

OPEN d ACCESS

ISSN 2056-9890

Crystal structure of 1-[(Z)-2-phenylhydrazin-1-ylidene]naphthalen-2(1H)one

Ali Benosmane,* Mohamed Amine Benaouida, Assia Mili, **Abdelkader Bouchoul and Hocine Merazig**

Unité de recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté du Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria. *Correspondence e-mail: king.ali@hotmail.fr

Received 30 March 2015; accepted 4 April 2015

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

In the title compound, $C_{16}H_{12}N_2O$, the dihedral angle between the planes of the benzene ring and naphthalenone ring system is $1.89 (8)^\circ$; an intramolecular N-H···O hydrogen bond occurs between the imino group and the carbonyl group. In the crystal, molecules are linked by weak $C-H \cdot \cdot \pi$ interactions into supramolecular chains propagating along the $[01\overline{1}]$ direction.

Keywords: crystal structure; hydrazone; naphthalenone; hydrogen bonding: C—H $\cdots \pi$ interactions.

CCDC reference: 1057924

1. Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004).

2. Experimental

2.1. Crystal data

$C_{16}H_{12}N_2O$
$M_r = 248.28$
Monoclinic, $C2/c$
a = 28.109 (5) Å
b = 6.039 (5) Å
c = 15.181(5) Å
$\beta = 103.243 \ (5)^{\circ}$

2.2. Data collection

Bruker APEXII diffractometer 4481 measured reflections 2450 independent reflections

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.169$ S = 1.052450 reflections 176 parameters 2 restraints

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.09 \times 0.04 \times 0.01 \ \mathrm{mm}$

V = 2508 (2) Å³

Z = 8

1469 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å, ^o	').

Cg1 and Cg3 are the centroids of the C1-C6 and C12-C17 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1$ $C4-H4\cdots Cg3^{i}$ $C12-H12\cdots Cg1^{ii}$	0.906 (17)	1.81 (2)	2.550 (3)	137 (2)
	0.93	2.76	3.568 (4)	145
	0.93	2.83	3.612 (4)	142

Symmetry codes: (i) $x, -y + 2, z - \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5845).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.
- Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28. 1575-1578.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o303 [https://doi.org/10.1107/S2056989015006775]

Crystal structure of 1-[(Z)-2-phenylhydrazin-1-ylidene]naphthalen-2(1H)-one

Ali Benosmane, Mohamed Amine Benaouida, Assia Mili, Abdelkader Bouchoul and Hocine Merazig

S1. Comment

The azo dyes are by far the most important class, accounting for over 50% of all commercial dyes, and having been studied more than other class (Lee *et al.*, 2004; Oueslati *et al.*, 2004). Azo dyes contain at least one azo group (-N=N-) but can contain two (diazo), three(triazo), or, more rarely, four (tetrakisazo) or more (polyazo) azo groups. The azo group is attached to two groups, of which at least one, but more usually both are aromatic. They exist in the Trans form in which the band angle is 120°, the nitrogen atoms are sp² hybridized. Almost without exception, azo dyes are made by diazotization of primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-richnucleophile. We report here in the crystal structure of the title compound, obtained through the diazotization of aniline followed by a coupling reaction with2-naphthol.

The molecular structure of (I) and the atom-numbering scheme are shown in Figure 1. Two aromatic rings A (C1–C6) and B (C7–C16) show a little deviation from planarity with a dihedral angle of 1.56°. Intramolecular hydrogen bonds are formed between the phenol hydroxyl groups and the nearest N atom in the aminobenze groups (Table 1).

S2. Experimental

Treatment of aniline (0.02 mol) in 6 ml of 12M HCl and NaNO₂ (0.0214 mol) in 8 ml of H₂O for 30 min. To the obtained solution, was added dropwise a solution of naphthalen-2-ol, and the resulting brown precipitates were filtrated and washed with water, and dried in a desiccator for several days. Single crystals were obtained by slow evaporation from a pentane solution.

S3. Refinement

The imino-H atom was located in a difference Fourier map and refined freely with $U_{iso}(H) = 1.2U_{eq}(N)$. Other H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

The molecular structure of the title molecule with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

(I)

Crystal data

C₁₆H₁₂N₂O $M_r = 248.28$ Monoclinic, C2/c Hall symbol: -C 2yc a = 28.109 (5) Å b = 6.039 (5) Å c = 15.181 (5) Å $\beta = 103.243$ (5)° V = 2508 (2) Å³

Data collection

Bruker APEXII diffractometer Horizonally mounted graphite crystal monochromator CCD rotation images, thick slices scans 4481 measured reflections 2450 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.169$ S = 1.05 Z = 8 F(000) = 1040 $D_x = 1.315 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Needle, red $0.09 \times 0.04 \times 0.01 \text{ mm}$

1469 reflections with $l > 2\sigma(l)$ $R_{int} = 0.034$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -33 \rightarrow 34$ $k = -7 \rightarrow 7$ $l = -18 \rightarrow 18$

2450 reflections176 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.092P)^2]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
and constrained refinement	-

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.73024 (5)	0.6381 (3)	0.09280 (11)	0.0762 (6)
N1	0.65766 (7)	0.8669 (3)	0.00890 (12)	0.0551 (6)
N2	0.62773 (6)	0.7373 (2)	0.03831 (10)	0.0496 (5)
C1	0.63841 (7)	1.0493 (3)	-0.04642 (12)	0.0507 (6)
C2	0.58893 (8)	1.0917 (3)	-0.07177 (13)	0.0581 (7)
C3	0.57264 (9)	1.2751 (3)	-0.12414 (14)	0.0647 (8)
C4	0.60525 (10)	1.4165 (3)	-0.15058 (14)	0.0668 (9)
C5	0.65432 (10)	1.3745 (3)	-0.12602 (15)	0.0708 (9)
C6	0.67128 (8)	1.1886 (3)	-0.07340 (14)	0.0627 (8)
C7	0.64663 (7)	0.5645 (3)	0.09114 (12)	0.0474 (6)
C8	0.69840 (7)	0.5157 (3)	0.11735 (13)	0.0571 (7)
C9	0.71329 (8)	0.3216 (3)	0.17167 (14)	0.0663 (8)
C10	0.68014 (8)	0.1878 (3)	0.19510 (14)	0.0629 (8)
C12	0.59514 (8)	0.0806 (3)	0.19309 (14)	0.0618 (8)
C13	0.54622 (8)	0.1209 (3)	0.16897 (15)	0.0667 (8)
C14	0.52907 (8)	0.3124 (3)	0.12094 (14)	0.0642 (8)
C15	0.56100 (7)	0.4592 (3)	0.09687 (13)	0.0560 (7)
C16	0.61175 (7)	0.4199 (3)	0.11928 (12)	0.0465 (6)
C17	0.62863 (7)	0.2274 (3)	0.16940 (12)	0.0511 (6)
H1	0.6900 (5)	0.835 (4)	0.022 (2)	0.127 (11)*
H2	0.56680	0.99750	-0.05370	0.0700*
H3	0.53930	1.30370	-0.14180	0.0780*
H4	0.59390	1.54080	-0.18520	0.0800*
H5	0.67630	1.46940	-0.14430	0.0850*
H6	0.70460	1.15890	-0.05660	0.0750*
Н9	0.74640	0.28840	0.19080	0.0800*
H10	0.69120	0.06310	0.22980	0.0750*
H12	0.60650	-0.04640	0.22580	0.0740*
H13	0.52430	0.02100	0.18450	0.0800*
H14	0.49570	0.34080	0.10510	0.0770*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H15	0.54900	0.58	3690	0.06520	0.0670*	
Atomic	displacement para	imeters ($Å^2$)				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
01	0.0554 (9)	0.0765 (10)	0.0933 (12)	-0.0043 (7)	0.0103 (8)	0.0133 (8)
N1	0.0601 (11)	0.0475 (9)	0.0584 (11)	0.0026 (8)	0.0153 (9)	0.0031 (7)
N2	0.0601 (10)	0.0441 (8)	0.0455 (9)	0.0048 (7)	0.0139 (8)	-0.0013 (7)
C1	0.0666 (13)	0.0414 (9)	0.0457 (11)	0.0035 (9)	0.0160 (9)	-0.0021 (8)
C2	0.0695 (14)	0.0496 (11)	0.0568 (13)	0.0017 (9)	0.0180 (11)	0.0021 (9)
C3	0.0791 (15)	0.0538 (11)	0.0594 (13)	0.0129 (11)	0.0119 (12)	0.0008 (10)
C4	0.0995 (19)	0.0508 (11)	0.0515 (13)	0.0121 (12)	0.0201 (12)	0.0054 (9)
C5	0.1042 (19)	0.0529 (11)	0.0638 (14)	-0.0047 (12)	0.0371 (13)	0.0041 (10)
C6	0.0723 (14)	0.0594 (12)	0.0607 (13)	-0.0004 (10)	0.0244 (11)	0.0013 (10)
C7	0.0555 (11)	0.0441 (9)	0.0411 (10)	0.0051 (8)	0.0080 (9)	-0.0020 (8)
C8	0.0557 (13)	0.0568 (11)	0.0553 (12)	0.0009 (10)	0.0057 (10)	-0.0013 (9)
C9	0.0566 (13)	0.0693 (13)	0.0664 (14)	0.0093 (11)	0.0003 (11)	0.0102 (11)
C10	0.0722 (15)	0.0562 (12)	0.0566 (12)	0.0164 (10)	0.0069 (11)	0.0111 (10)
C12	0.0806 (16)	0.0512 (11)	0.0556 (12)	0.0085 (10)	0.0198 (11)	0.0076 (9)
C13	0.0737 (15)	0.0608 (12)	0.0719 (15)	-0.0033 (11)	0.0297 (12)	0.0048 (11)
C14	0.0583 (13)	0.0662 (13)	0.0704 (14)	0.0050 (10)	0.0195 (11)	0.0013 (11)
C15	0.0603 (13)	0.0524 (10)	0.0565 (12)	0.0098 (9)	0.0161 (10)	0.0056 (9)
C16	0.0568 (12)	0.0436 (9)	0.0394 (9)	0.0064 (8)	0.0117 (8)	-0.0039 (8)
C17	0.0627 (13)	0.0468 (10)	0.0438 (10)	0.0060 (9)	0.0123 (9)	-0.0011 (8)

Geometric parameters (Å, °)

01-C8	1.280 (3)	C12—C13	1.361 (3)
N1—N2	1.301 (3)	C13—C14	1.393 (3)
N1C1	1.415 (3)	C14—C15	1.369 (3)
N2—C7	1.349 (3)	C15—C16	1.409 (3)
N1—H1	0.906 (17)	C16—C17	1.411 (3)
C1—C2	1.379 (3)	C2—H2	0.9300
C1—C6	1.379 (3)	С3—Н3	0.9300
C2—C3	1.379 (3)	C4—H4	0.9300
C3—C4	1.378 (4)	С5—Н5	0.9300
C4—C5	1.368 (4)	С6—Н6	0.9300
С5—С6	1.397 (3)	С9—Н9	0.9300
С7—С8	1.448 (3)	C10—H10	0.9300
C7—C16	1.449 (3)	C12—H12	0.9300
С8—С9	1.439 (3)	C13—H13	0.9300
C9—C10	1.342 (3)	C14—H14	0.9300
C10—C17	1.431 (3)	C15—H15	0.9300
C12—C17	1.399 (3)		
01…N1	2.550 (3)	C4···H12 ^{iv}	2.9200
O1…N2	2.873 (3)	C5····H12 ^{iv}	3.0700
01…H1	1.81 (2)	C8…H1	2.39 (3)

supporting information

O1…H6 ⁱ	2.7100	C12····H4 ^{vi}	2.9400
N1…O1	2.550 (3)	C13····H4 ^{vi}	3.0800
N1…C10 ⁱⁱ	3.366 (4)	C14…H3 ^v	3.0700
N2…O1	2.873 (3)	C17····H4 ^{vi}	2.9600
N2…C4 ⁱⁱⁱ	3.398 (4)	H1…O1	1.81 (2)
N2···C12 ⁱⁱ	3.412 (4)	H1···C8	2.39 (3)
N2···H2	2.5000	H1…H6	2.3800
N2…H15	2.5100	H2N2	2.5000
C1C16 ⁱⁱ	3.572 (4)	$H3\cdots C14^{v}$	3.0700
C1C17 ⁱⁱ	3 519 (4)	H3…H14 ^v	2.4800
C2…C16 ⁱⁱ	3450(4)	H4····C12 ^{vii}	2.9400
C4…N2 ⁱⁱ	3 398 (4)	$H4\cdots C13^{vii}$	3 0800
C5…C7 ⁱⁱ	3.596(1) 3.544(4)	$H4\cdots C17^{vii}$	2 9600
C6···C8 ⁱⁱ	3.511(1) 3 443 (4)	H6H1	2.3800
C6C7 ⁱⁱ	3,559 (4)	H6O1 ⁱ	2,3000
C7C5 ⁱⁱⁱ	3.555(4)	H0H10viii	2.7100
C7C6 ⁱⁱⁱ	3,559 (4)	H10H12	2.5100
	3.339(4)		2.4000
	3.443(4)		2.3100
	5.500 (4) 2.412 (4)		2.4000
	5.412 (4) 2.572 (4)		3.0000
	5.572 (4) 2.450 (4)		2.9200
C16····C2 ^m	3.450 (4)	$H12\cdots C5^{n}$	3.0700
	3.519 (4)		3.0700
C3…H12 ¹	3.0000	H14····H3 ^v	2.4800
C3…H14 ^v	3.0700	H15…N2	2.5100
N2—N1—C1	118.85 (18)	C7—C16—C15	122.93 (17)
N1—N2—C7	118.17 (17)	C12—C17—C16	119.86 (18)
N2—N1—H1	119.5 (16)	C10—C17—C12	121.51 (17)
C1—N1—H1	121.6 (16)	C10—C17—C16	118.63 (17)
N1—C1—C2	122.28 (18)	C1—C2—H2	120.00
N1-C1-C6	117.38 (18)	C3—C2—H2	120.00
C2-C1-C6	120.34 (18)	С2—С3—Н3	120.00
C1—C2—C3	119.4 (2)	C4—C3—H3	120.00
C2—C3—C4	120.7 (2)	C3—C4—H4	120.00
C3—C4—C5	120.15 (19)	C5—C4—H4	120.00
C4—C5—C6	119.7 (2)	C4—C5—H5	120.00
C1 - C6 - C5	119.7 (2)	C6—C5—H5	120.00
C8-C7-C16	120.11(16)	C1 - C6 - H6	120.00
N2-C7-C8	123.70 (17)	C5—C6—H6	120.00
N_{2} = C7 = C16	11615(17)	C8 - C9 - H9	120.00
C7 - C8 - C9	117.72 (18)	C10-C9-H9	120.00
01-C8-C9	120 41 (19)	C9-C10-H10	118.00
01 - C8 - C7	121.87 (17)	C17-C10-H10	118.00
C8-C9-C10	121.07(17) 120.9(2)	C_{13} C_{12} H_{12}	120.00
C9-C10-C17	123.23 (18)	C17—C12—H12	119.00
C_{13} C_{12} C_{17}	121.02 (18)	C12 - C13 - H13	120.00
C12 - C13 - C14	119 8 (2)	C14—C13—H13	120.00
	112.0 (4)		120.00

C13—C14—C15 C14—C15—C16 C7—C16—C17 C15—C16—C17	120.5 (2) 121.05 (18) 119.28 (18) 117.77 (17)	C13—C14—H14 C15—C14—H14 C14—C15—H15 C16—C15—H15	120.00 120.00 119.00 119.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -179.84 (16) \\ -1.4 (3) \\ 177.41 (17) \\ 0.3 (3) \\ -177.64 (16) \\ 178.57 (18) \\ -0.2 (3) \\ -178.28 (18) \\ 0.5 (3) \\ -0.5 (3) \\ -0.5 (3) \\ -0.5 (3) \\ -0.5 (3) \\ -0.2 (3) \\ 1.2 (3) \\ -178.06 (17) \\ 179.10 (18) \\ -0.2 (3) \\ -2.6 (3) \end{array}$	$\begin{array}{c} C8 & -C7 & -C16 & -C15 \\ C8 & -C7 & -C16 & -C17 \\ O1 & -C8 & -C9 & -C10 \\ C7 & -C8 & -C9 & -C10 \\ C8 & -C9 & -C10 & -C17 \\ C9 & -C10 & -C17 & -C12 \\ C9 & -C10 & -C17 & -C12 \\ C9 & -C10 & -C17 & -C16 \\ C17 & -C12 & -C13 & -C14 \\ C13 & -C12 & -C17 & -C16 \\ C13 & -C12 & -C17 & -C16 \\ C13 & -C12 & -C17 & -C16 \\ C13 & -C14 & -C15 & -C16 \\ C14 & -C15 & -C16 & -C17 \\ C7 & -C16 & -C17 & -C12 \\ C15 & -C16 & -C17 & -C12 \\ C15 & -C16 & -C17 & -C12 \\ C15 & -C16 & -C17 & -C12 \\ \end{array}$	$\begin{array}{c} 179.34\ (17)\\ -2.4\ (3)\\ -177.61\ (19)\\ 1.7\ (3)\\ -0.6\ (3)\\ 178.22\ (19)\\ -2.0\ (3)\\ -0.8\ (3)\\ 179.41\ (19)\\ -0.4\ (3)\\ 0.5\ (3)\\ 176.67\ (18)\\ -1.7\ (3)\\ 3.4\ (3)\\ -176.80\ (17)\\ -178.21\ (17)\\ 1.6\ (3)\\ \end{array}$
N2—C7—C16—C17	175.67 (16)		

Symmetry codes: (i) -*x*+3/2, -*y*+3/2, -*z*; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*, -*y*+1, *z*-1/2; (v) -*x*+1, -*y*+2, -*z*; (vi) *x*, -*y*+2, *z*+1/2; (vii) *x*, -*y*+2, *z*-1/2; (viii) -*x*+3/2, *y*+1/2, -*z*+1/2; (ix) -*x*+3/2, *y*-1/2, -*z*+1/2; (x) *x*, -*y*+1, *z*+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—H1…O1	0.906 (17)	1.81 (2)	2.550 (3)	137 (2)	
C4—H4··· $Cg3^{vii}$	0.93	2.76	3.568 (4)	145	
C12—H12····Cg1 ^x	0.93	2.83	3.612 (4)	142	

Symmetry codes: (vii) x, -y+2, z-1/2; (x) x, -y+1, z+1/2.