytical (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.854, \ T_{\max} = 0.966$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	$\Delta \rho_{\rm max} = 2.09 \ {\rm e} \ {\rm \AA}^-$
$wR(F^2) = 0.133$	$\Delta \rho_{\min} = -1.31 \text{ e Å}$
S = 1.04	Absolute structure
3770 reflections	570 Friedel pairs
350 parameters	Absolute structure
67 restraints	0.48 (2)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of the C9-C14 and C27-C32 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - I1 \cdots Cg2^{i}$ $C19 - I2 \cdots Cg4^{ii}$	2.09 (1) 2.10 (1)	3.63 (1) 3.57 (1)	5.676 (10) 5.526 (11)	166 (1) 154 (1)
Summatry and as (i)	x 1	$1: (3) \times 13$	1 - 1	

Symmetry codes: (i) -x + 1, -y, $z - \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, y - 1, $z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase the Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5108).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107-2118.
- Mariaca, R., Labat, G., Behrnd, N.-R., Bonin, M., Helbling, F., Eggli, P., Couderc, G., Neels, A., Stoeckli-Evans, H. & Hulliger, J. (2009). J. Fluor. Chem. 130, 175-196.

- Marras, G., Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Vij, A. (2006). New J. Chem. 30, 1397–1402.
- McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402-1413.
- McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem., 523, 33–40.
- McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem., **519**, 229–235.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2005). Acta Cryst. **C71**, 3–8. Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). *Synthesis*, 627-630.

supporting information

Acta Cryst. (2015). E71, o309–o310 [https://doi.org/10.1107/S2056989015007185]

Crystal structure of (E)-1-(4-tert-butylphenyl)-2-(4-iodophenyl)ethene

Zhiwei Chen and Graeme J. Moxey

S1. Synthesis and crystallization

(*E*)-1-(4-*tert*-butylphenyl)-2-(4-bromophenyl)ethene (1.00 g, 3.17 mmol) was dissolved in distilled THF (40 mL) and cooled to 195 K (liquid nitrogen bath) under N₂ for 30 min. BuLi (2.97 mL, 1.6 M, 4.76 mmol) was added and the mixture was stirred for 2 h. A solution of I₂ (1.20 g, 4.76 mmol) in THF (20 mL) was then added and the reaction was allowed to warm to room temperature. A saturated solution of sodium thiosulfate (10 mL) and water (20 mL) were then added and the mixture stirred until clear. The mixture was then extracted with CH₂Cl₂, stirred over anhydrous MgSO₄, filtered and taken to dryness to yield the title compound as a yellow solid. The solid was extracted with a small amount of CH₂Cl₂ and the extract was passed through a pad of silica with petrol as eluent. The eluate was reduced in volume, affording the title compound as a white solid (yield: 1.0 g, 87%). The numbering scheme of the title compound for the NMR assignments is given in Fig. 3. ¹H-NMR (400 MHz, CDCl₃): δ 7.66 (d, *J*_{HH} = 8 Hz, 2H, H₇), 7.44 (d, *J*_{HH} = 8 Hz, 2H, H₃), 7.38 (d, *J*_{HH} = 8 Hz, 2H, H₂), 7.23 (d, *J*_{HH} = 8 Hz, 2H, H₆), 7.09 (d, *J*_{HH} = 16 Hz, 1H, H₄), 6.97 (d, *J*_{HH} = 16 Hz, 1H, H₅), 1.33 (s, 9H, H₁). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in hexane.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized below. The H atoms were included in calculated positions and treated as riding: C—H = 0.93 - 0.96 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. The structure was refined as an inversion twin: Flack parameter = 0.48 (2). Rigid bond restraints (RIGU) were applied to atoms C15, C16, C17, C18, C22, C25, C26, C27, C28, C32, C33, C34, C35, C36.

Figure 1

Molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

A view along the *b* axis of the crystal packing of the title compound. The C—I $\cdots \pi$ interactions are represented as dashed lines (see Table 1 for details; molecule *A* blue, molecule *B* red).

Figure 3

Atom numbering scheme of the title compound for ¹H NMR assignments.

(E)-1-(4-tert-Butylphenyl)-2-(4-iodophenyl)ethene

Crystal data

C₁₈H₁₉I $M_r = 362.23$ Orthorhombic, *Pca2*₁ a = 32.5385 (9) Å b = 6.10513 (15) Å c = 15.8615 (3) Å V = 3150.91 (14) Å³ Z = 8F(000) = 1440

Data collection

Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 8.1297 pixels mm⁻¹ ω scans Absorption correction: analytical (*CrysAlis PRO*; Agilent, 2014)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.133$ S = 1.043770 reflections 350 parameters 67 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_{\rm x} = 1.527 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4062 reflections $\theta = 2.7-71.7^{\circ}$ $\mu = 15.83 \text{ mm}^{-1}$ T = 150 KNeedle, colourless $0.16 \times 0.05 \times 0.02 \text{ mm}$

 $T_{\min} = 0.854, T_{\max} = 0.966$ 10293 measured reflections 3570 independent reflections 3559 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{\max} = 72.3^{\circ}, \theta_{\min} = 3.9^{\circ}$ $h = -36 \rightarrow 40$ $k = -7 \rightarrow 7$ $l = -7 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0776P)^2 + 7.7934P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.09$ e Å⁻³ $\Delta\rho_{min} = -1.31$ e Å⁻³ Absolute structure: Flack (1983), 570 Friedel pairs Absolute structure parameter: 0.48 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.54022 (2)	-0.31330 (10)	0.04996 (5)	0.04638 (19)	
C1	0.4990 (3)	-0.1418 (15)	0.1266 (6)	0.0337 (19)	
C2	0.5086 (3)	0.0691 (15)	0.1547 (7)	0.0366 (19)	
H2	0.5327	0.1383	0.1375	0.044*	
C3	0.4807 (4)	0.1750 (14)	0.2101 (7)	0.041 (2)	
Н3	0.4870	0.3146	0.2297	0.049*	
C4	0.4457 (3)	0.0801 (18)	0.2351 (6)	0.038 (2)	
C5	0.4356 (3)	-0.1290 (17)	0.2036 (6)	0.0361 (19)	
Н5	0.4110	-0.1953	0.2195	0.043*	
C6	0.4621 (3)	-0.2362 (16)	0.1489 (7)	0.036 (2)	
H6	0.4549	-0.3723	0.1272	0.043*	
C7	0.4158 (3)	0.1806 (16)	0.2943 (7)	0.036 (2)	
H7	0.3932	0.0972	0.3102	0.043*	
C8	0.4191 (3)	0.3824 (17)	0.3267 (6)	0.038 (2)	
H8	0.4402	0.4695	0.3060	0.046*	
C9	0.3926 (3)	0.4803 (15)	0.3914 (5)	0.0314 (18)	
C10	0.4042 (3)	0.6749 (16)	0.4264 (7)	0.040 (2)	
H10	0.4268	0.7489	0.4045	0.048*	
C11	0.3829 (3)	0.7647 (17)	0.4941 (8)	0.043 (2)	
H11	0.3918	0.8970	0.5168	0.051*	
C12	0.3485 (3)	0.6614 (15)	0.5290 (6)	0.035 (2)	
C13	0.3352 (3)	0.4714 (16)	0.4881 (7)	0.040 (2)	
H13	0.3114	0.4025	0.5067	0.048*	
C14	0.3563 (3)	0.3835 (15)	0.4213 (6)	0.037 (2)	
H14	0.3464	0.2575	0.3953	0.044*	
C15	0.3286 (5)	0.743 (2)	0.6106 (8)	0.056 (3)	
C16	0.3539 (6)	0.657 (3)	0.6841 (10)	0.077 (3)	
H16A	0.3519	0.5001	0.6862	0.116*	
H16B	0.3437	0.7178	0.7359	0.116*	
H16C	0.3821	0.6985	0.6768	0.116*	
C17	0.3247 (6)	0.985 (3)	0.6122 (10)	0.077 (4)	
H17A	0.3148	1.0351	0.5586	0.115*	
H17B	0.3510	1.0488	0.6236	0.115*	
H17C	0.3056	1.0266	0.6556	0.115*	
C18	0.2857 (5)	0.652 (3)	0.6225 (10)	0.071 (3)	
H18A	0.2873	0.5082	0.6469	0.107*	
H18B	0.2721	0.6435	0.5689	0.107*	
H18C	0.2704	0.7463	0.6594	0.107*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

12	0.78793 (2)	-0.28068(15)	0.94298 (6)	0.0660 (3)
C19	0.7487 (3)	-0.1295 (17)	0.8555 (7)	0.037 (2)
C20	0.7411 (3)	-0.230(2)	0.7792 (8)	0.046 (3)
H20	0.7518	-0.3680	0.7677	0.055*
C21	0.7175 (4)	-0.124 (3)	0.7204 (8)	0.064 (4)
H21	0.7135	-0.1904	0.6684	0.077*
C22	0.6996 (4)	0.073 (3)	0.7341 (10)	0.063 (4)
C23	0.7063 (4)	0.169 (2)	0.8102 (12)	0.066 (4)
H23	0.6939	0.3027	0.8217	0.079*
C24	0.7315 (4)	0.072 (2)	0.8725 (8)	0.053 (3)
H24	0.7363	0.1425	0.9236	0.063*
C25	0.6767 (4)	0.164 (3)	0.6608 (12)	0.072 (3)
H25	0.6724	0.0661	0.6169	0.086*
C26	0.6631 (4)	0.339 (3)	0.6495 (11)	0.067 (3)
H26	0.6681	0.4387	0.6927	0.080*
C27	0.6392 (3)	0.429 (2)	0.5768 (8)	0.056 (2)
C28	0.6210 (3)	0.629 (2)	0.5896 (7)	0.049 (2)
H28	0.6257	0.7007	0.6404	0.059*
C29	0.5963 (3)	0.7274 (18)	0.5311 (7)	0.043 (2)
H29	0.5840	0.8609	0.5437	0.051*
C30	0.5893 (3)	0.6305 (15)	0.4530 (7)	0.0351 (18)
C31	0.6083 (3)	0.4297 (16)	0.4386 (8)	0.048 (2)
H31	0.6045	0.3588	0.3873	0.057*
C32	0.6327 (4)	0.334 (2)	0.5003 (10)	0.057 (3)
H32	0.6452	0.2004	0.4888	0.069*
C33	0.5640 (3)	0.7429 (16)	0.3844 (7)	0.0379 (18)
C34	0.5377 (4)	0.578 (2)	0.3364 (8)	0.055 (3)
H34A	0.5198	0.5036	0.3752	0.082*
H34B	0.5551	0.4729	0.3091	0.082*
H34C	0.5215	0.6532	0.2949	0.082*
C35	0.5934 (4)	0.8569 (19)	0.3232 (8)	0.047 (2)
H35A	0.6122	0.7514	0.3003	0.070*
H35B	0.6085	0.9683	0.3526	0.070*
H35C	0.5780	0.9226	0.2783	0.070*
C36	0.5344 (4)	0.911 (2)	0.4202 (9)	0.055 (3)
H36A	0.5171	0.8429	0.4616	0.083*
H36B	0.5177	0.9693	0.3756	0.083*
H36C	0.5497	1.0278	0.4460	0.083*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0447 (3)	0.0457 (3)	0.0487 (3)	0.0059 (2)	0.0084 (3)	-0.0103 (3)
C1	0.037 (5)	0.033 (4)	0.032 (4)	0.003 (4)	0.000 (4)	0.005 (4)
C2	0.038 (4)	0.032 (4)	0.040 (5)	0.000 (4)	-0.002 (4)	-0.002 (4)
C3	0.058 (6)	0.019 (4)	0.045 (6)	0.001 (4)	-0.020(5)	-0.007 (4)
C4	0.035 (5)	0.058 (6)	0.021 (4)	0.014 (4)	0.003 (4)	-0.001 (4)
C5	0.029 (4)	0.042 (5)	0.037 (5)	-0.003 (4)	-0.003 (4)	0.004 (4)

Acta Cryst. (2015). E71, o309-o310

supporting information

C6	0.038 (5)	0.033 (4)	0.036 (5)	-0.001 (4)	-0.003 (4)	0.000 (4)
C7	0.036 (5)	0.043 (5)	0.030 (5)	-0.007 (4)	-0.004 (4)	-0.002 (4)
C8	0.039 (5)	0.043 (5)	0.032 (4)	0.003 (4)	-0.003 (4)	0.010 (4)
C9	0.029 (4)	0.044 (5)	0.020 (4)	0.007 (4)	0.001 (3)	0.005 (3)
C10	0.032 (4)	0.048 (5)	0.039 (5)	0.000 (4)	0.005 (4)	0.010 (4)
C11	0.045 (5)	0.036 (4)	0.048 (6)	-0.007 (4)	0.004 (5)	-0.007 (4)
C12	0.042 (5)	0.038 (4)	0.026 (5)	0.008 (4)	0.004 (4)	0.005 (4)
C13	0.037 (4)	0.037 (4)	0.044 (5)	-0.002 (4)	0.011 (4)	0.005 (4)
C14	0.041 (5)	0.032 (4)	0.038 (5)	0.005 (4)	0.001 (4)	0.006 (4)
C15	0.072 (6)	0.056 (5)	0.040 (5)	0.019 (4)	0.023 (4)	-0.003 (4)
C16	0.096 (7)	0.086 (8)	0.049 (5)	0.027 (6)	0.016 (5)	-0.004 (5)
C17	0.097 (8)	0.065 (5)	0.069 (8)	0.019 (5)	0.034 (7)	-0.003 (4)
C18	0.080 (6)	0.082 (7)	0.052 (7)	0.014 (5)	0.027 (5)	-0.001 (6)
I2	0.0478 (4)	0.0800 (5)	0.0701 (6)	-0.0002 (4)	-0.0213 (4)	0.0277 (5)
C19	0.029 (4)	0.041 (5)	0.040 (5)	0.001 (4)	-0.001 (4)	0.007 (4)
C20	0.040 (6)	0.052 (6)	0.046 (6)	0.000 (5)	-0.002 (5)	0.002 (5)
C21	0.067 (8)	0.089 (10)	0.036 (6)	-0.029 (8)	-0.001 (5)	0.006 (7)
C22	0.037 (5)	0.082 (8)	0.069 (7)	-0.017 (5)	-0.003 (5)	0.039 (6)
C23	0.057 (7)	0.040 (6)	0.101 (13)	0.023 (5)	0.018 (8)	0.025 (7)
C24	0.063 (7)	0.049 (6)	0.047 (6)	0.006 (5)	0.005 (6)	-0.011 (5)
C25	0.051 (6)	0.086 (6)	0.079 (7)	-0.014 (4)	-0.011 (5)	0.037 (5)
C26	0.047 (5)	0.082 (5)	0.072 (6)	-0.016 (4)	-0.013 (5)	0.034 (4)
C27	0.034 (4)	0.076 (5)	0.058 (4)	-0.014 (4)	-0.003 (3)	0.026 (4)
C28	0.035 (4)	0.076 (5)	0.036 (4)	-0.012 (4)	-0.003 (4)	0.024 (4)
C29	0.039 (5)	0.051 (5)	0.039 (6)	-0.008 (4)	0.008 (4)	0.002 (4)
C30	0.034 (4)	0.037 (4)	0.034 (5)	-0.006 (4)	-0.007 (4)	0.004 (4)
C31	0.051 (5)	0.036 (4)	0.056 (6)	0.000 (4)	-0.013 (5)	-0.002 (5)
C32	0.041 (5)	0.065 (6)	0.066 (5)	-0.005 (4)	-0.008 (4)	0.023 (4)
C33	0.040 (4)	0.036 (3)	0.037 (4)	0.006 (3)	-0.016 (3)	0.003 (3)
C34	0.059 (5)	0.057 (5)	0.048 (5)	-0.007 (4)	-0.015 (4)	-0.002 (4)
C35	0.051 (4)	0.042 (4)	0.046 (5)	0.004 (4)	-0.009 (4)	0.003 (4)
C36	0.053 (5)	0.054 (5)	0.059 (6)	0.014 (4)	-0.008 (4)	0.003 (4)

Geometric parameters (Å, °)

I1—C1	2.091 (10)	I2—C19	2.099 (10)
C1—C2	1.398 (13)	C19—C20	1.379 (17)
C1—C6	1.379 (14)	C19—C24	1.379 (15)
С2—Н2	0.9300	С20—Н20	0.9300
C2—C3	1.420 (16)	C20—C21	1.372 (19)
С3—Н3	0.9300	C21—H21	0.9300
C3—C4	1.339 (16)	C21—C22	1.35 (2)
C4—C5	1.410 (15)	C22—C23	1.36 (2)
C4—C7	1.485 (14)	C22—C25	1.490 (19)
С5—Н5	0.9300	С23—Н23	0.9300
C5—C6	1.386 (15)	C23—C24	1.41 (2)
С6—Н6	0.9300	C24—H24	0.9300
С7—Н7	0.9300	С25—Н25	0.9300

C7—C8	1.339 (15)	C25—C26	1.17 (2)
С8—Н8	0.9300	С26—Н26	0.9300
C8—C9	1.467 (13)	C26—C27	1.494 (18)
C9—C10	1.364 (14)	C27—C28	1.37 (2)
C9—C14	1.402 (13)	C27—C32	1.36 (2)
C10—H10	0.9300	C28—H28	0.9300
C10—C11	1 391 (15)	C28—C29	1 367 (16)
C11—H11	0.9300	C29—H29	0.9300
C_{11} C_{12}	1 399 (15)	C_{29} C_{30}	1 391 (15)
C_{12} C_{13}	1.397(14)	C_{20} C_{30} C_{31}	1.391(13)
C12 C15	1.597(14)	C_{30} C_{33}	1.571(14) 1.527(13)
C12 - C13	1.332(14)	$C_{30} = C_{33}$	1.327(13)
C13—H13	0.9300		0.9300
C13-C14	1.5/2(15)	C_{22} U_{22}	1.390(17)
C14—H14	0.9300	C32—H32	0.9300
	1.52 (2)	C33—C34	1.526 (15)
	1.48 (2)		1.530 (16)
C15—C18	1.51 (2)	C33—C36	1.518 (16)
C16—H16A	0.9600	C34—H34A	0.9600
C16—H16B	0.9600	C34—H34B	0.9600
C16—H16C	0.9600	C34—H34C	0.9600
C17—H17A	0.9600	С35—Н35А	0.9600
C17—H17B	0.9600	С35—Н35В	0.9600
C17—H17C	0.9600	С35—Н35С	0.9600
C18—H18A	0.9600	С36—Н36А	0.9600
C18—H18B	0.9600	С36—Н36В	0.9600
C18—H18C	0.9600	С36—Н36С	0.9600
C2—C1—I1	120.2 (7)	C20—C19—I2	119.6 (8)
C6—C1—I1	119.9 (7)	C20—C19—C24	119.7 (10)
C6—C1—C2	119.9 (9)	C24—C19—I2	120.7 (9)
С1—С2—Н2	120.9	С19—С20—Н20	120.4
C1 - C2 - C3	118.2 (9)	C21—C20—C19	119.1 (12)
C3-C2-H2	120.9	C_{21} C_{20} H_{20}	120.4
C2-C3-H3	119.0	C_{20} C_{21} H_{21}	118.2
C4-C3-C2	122.0 (9)	C^{22} C^{21} C^{20}	123.6 (14)
C4—C3—H3	119.0	$C_{22} = C_{21} = C_{20}$	118.2
$C_{3} - C_{4} - C_{5}$	119.0	$C_{22} = C_{21} = C_{23}$	110.2
$C_3 C_4 C_7$	119.1(9) 124.4(10)	C_{21} C_{22} C_{23}	117.1(12) 115.0(16)
$C_{5} = C_{4} = C_{7}$	124.4(10)	$C_{21} = C_{22} = C_{23}$	113.0(10) 127.8(15)
$C_3 = C_4 = C_7$	110.5 (9)	$C_{23} = C_{22} = C_{23}$	127.8 (13)
C4 - C5 - C4	119.9	C22-C23-H23	110.9
C_{0}	120.2 (9)	$C_{22} = C_{23} = C_{24}$	122.3 (12)
C6C5H5	119.9	C24—C23—H23	118.9
C1 = C6 = C5	120.3 (9)	C19 - C24 - C23	118.2 (12)
	119.8	C19—C24—H24	120.9
С5—С6—Н6	119.8	C23—C24—H24	120.9
С4—С7—Н7	117.6	C22—C25—H25	114.7
C8—C7—C4	124.9 (10)	C26—C25—C22	131 (2)
С8—С7—Н7	117.6	С26—С25—Н25	114.7

С7—С8—Н8	116.7	C25—C26—H26	114.8
С7—С8—С9	126.6 (10)	C25—C26—C27	130.5 (18)
С9—С8—Н8	116.7	C27—C26—H26	114.8
С10—С9—С8	118.4 (9)	C28—C27—C26	115.9 (14)
C10—C9—C14	117.6 (9)	C32—C27—C26	127.8 (14)
C14—C9—C8	124.0 (9)	C32—C27—C28	116.3 (11)
C9-C10-H10	119.4	C27—C28—H28	118.5
C9—C10—C11	121.2 (9)	C29—C28—C27	123.0 (12)
C11—C10—H10	119.4	C29—C28—H28	118.5
C10—C11—H11	119.1	C28—C29—H29	119.6
C10-C11-C12	121.8 (9)	C28—C29—C30	120.9 (11)
C12—C11—H11	119.1	C30-C29-H29	119.6
C_{11} C_{12} C_{15}	121.8 (10)	$C_{29} - C_{30} - C_{33}$	122 1 (9)
C_{13} C_{12} C_{11}	121.0(10) 1160(9)	$C_{31} - C_{30} - C_{29}$	122.1(9)
C_{13} C_{12} C_{15}	122.1(10)	C_{31} C_{30} C_{33}	121.2(10)
$C_{12} = C_{12} = C_{13}$	122.1 (10)	$C_{31} = C_{30} = C_{33}$	110 7
C_{12} C_{13} C_{12} C_{12}	119.0 121.0(0)	$C_{30} = C_{31} = C_{30}$	119.7 120.5(12)
C14 - C13 - C12	121.9 (9)	$C_{32} = C_{31} = U_{31}$	120.3 (12)
C14—C13—H13	119.0	C32—C31—H31	119.7
C9-C14-H14	119.4	$C_2/-C_{32}-C_{31}$	122.6 (13)
C13—C14—C9	121.1 (9)	C27—C32—H32	118.7
C13—C14—H14	119.4	C31—C32—H32	118.7
C16—C15—C12	107.8 (10)	C30—C33—C35	108.6 (8)
C17—C15—C12	112.0 (11)	C34—C33—C30	111.2 (9)
C17—C15—C16	112.2 (15)	C34—C33—C35	109.6 (10)
C17—C15—C18	106.5 (13)	C36—C33—C30	112.3 (9)
C18—C15—C12	112.1 (12)	C36—C33—C34	106.1 (10)
C18—C15—C16	106.1 (13)	C36—C33—C35	109.0 (9)
C15—C16—H16A	109.5	C33—C34—H34A	109.5
C15—C16—H16B	109.5	C33—C34—H34B	109.5
C15—C16—H16C	109.5	C33—C34—H34C	109.5
H16A—C16—H16B	109.5	H34A—C34—H34B	109.5
H16A—C16—H16C	109.5	H34A—C34—H34C	109.5
H16B—C16—H16C	109.5	H34B—C34—H34C	109.5
С15—С17—Н17А	109.5	С33—С35—Н35А	109.5
C15—C17—H17B	109.5	C33—C35—H35B	109.5
C15—C17—H17C	109.5	C33—C35—H35C	109.5
H17A - C17 - H17B	109.5	H35A—C35—H35B	109.5
H17A - C17 - H17C	109.5	H35A-C35-H35C	109.5
H17B_C17_H17C	109.5	H35R C35 H35C	109.5
$C_{15} C_{18} H_{18A}$	109.5	C23 C26 H26A	109.5
C15 C19 U19D	109.5	$C_{33} = C_{36} = H_{36} R_{36}$	109.5
С15—С18—Н18С	109.5	$C_{33} = C_{30} = H_{30B}$	109.5
	109.5		109.5
	109.5	H30A - C36 - H30B	109.5
H18A - C18 - H18C	109.5	H36A—C36—H36C	109.5
H18B—C18—H18C	109.5	Н36В—С36—Н36С	109.5
I1—C1—C2—C3	-176.8 (7)	I2—C19—C20—C21	-176.0 (9)
I1—C1—C6—C5	176.3 (7)	I2—C19—C24—C23	178.2 (9)
	× /		× /

C1—C2—C3—C4	-0.8 (15)	C19—C20—C21—C22	-3 (2)
C2-C1-C6-C5	-4.3 (15)	C20—C19—C24—C23	0.1 (18)
C2—C3—C4—C5	-1.8 (15)	C20—C21—C22—C23	1 (2)
C2—C3—C4—C7	178.6 (10)	C20—C21—C22—C25	177.6 (11)
C3—C4—C5—C6	1.4 (15)	C21—C22—C23—C24	1 (2)
C3—C4—C7—C8	3.7 (16)	C21—C22—C25—C26	-168.3 (16)
C4—C5—C6—C1	1.7 (15)	C22—C23—C24—C19	-2 (2)
C4—C7—C8—C9	-173.6 (9)	C22—C25—C26—C27	-178.2 (12)
C5—C4—C7—C8	-175.9 (9)	C23—C22—C25—C26	8 (3)
C6—C1—C2—C3	3.9 (14)	C24—C19—C20—C21	2.1 (17)
C7—C4—C5—C6	-179.0 (9)	C25—C22—C23—C24	-174.7 (12)
C7—C8—C9—C10	169.9 (10)	C25—C26—C27—C28	168.0 (16)
C7—C8—C9—C14	-8.6 (15)	C25—C26—C27—C32	-11 (2)
C8—C9—C10—C11	-173.1 (10)	C26—C27—C28—C29	-176.4 (10)
C8—C9—C14—C13	173.0 (9)	C26—C27—C32—C31	177.1 (12)
C9—C10—C11—C12	-0.6 (17)	C27—C28—C29—C30	-2.1 (16)
C10-C9-C14-C13	-5.5 (14)	C28—C27—C32—C31	-1.8 (17)
C10-C11-C12-C13	-4.3 (16)	C28-C29-C30-C31	0.7 (14)
C10-C11-C12-C15	171.5 (11)	C28—C29—C30—C33	-176.3 (9)
C11—C12—C13—C14	4.2 (15)	C29—C30—C31—C32	0.0 (15)
C11—C12—C15—C16	-80.3 (15)	C29—C30—C33—C34	-142.2 (10)
C11—C12—C15—C17	43.5 (18)	C29—C30—C33—C35	97.2 (11)
C11—C12—C15—C18	163.3 (11)	C29—C30—C33—C36	-23.5 (14)
C12—C13—C14—C9	0.6 (15)	C30—C31—C32—C27	0.5 (18)
C13—C12—C15—C16	95.2 (15)	C31—C30—C33—C34	41.0 (14)
C13—C12—C15—C17	-140.9 (13)	C31—C30—C33—C35	-79.7 (12)
C13—C12—C15—C18	-21.2 (16)	C31—C30—C33—C36	159.7 (10)
C14—C9—C10—C11	5.5 (14)	C32—C27—C28—C29	2.6 (16)
C15—C12—C13—C14	-171.6 (10)	C33—C30—C31—C32	177.0 (10)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C9-C14 and C27-C32 rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—I1····Cg2 ⁱ	2.09(1)	3.63 (1)	5.676 (10)	166 (1)
C19—I2···· <i>Cg</i> 4 ⁱⁱ	2.10(1)	3.57 (1)	5.526 (11)	154 (1)

Symmetry codes: (i) -*x*+1, -*y*, *z*-1/2; (ii) -*x*+3/2, *y*-1, *z*+1/2.