

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of 1-nitro-4-(trimethylsilvlethynyl)naphthalene

Jun Du^a and Graeme J. Moxey^{a,b}*

^aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China, and ^bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. *Correspondence e-mail: Graeme.Moxey@anu.edu.au

Received 31 March 2015; accepted 10 April 2015

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

In the title compound, C15H15NO2Si, the dihedral angle between the nitro group and the mean plane of the naphthalene system is 22.04 (11)°. In the crystal, π - π interactions generate supramolecular chains propagating along the a-axis direction; the centroid-to-centroid distances range from 3.5590 (12) to 3.8535 (12) Å.

Keywords: crystal structure; trialkylsilylacetylene; nitroarene; π - π interactions.

CCDC reference: 1058939

1. Related literature

For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For desilvlation of the related 1-nitro-4-(trimethylsilylethynyl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Squadrito et al. (1990); Khan et al. (2004).

2. Experimental

OPEN d ACCESS

2.1. Crystal data

C ₁₅ H ₁₅ NO ₂ Si	$\gamma = 107.127 \ (12)^{\circ}$
$M_r = 269.37$	V = 694.62 (15) Å
Triclinic, $P\overline{1}$	Z = 2
a = 6.9679 (9) Å	Mo $K\alpha$ radiation
b = 9.2425 (12) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 11.799 (1) Å	$T = 150 { m K}$
$\alpha = 100.242 \ (9)^{\circ}$	$0.23 \times 0.07 \times 0.00$
$\beta = 99.698 \ (9)^{\circ}$	

2.2. Data collection

Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.114$ S = 1.07

3112 reflections

(15) Å³ ation n^{-1} \times 0.04 mm

Clark & Reid (1995)] $T_{\min} = 0.986, T_{\max} = 0.996$ 4695 measured reflections 3112 independent reflections 2621 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.021$

175 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.36 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5846).

References

- Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107-2118.
- Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Kohler, A., Marseglia, E. A., Tedesco, E., Feeder, N. & Teat, S. J. (2004). Dalton Trans. pp. 2377-2385.
- McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402-1413.

- McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem. 523, 33–40.
- McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White,
 A. H. (1996b). J. Organomet. Chem. 519, 229–235.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Squadrito, G. L., Shane, B. S., Fronczek, F. R., Church, D. F. & Pryor, W. A. (1990). Chem. Res. Toxicol. 3, 231-235.
- Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627-630.

Acta Cryst. (2015). E71, o311–o312 [https://doi.org/10.1107/S2056989015007173] Crystal structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene

Jun Du and Graeme J. Moxey

S1. Synthesis and crystallization

1-Iodo-4-nitronaphthalene (1.196 g, 4.00 mmol) was added to triethylamine (30 mL) and the mixture deoxygenated and charged with nitrogen. PdCl₂(PPh₃)₂ (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and trimethylsilylacetylene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with triethylamine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH₂Cl₂. Reduction in volume of the eluate afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C₁₅H₁₅NO₂Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. ¹H NMR (δ , 400 MHz, CDCl₃): 8.55 (d, *J*_{HH} = 8.0 Hz, 1H, H₈), 8.47 (d, *J*_{HH} = 8.0 Hz, 1H, H₅), 8.15 (d, *J*_{HH} = 8.0 Hz, 1H, H₁₁), 7.79 – 7.65 (m, 3H, H₄, H₉, H₁₀), 0.36 (s, 9H, Me); ¹³C NMR (δ , 101 MHz, CDCl₃): 146.3 (C₆), 134.4 (C₁₂), 129.8 (C₉), 128.9 (C₄), 128.2 (C₁₁), 127.7 (C₃), 127.1 (C₁₀), 125.1 (C₇), 123.5 (C₈), 123.3 (C₅), 105.1 (C₂), 101.4 (C₁), 0.1 (s, Me); IR (ATR, cm⁻¹): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a dichloromethane solution.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized below.

Figure 1

Molecular structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene, with displacement ellipsoids set at the 40% probability level.

Atom numbering scheme of 1-nitro-4-(trimethylsilylethynyl)naphthalene for ¹H and ¹³C NMR assignments.

1-Nitro-4-(trimethylsilylethynyl)naphthalene

Crystal data

C₁₅H₁₅NO₂Si $M_r = 269.37$ Triclinic, $P\overline{1}$ a = 6.9679 (9) Å b = 9.2425 (12) Å c = 11.799 (1) Å $a = 100.242 (9)^{\circ}$ $\beta = 99.698 (9)^{\circ}$ $\gamma = 107.127 (12)^{\circ}$ $V = 694.62 (15) Å^{3}$

Data collection

Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 8.1297 pixels mm⁻¹ ω scans Absorption correction: analytical [*CrysAlis PRO* (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] Z = 2 F(000) = 284 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{Å} Cell parameters from 1967 reflections $\theta = 2.6-28.3^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 150 KNeedle, yellow $0.23 \times 0.07 \times 0.04 \text{ mm}$

 $T_{\min} = 0.986, T_{\max} = 0.996$ 4695 measured reflections 3112 independent reflections $2621 \text{ reflections with } I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 29.2^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$ $h = -6 \rightarrow 9$ $k = -11 \rightarrow 12$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full	Primary atom site location: structure-invariant direct methods
$R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F ²) = 0.114	Hydrogen site location: inferred from neighbouring sites
S = 1.07	H-atom parameters constrained
3112 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0415P)^2 + 0.3469P]$
175 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2485 (3)	0.6318 (2)	0.44838 (15)	0.0204 (4)
C2	0.1929 (2)	0.4663 (2)	0.41137 (15)	0.0188 (4)
C3	0.1112 (3)	0.3754 (2)	0.29263 (16)	0.0247 (4)
Н3	0.0875	0.4239	0.2316	0.030*
C4	0.0675 (3)	0.2178 (2)	0.26757 (17)	0.0293 (4)
H4	0.0147	0.1606	0.1893	0.035*
C5	0.1001 (3)	0.1400 (2)	0.35659 (18)	0.0293 (4)
Н5	0.0661	0.0321	0.3376	0.035*
C6	0.1819 (3)	0.2230 (2)	0.47120 (17)	0.0234 (4)
H6	0.2048	0.1711	0.5301	0.028*
C7	0.2324 (2)	0.3874 (2)	0.50191 (15)	0.0182 (4)
C8	0.3257 (3)	0.4749 (2)	0.62159 (15)	0.0187 (4)
С9	0.3745 (3)	0.6352 (2)	0.65052 (15)	0.0220 (4)
Н9	0.4329	0.6912	0.7288	0.026*
C10	0.3369 (3)	0.7131 (2)	0.56329 (16)	0.0225 (4)
H10	0.3720	0.8211	0.5832	0.027*
C11	0.3756 (3)	0.3974 (2)	0.71220 (15)	0.0215 (4)
C12	0.4216 (3)	0.3354 (2)	0.78877 (16)	0.0235 (4)
C13	0.4757 (3)	0.0381 (2)	0.83030 (17)	0.0300 (4)
H13A	0.3530	-0.0142	0.7682	0.045*
H13B	0.4823	-0.0237	0.8873	0.045*
H13C	0.5949	0.0523	0.7973	0.045*
C14	0.2518 (3)	0.2089 (3)	0.97894 (19)	0.0361 (5)
H14A	0.1234	0.1699	0.9203	0.054*
H14B	0.2647	0.3083	1.0269	0.054*

H14C	0.2547	0.1369	1.0281	0.054*	
C15	0.7217 (3)	0.3443 (2)	1.00937 (18)	0.0327 (5)	
H15A	0.7507	0.2860	1.0658	0.049*	
H15B	0.7161	0.4421	1.0501	0.049*	
H15C	0.8287	0.3633	0.9667	0.049*	
N1	0.2165 (3)	0.7285 (2)	0.36481 (15)	0.0275 (4)	
01	0.0903 (2)	0.6698 (2)	0.27072 (14)	0.0437 (4)	
O2	0.3213 (3)	0.86743 (19)	0.39546 (15)	0.0532 (5)	
Si1	0.47002 (8)	0.23164 (6)	0.90416 (4)	0.02062 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0176 (8)	0.0279 (10)	0.0240 (9)	0.0126 (7)	0.0093 (7)	0.0138 (7)
C2	0.0125 (7)	0.0262 (9)	0.0212 (8)	0.0085 (7)	0.0063 (7)	0.0086 (7)
C3	0.0193 (9)	0.0349 (11)	0.0191 (9)	0.0081 (8)	0.0036 (7)	0.0076 (8)
C4	0.0228 (9)	0.0372 (12)	0.0213 (9)	0.0066 (8)	0.0030 (8)	-0.0012 (8)
C5	0.0256 (10)	0.0240 (10)	0.0350 (11)	0.0071 (8)	0.0065 (8)	0.0016 (8)
C6	0.0211 (9)	0.0239 (10)	0.0280 (9)	0.0093 (7)	0.0067 (8)	0.0093 (8)
C7	0.0123 (7)	0.0238 (9)	0.0212 (8)	0.0077 (7)	0.0064 (7)	0.0074 (7)
C8	0.0160 (8)	0.0264 (9)	0.0199 (8)	0.0114 (7)	0.0078 (7)	0.0100 (7)
C9	0.0217 (9)	0.0262 (10)	0.0193 (8)	0.0103 (7)	0.0065 (7)	0.0033 (7)
C10	0.0233 (9)	0.0229 (9)	0.0267 (9)	0.0124 (8)	0.0105 (8)	0.0073 (7)
C11	0.0196 (8)	0.0267 (10)	0.0208 (9)	0.0105 (7)	0.0070 (7)	0.0054 (7)
C12	0.0248 (9)	0.0274 (10)	0.0217 (9)	0.0110 (8)	0.0078 (7)	0.0083 (7)
C13	0.0396 (11)	0.0241 (10)	0.0272 (10)	0.0113 (9)	0.0099 (9)	0.0058 (8)
C14	0.0410 (12)	0.0438 (13)	0.0373 (11)	0.0215 (10)	0.0217 (10)	0.0197 (10)
C15	0.0364 (11)	0.0296 (11)	0.0282 (10)	0.0100 (9)	-0.0004 (9)	0.0066 (8)
N1	0.0294 (9)	0.0352 (10)	0.0313 (9)	0.0193 (8)	0.0158 (7)	0.0186 (8)
01	0.0390 (9)	0.0558 (11)	0.0400 (9)	0.0167 (8)	-0.0007 (7)	0.0290 (8)
O2	0.0889 (14)	0.0287 (9)	0.0447 (10)	0.0188 (9)	0.0129 (9)	0.0198 (8)
Si1	0.0252 (3)	0.0222 (3)	0.0169 (2)	0.0097 (2)	0.00518 (19)	0.00766 (19)

Geometric parameters (Å, °)

C1—C2	1.427 (3)	C10—H10	0.9300
C1-C10	1.366 (3)	C11—C12	1.201 (2)
C1—N1	1.476 (2)	C12—Si1	1.8403 (19)
C2—C3	1.422 (3)	C13—H13A	0.9600
C2—C7	1.430 (2)	C13—H13B	0.9600
С3—Н3	0.9300	C13—H13C	0.9600
C3—C4	1.363 (3)	C13—Si1	1.860 (2)
C4—H4	0.9300	C14—H14A	0.9600
C4—C5	1.399 (3)	C14—H14B	0.9600
С5—Н5	0.9300	C14—H14C	0.9600
C5—C6	1.362 (3)	C14—Si1	1.862 (2)
С6—Н6	0.9300	C15—H15A	0.9600
C6—C7	1.418 (3)	C15—H15B	0.9600

С7—С8	1.430 (2)	C15—H15C	0.9600
C8—C9	1.382 (3)	C15—Si1	1.853 (2)
C8—C11	1.439 (2)	N101	1.215 (2)
С9—Н9	0.9300	N1—O2	1.228 (2)
C9—C10	1.390 (2)		
C2—C1—N1	122.38 (16)	C12—C11—C8	178.5 (2)
C10—C1—C2	122.82 (16)	C11—C12—Si1	175.42 (17)
C10-C1-N1	114.80 (16)	H13A—C13—H13B	109.5
C1—C2—C7	116.38 (15)	H13A—C13—H13C	109.5
C3—C2—C1	125.72 (16)	H13B—C13—H13C	109.5
C3—C2—C7	117.84 (17)	Si1—C13—H13A	109.5
С2—С3—Н3	119.7	Si1—C13—H13B	109.5
C4—C3—C2	120.51 (17)	Si1—C13—H13C	109.5
С4—С3—Н3	119.7	H14A—C14—H14B	109.5
C3—C4—H4	119.2	H14A—C14—H14C	109.5
C3—C4—C5	121.65 (18)	H14B—C14—H14C	109.5
C5—C4—H4	119.2	Si1—C14—H14A	109.5
C4—C5—H5	120.1	Si1—C14—H14B	109.5
C6—C5—C4	119.74 (18)	Sil—C14—H14C	109.5
С6—С5—Н5	120.1	H15A—C15—H15B	109.5
С5—С6—Н6	119.6	H15A—C15—H15C	109.5
C5—C6—C7	120.89 (17)	H15B—C15—H15C	109.5
С7—С6—Н6	119.6	Si1—C15—H15A	109.5
C2—C7—C8	119.87 (16)	Si1—C15—H15B	109.5
C6—C7—C2	119.33 (16)	Si1—C15—H15C	109.5
C6—C7—C8	120.79 (16)	01—N1—C1	119.96 (17)
C7—C8—C11	120.25 (16)	01—N1—O2	123.02 (17)
C9—C8—C7	120.30 (16)	O2—N1—C1	117.02 (17)
C9—C8—C11	119.42 (16)	C12—Si1—C13	107.97 (9)
С8—С9—Н9	119.8	C12—Si1—C14	106.63 (9)
C8—C9—C10	120.33 (16)	C12—Si1—C15	109.92 (9)
С10—С9—Н9	119.8	C13—Si1—C14	110.88 (10)
C1—C10—C9	120.29 (17)	C15—Si1—C13	109.63 (10)
C1C10H10	119.9	C15—Si1—C14	111.70 (10)
C9—C10—H10	119.9		
C1—C2—C3—C4	178.69 (16)	C5—C6—C7—C8	-177.53 (16)
C1—C2—C7—C6	-179.69 (14)	C6—C7—C8—C9	179.94 (15)
C1—C2—C7—C8	-0.9 (2)	C6—C7—C8—C11	1.9 (2)
C2-C1-C10-C9	-0.7 (3)	C7—C2—C3—C4	1.7 (2)
C2-C1-N1-O1	21.6 (2)	C7—C8—C9—C10	-1.2 (2)
C2-C1-N1-O2	-158.72 (17)	C8—C9—C10—C1	0.9 (3)
C2—C3—C4—C5	0.2 (3)	C10—C1—C2—C3	-176.32 (16)
C2—C7—C8—C9	1.2 (2)	C10—C1—C2—C7	0.7 (2)
C2—C7—C8—C11	-176.86 (14)	C10-C1-N1-O1	-158.99 (17)
C3—C2—C7—C6	-2.4 (2)	C10—C1—N1—O2	20.7 (2)
C3—C2—C7—C8	176.36 (15)	C11-C8-C9-C10	176.88 (15)

C3—C4—C5—C6	-1.5 (3)	N1—C1—C2—C3	3.1 (3)
C4—C5—C6—C7	0.7 (3)	N1—C1—C2—C7	-179.89 (14)
C5—C6—C7—C2	1.2 (2)	N1—C1—C10—C9	179.83 (14)