

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 16 February 2015
Accepted 2 April 2015

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; coordination polymer; calcium levulinate dihydrate; levulinic acid; hydrogen bonding

CCDC reference: 1057749
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of a polymeric calcium levulinate dihydrate: catena-poly[[diaquacalcium]-bis($\mu_{2}-4-$ oxobutanoato)]

Ananda S. Amarasekara, ${ }^{\text {a* }}$ Dominique T. Sterling-Wells, ${ }^{\text {a }}$ Carlos Ordonez, ${ }^{\text {b }}$ Marie-Josiane Ohoueu ${ }^{\text {b }}$ and Marina S. Fonari ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Prairie View A\&M University, Prairie View, TX 77446, USA, ${ }^{\mathbf{b}}$ Department of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA, and ${ }^{\text {c Institute of Applied Physics, Academy of Sciences }}$ of Moldova, Academy Str. 5, MD2028, Chisinau, Republic of Moldova. *Correspondence e-mail:
asamarasekara@pvamu.edu

In the title calcium levulinate complex, $\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the Ca^{2+} ion lies on a twofold rotation axis and is octacoordinated by two aqua ligands and six O atoms from four symmetry-related carboxylate ligands, giving a distorted square-antiprismatic coordination stereochemistry $[\mathrm{Ca}-\mathrm{O}$ bond-length range $=$ 2.355 (1)-2.599 (1) Å]. The levulinate ligands act both in a bidentate carboxyl O, O^{\prime}-chelate mode and in a bridging mode through one carboxyl O atom with an inversion-related Ca^{2+} atom, giving a Ca...Ca separation of 4.0326 (7) A. A coordination polymeric chain structure is generated, extending along the c-axial direction. The coordinating water molecules act as double donors and participate in intra-chain $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with carboxyl O atoms, and in inter-chain $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with carbonyl O atoms, thus forming an overall three-dimensional structure.

1. Chemical context

Levulinic acid (4-oxopentanoic acid) is a biomass-derived keto acid and is a potential precursor for renewable fuels as well as polymeric materials (Mukherjee et al., 2015). A number of metal salts of levulinic acid have been prepared for a variety of applications and the calcium salt with formula $\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is the most widely studied levulinate, as it has been used for over 80 years as a calcium supplement (Proskouriakoff, 1933). The revived interest in calcium levulinate is due to a recent discovery that pyrolysis of this readily accessible renewable biomass-based calcium salt can be used to produce biofuels via a ketonic decarboxylation process with recycling of calcium as CaCO_{3} (Schwartz et al., 2010; Case et al., 2012). In addition, we have recently shown that acidcatalyzed hydrothermal degradation of cellulose and neutralization of the filtrate with calcium hydroxide can be used to prepare a mixture of calcium levulinate and calcium formate and the pyrolysis of this mixture at 623 K can be used to produce γ-valerolactone (Amarasekara et al., 2015). Recently, Bryce and co-workers published the solid-state ${ }^{13} \mathrm{C}$ NMR spectrum of calcium levulinate in which they identified only one type of a levulinate anion (Widdifield et al., 2014). However, there are no reports on X-ray crystallographic studies on this well known calcium carboxylate. Our interest in thermal properties and biofuel applications of calcium levulinate has led us to study the structure of this salt and in this communication we report the crystal structure of calcium levulinate dihydrate, $\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$.

2. Structural commentary

The calcium levulinate structure contains one Ca^{2+} cation, two levulinate anions and two water molecules per formula unit, with the Ca^{2+} cation situated on a twofold rotation axis (Fig. 1). The cation is octacoordinated and exhibits a distorted square antiprismatic stereochemistry with $\mathrm{Ca}-\mathrm{O}$ bond lengths in the range of $2.355(1)-2.599$ (1) \AA (Table 1). The levulinate carboxyl O atoms (O 1 and O 2) coordinate to Ca^{2+} cations in two coordination modes, a bidentate O, O^{\prime}-chelate mode and a bridging mode through $\mathrm{O} 1^{i}$ with an inversion-related Ca^{2+} centre, giving a $\mathrm{Ca} 1 \cdots \mathrm{Ca} 1^{\mathrm{i}}$ or $\mathrm{Ca} 1 \cdots \mathrm{Ca} 1^{\mathrm{v}}$ separation of 4.0326 (7) \AA [for symmetry code (i) see Table 1; symmetry code (v): $-x+1,-y,-z]$. Furthermore, due to this type of coordination environment, the two levulinate anions are almost perpendicular to each other, with an $\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 2^{\text {iii }}$

Figure 1
A portion of the crystal structure of the title complex, displaying the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (v): $-x+1,-y,-z$; for other codes, see Table 1.

Table 1
Selected bond lengths (A).

$\mathrm{Ca} 1-\mathrm{O}^{1}$	$2.3546(10)$	$\mathrm{Ca} 1-\mathrm{O} 2^{\mathrm{iiii}}$	$2.4820(10)$
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {ii }}$	$2.3546(10)$	$\mathrm{Ca} 1-\mathrm{O} 2$	$2.4820(11)$
$\mathrm{Ca} 1-\mathrm{O} 4^{\text {iii }}$	$2.4367(10)$	$\mathrm{Ca} 1-\mathrm{O} 1$	$2.5989(10)$
$\mathrm{Ca} 1-\mathrm{O} 4$	$2.4367(10)$	$\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	$2.5990(10)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x,-y, z-\frac{1}{2}$; (iii) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {iv }}$	0.90	2.02	$2.8568(15)$	155
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{v}}$	0.90	1.87	$2.7519(14)$	168

Symmetry codes: (iv) $x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+1,-y,-z$.
angle $=75.78(5)^{\circ}$ [for code (iii), see Table 1]. The extended one-dimensional coordination polymeric chain generated lies parallel to the c axis (Fig. 2) and within each chain, the coordinating water molecules form intra-chain $\mathrm{O} 4-$ $\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{v}}$ carboxyl hydrogen-bonds (Table 2).

3. Supramolecular features

In the crystal, the polymer chains are linked via inter-chain hydrogen bonds between the second H atom of the coordinating water molecule and the carbonyl O atom of an adjacent chain $\left(\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {iv }}\right)$, giving an overall three-dimensional structure (Fig. 3) [for symmetry code (iv), see Table 2]. To achieve this hydrogen-bonding interaction, the levulinate molecule is twisted [torsion angle $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=$ $\left.73.2(2)^{\circ}\right]$.

Figure 2
The one-dimensional coordination polymeric chain extending along the c axis.

Figure 3
The three-dimensional hydrogen-bonded structure in the unit cell viewed along the c axis. Hydrogen-bonding interactions are shown as dashed lines.

4. Database survey

The Cu^{2+} levulinate structures represent examples of a very small number of metal levulinates in the crystallographic literature (Zubkowski et al., 1997). Only one of these involves the levulinate ligand alone: a polymeric structure formed through carboxyl O-linked tetracarboxylate-bridged dimers, in which the copper atoms have nearly square-pyramidal coordination geometry. In the same report are the structures of three additional Cu^{2+} complexes with levulinate as well as other ligands: pyridine, 2, 2^{\prime}-bipyridine and triphenylphosphine. The crystal structures of two polymorphic forms of the analogous calcium acetate monohydrate salt are also known (Klop et al., 1984; Van der Sluis et al., 1987).

5. Synthesis and crystallization

Levulinic acid ($1.160 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added to a suspension of calcium hydroxide $(0.370 \mathrm{~g}, 5.00 \mathrm{mmol})$ in 200 mL of deionized water in a beaker. The mixture was boiled with magnetic stirring on a hot plate to form a clear solution, then transferred to an evaporating dish and allowed to crystallize at room temperature. The product was collected under suction filtration, dried at 363 K for 24 h to give 1.455 g of calcium levulinate dihydrate as white needle-shaped crystals in 95% yield. Found: C, 39.02; H, 6.23; calculated for $\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]: \mathrm{C}, 39.21 ; \mathrm{H}, 5.92 \% .^{1} \mathrm{H}$ NMR (DMSOd6) $\delta 2.05(3 \mathrm{H}, s), 2.19(2 \mathrm{H}, t, J=6.8 \mathrm{~Hz}), 2.54(2 \mathrm{H}, t, J=$ 6.8 Hz). ${ }^{13} \mathrm{C}$ NMR (DMSO-d6) $\delta 30.2,31.5,37.9,179.6,208.9$. The single crystals for X-ray crystallographic analysis were grown by allowing a saturated solution of calcium levulinate

Table 3
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
M_{r}	306.32
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	100
$a, b, c(\AA)$	$17.644(3), 9.9627(19), 7.8160(15)$
$V\left(\AA^{3}\right)$	$1373.9(5)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.49
Crystal size (mm)	$0.94 \times 0.11 \times 0.08$
Data collection	Bruker SMART APEXII CCD
Diffractometer	area detector
	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2005)$
	$0.656,0.963$
$T_{\text {min }}, T_{\text {max }}$	$11806,1664,1571$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.020
$R_{\text {int }}$	0.660
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.030,0.083,1.16$
No. of reflections	1664
No. of parameters	88
$\mathrm{H}-$ atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.53,-0.54$

Computer programs: APEX2 and SAINT (Bruker, 2005), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).
dihydrate in 20% methanol in water to stand at room temperature for five days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms. The water H atoms were found using a Fourier map and were also allowed to ride in the refinement, $\mathrm{O}-\mathrm{H}=0.90 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Acknowledgements

We acknowledge NSF grants DMR-0934212 (PREM), CBET0929970, CBET-1336469, HRD-1036593 and USDA grant CBG-2010-38821-21569 for financial support.

References

Amarasekara, A. S., Wiredu, B. \& Edwards, D. N. (2015). Biomass Bioenergy, 72, 39-44.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Case, P. A., van Heiningen, A. R. \& Wheeler, M. C. (2012). Green Chem. 14, 85-89.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

research communications

Klop, E. A., Schouten, A., van der Sluis, P. \& Spek, A. L. (1984). Acta Cryst. C40, 51-53.
Mukherjee, A., Dumont, M.-J. \& Raghavan, V. (2015). Biomass Bioenergy, 72, 143-183.
Proskouriakoff, A. (1933). J. Am. Chem. Soc. 55, 2132-2134.
Schwartz, T. J., van Heiningen, A. R. \& Wheeler, M. C. (2010). Green Chem. 12, 1353-1356.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sluis, P. van der, Schouten, A. \& Spek, A. L. (1987). Acta Cryst. C43, 1922-1924.
Widdifield, C. M., Moudrakovski, I. \& Bryce, D. L. (2014). Phys. Chem. Chem. Phys. 16, 13340-13359.
Zubkowski, J. D., Washington, D., Njoroge, N., Valente, E. J., Cannon, T., Parks, C. D., Berdahl, P. \& Perry, D. L. (1997). Polyhedron, 16, 2341-2351.

supporting information

Crystal structure of a polymeric calcium levulinate dihydrate: catena-poly[[di-aquacalcium]-bis(μ_{2}-4-oxobutanoato)]

Ananda S. Amarasekara, Dominique T. Sterling-Wells, Carlos Ordonez, Marie-Josiane Ohoueu and Marina S. Fonari

Computing details

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[diaquacalcium]-bis($\mu_{2}-4$-oxobutanoato)]

Crystal data

$\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=306.32$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=17.644$ (3) \AA
$b=9.9627$ (19) \AA
$c=7.8160(15) \AA$
$V=1373.9(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.656, T_{\text {max }}=0.963$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.16$
1664 reflections
88 parameters
0 restraints

$$
F(000)=648
$$

$D_{\mathrm{x}}=1.481 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8589 reflections
$\theta=2.3-30.5^{\circ}$
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.94 \times 0.11 \times 0.08 \mathrm{~mm}$

11806 measured reflections
1664 independent reflections
1571 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-23 \rightarrow 23$
$k=-13 \rightarrow 13$
$l=-10 \rightarrow 10$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

supporting information

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0384 P)^{2}+1.0525 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ca1	0.5000	$0.04993(4)$	0.2500	$0.00808(12)$
O4	$0.40994(5)$	$0.20740(10)$	$0.12520(12)$	$0.0141(2)$
H4A	0.3629	0.1929	0.1655	0.021^{*}
H4B	0.4086	0.1988	0.0107	0.021^{*}
O2	$0.58523(5)$	$-0.14668(10)$	$0.21809(12)$	$0.0123(2)$
C4	$0.71782(8)$	$-0.37537(14)$	$0.25360(16)$	$0.0120(3)$
O1	$0.55856(5)$	$-0.10067(9)$	$0.48715(12)$	$0.0115(2)$
C1	$0.58068(7)$	$-0.18090(13)$	$0.37294(16)$	$0.0094(2)$
C2	$0.59849(8)$	$-0.32410(14)$	$0.42594(18)$	$0.0149(3)$
H2A	0.5507	-0.3682	0.4616	0.018^{*}
H2B	0.6324	-0.3215	0.5269	0.018^{*}
C3	$0.63568(8)$	$-0.40979(13)$	$0.28835(19)$	$0.0140(3)$
H3A	0.6326	-0.5052	0.3232	0.017^{*}
H3B	0.6066	-0.3997	0.1807	0.017^{*}
O3	$0.74945(6)$	$-0.28329(10)$	$0.32774(13)$	$0.0166(2)$
C5	$0.75831(8)$	$-0.46004(14)$	$0.12409(18)$	$0.0155(3)$
H5A	0.8107	-0.4287	0.1123	0.023^{*}
H5B	0.7325	-0.4530	0.0135	0.023^{*}
H5C	0.7583	-0.5539	0.1618	0.023^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca1	$0.00891(19)$	$0.00906(19)$	$0.00626(18)$	0.000	$0.00041(11)$	0.000
O4	$0.0144(5)$	$0.0187(5)$	$0.0092(4)$	$0.0031(4)$	$0.0010(3)$	$0.0003(4)$
O2	$0.0133(4)$	$0.0152(5)$	$0.0084(4)$	$0.0034(4)$	$0.0011(3)$	$0.0007(4)$
C 4	$0.0140(6)$	$0.0107(6)$	$0.0113(6)$	$0.0030(5)$	$-0.0017(4)$	$0.0023(5)$
O1	$0.0111(4)$	$0.0140(5)$	$0.0093(4)$	$0.0021(3)$	$0.0009(3)$	$-0.0016(4)$
C1	$0.0058(5)$	$0.0125(6)$	$0.0099(6)$	$0.0001(4)$	$-0.0001(4)$	$0.0001(5)$
C2	$0.0168(6)$	$0.0136(6)$	$0.0142(6)$	$0.0041(5)$	$0.0044(5)$	$0.0032(5)$
C3	$0.0136(6)$	$0.0114(6)$	$0.0172(6)$	$0.0020(5)$	$0.0007(5)$	$-0.0009(5)$
O3	$0.0163(5)$	$0.0148(5)$	$0.0187(5)$	$0.0005(4)$	$-0.0029(4)$	$-0.0037(4)$

C 5	$0.0154(6)$	$0.0153(6)$	$0.0160(6)$	$0.0011(5)$	$0.0024(5)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cal}-\mathrm{Ol}^{\text {i }}$	2.3546 (10)	C4- C3	1.5138 (19)
$\mathrm{Ca} 1-\mathrm{Ol}^{\text {ii }}$	2.3546 (10)	O1-C1	1.2602 (16)
$\mathrm{Ca} 1-\mathrm{O} 4^{\text {iii }}$	2.4367 (10)	O1-Ca1 ${ }^{\text {i }}$	2.3546 (10)
Ca1-O4	2.4367 (10)	C1-C2	1.5185 (18)
$\mathrm{Ca} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.4820 (10)	C2-C3	1.5218 (19)
Ca1-O2	2.4820 (11)	C2-H2A	0.9900
Ca1-O1	2.5989 (10)	C2-H2B	0.9900
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	2.5990 (10)	C3-H3A	0.9900
O4-H4A	0.8999	C3-H3B	0.9900
O4-H4B	0.8994	C5-H5A	0.9800
O2-C1	1.2599 (16)	C5-H5B	0.9800
C4-O3	1.2203 (17)	C5-H5C	0.9800
C4- C 5	1.4988 (18)		
$\mathrm{Ol}^{\text {i }}-\mathrm{Cal}-\mathrm{Ol}^{\text {ii }}$	155.21 (5)	$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {iv }}$	73.02 (2)
$\mathrm{Ol}^{\text {i }}-\mathrm{Cal}-\mathrm{O}^{\text {iii }}$	78.38 (3)	$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {iv }}$	123.28 (3)
$\mathrm{Ol}{ }^{\text {ii- }} \mathrm{Ca} 1-\mathrm{O} 4{ }^{\text {iii }}$	85.69 (3)	$\mathrm{O} 1 \mathrm{iii}-\mathrm{Ca} 1-\mathrm{Cal}^{\text {iv }}$	33.53 (2)
O1-Cal-O4	85.69 (3)	$\mathrm{C} 1-\mathrm{Ca1-Ca1}{ }^{\text {iv }}$	97.28 (3)
$\mathrm{Ol}{ }^{\text {ii- }} \mathrm{Ca} 1-\mathrm{O} 4$	78.39 (3)	C1iii-Cal-Cal ${ }^{\text {iv }}$	58.53 (3)
$\mathrm{O} 4{ }^{\text {iii- }}$ - $\mathrm{Ca} 1-\mathrm{O} 4$	99.84 (5)	$\mathrm{Ol}^{\text {i }}-\mathrm{Ca} 1-\mathrm{Cal}^{\text {i }}$	37.57 (2)
$\mathrm{Ol}^{\text {i }}-\mathrm{Ca} 1-\mathrm{O}^{\text {iii }}$	79.39 (3)	$\mathrm{O} 1^{\text {ii- }} \mathrm{Ca} 1-\mathrm{Cal}^{\text {i }}$	153.97 (2)
$\mathrm{Ol}{ }^{\text {ii- }}$ - $\mathrm{Ca} 1-\mathrm{O}^{2 i i}$	121.53 (3)	O4iii- $\mathrm{Ca} 1-\mathrm{Ca}^{\text {i }}{ }^{\text {i }}$	76.76 (2)
O4iii-Cal-O2 ${ }^{\text {iii }}$	149.65 (3)	$\mathrm{O} 4-\mathrm{Ca}-\mathrm{Cal}^{\text {i }}$	123.15 (2)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O}^{\text {iii }}$	98.81 (4)	$\mathrm{O} 2{ }^{\text {iii- }}-\mathrm{Ca} 1-\mathrm{Cal}^{\text {i }}$	73.02 (2)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Cal}-\mathrm{O} 2$	121.53 (3)	$\mathrm{O} 2-\mathrm{Cal}-\mathrm{Cal}^{\text {i }}$	84.41 (2)
$\mathrm{Ol}^{\text {ii- }} \mathrm{Ca} 1-\mathrm{O} 2$	79.39 (3)	$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{Cal}^{\text {i }}$	33.53 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 2$	98.81 (4)	$\mathrm{O} 1 \mathrm{iii}-\mathrm{Ca} 1-\mathrm{Cal}^{\text {i }}$	123.28 (3)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 2$	149.65 (3)	C1-Ca1-Cal ${ }^{\text {i }}$	58.53 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 2$	75.78 (5)	C1iii-Ca1-Ca1 ${ }^{\text {i }}$	97.28 (3)
O1-Ca1-O1	71.10 (4)	$\mathrm{Ca} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	111.0
$\mathrm{Ol}{ }^{\text {ii- }} \mathrm{Ca}-\mathrm{O} 1$	124.87 (4)	$\mathrm{Ca} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	110.8
O4iii- ${ }^{\text {ial }}$ - O 1	80.03 (3)	H4A-O4-H4B	108.0
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 1$	156.41 (3)	C1-O2-Cal	94.50 (8)
$\mathrm{O} 2{ }^{\text {iii- }}$ - $\mathrm{Ca} 1-\mathrm{O} 1$	73.36 (3)	O3-C4-C5	121.72 (13)
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 1$	51.33 (3)	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	121.53 (12)
$\mathrm{Ol}^{\text {i }}$ - $\mathrm{Cal}-\mathrm{Ol}^{\text {iii }}$	124.87 (4)	C5-C4-C3	116.75 (12)
$\mathrm{Ol}^{\text {ii- }} \mathrm{Ca} 1-\mathrm{Ol}^{\text {iii }}$	71.10 (4)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cal}^{1}$	152.89 (9)
$\mathrm{O} 4{ }^{\text {iii- }}$ - $\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	156.41 (3)	C1-O1-Cal	89.09 (8)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{Ol}^{\text {iii }}$	80.03 (3)	$\mathrm{Ca1}{ }^{\text {i- }} \mathrm{O} 1-\mathrm{Ca} 1$	108.90 (4)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	51.33 (3)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	121.91 (12)
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{Ol}^{\text {iii }}$	73.36 (3)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	120.21 (12)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{Ol}^{\text {iii }}$	109.48 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.82 (11)
O1- ${ }^{\text {Cal }}-\mathrm{C} 1$	95.60 (4)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{Ca} 1$	59.55 (7)
$\mathrm{Ol}^{\text {ii- }}$ - $\mathrm{Cal}-\mathrm{C} 1$	104.27 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ca} 1$	64.87 (7)

$\mathrm{O} 4^{\text {iii }}-\mathrm{Ca} 1-\mathrm{C} 1$	93.35 (4)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{C} 1$	166.72 (4)
$\mathrm{O} 2 \mathrm{iii}-\mathrm{Ca} 1-\mathrm{C} 1$	68.56 (4)
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{C} 1$	25.95 (3)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{C} 1$	26.04 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ca} 1-\mathrm{C} 1$	88.47 (4)
O1- ${ }^{\text {i }}$ - $1-\mathrm{Cl}^{1 i i}$	104.27 (4)
$\mathrm{O} 1^{\text {ii- }} \mathrm{Ca} 1-\mathrm{Cl}^{\text {iii }}$	95.60 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{C} 1^{\text {iii }}$	166.72 (4)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{C}^{\text {iii }}$	93.35 (4)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{C} 1{ }^{\text {iii }}$	25.95 (3)
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{C} 1^{\text {iii }}$	68.56 (4)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{Cl}^{\text {iii }}$	88.47 (4)
O1 ${ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{C} 1^{\text {iii }}$	26.04 (3)
$\mathrm{C} 1-\mathrm{Ca} 1-\mathrm{Cl}^{\text {iii }}$	73.51 (5)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{Cal}^{\text {iv }}$	153.97 (2)
O1ii-Ca1-Ca1 ${ }^{\text {iv }}$	37.57 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iv }}$	123.15 (2)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iv }}$	76.76 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iv }}$	84.41 (2)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	-2.30 (9)
$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	163.32 (8)
$\mathrm{O} 4{ }^{\text {iiii }}$ - $\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	79.43 (8)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	-153.18 (8)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	-70.07 (7)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	9.82 (7)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	-123.41 (8)
$\mathrm{C} 1{ }^{\text {iii- }} \mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	-96.30 (8)
$\mathrm{Ca} 1{ }^{\text {iv }}-\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	-158.49 (8)
$\mathrm{Ca} 1{ }^{\text {i }}$ - $\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1$	3.79 (7)
$\mathrm{O} 1-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	159.32 (9)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	-42.09 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	-119.65 (7)
$\mathrm{O} 4-\mathrm{Ca}-\mathrm{O} 1-\mathrm{C} 1$	148.55 (9)
$\mathrm{O} 2 \mathrm{iii}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	75.10 (7)
$\mathrm{O} 2-\mathrm{Ca}-\mathrm{O} 1-\mathrm{C} 1$	-9.79 (7)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	37.99 (6)
$\mathrm{C} 1{ }^{\text {iii- }} \mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	53.67 (9)
$\mathrm{Ca1}{ }^{\text {iv }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	3.63 (8)
$\mathrm{Ca1}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1$	159.32 (9)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\mathrm{i}}$	0.0
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Cal}^{\text {i }}$	158.59 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\text {i }}$	81.03 (4)
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Cal}^{1}$	-10.77 (10)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\text {i }}$	-84.22 (4)
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\text {i }}$	-169.10 (6)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\text {i }}$	-121.33 (4)

166.72 (4)
68.56 (4)
25.95 (3)
26.04 (3)
88.47 (4)
104.27 (4)
95.60 (4)
166.72 (4)
93.35 (4)
25.95 (3)
68.56 (4)
26.04 (3)
73.51 (5)
153.97 (2)
37.57 (2)
123.15 (2)
76.76 (2)
84.41 (2)
-2.30 (9)
163.32 (8)
79.43 (8)
-153.18 (8)
-70.07 (7)
9.82 (7)
-123.41 (8)
-96.30 (8)
-158.49 (8)
3.79 (7)
159.32 (9)
-42.09 (8)
-119.65 (7)
148.55 (9)
75.10 (7)
37.99 (6)
53.67 (9)
3.63 (8)
159.32 (9)
0.0
158.59 (4)
81.03 (4)
-10.77 (10)
-84.22 (4)
-121.33 (4)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ca} 1$	$161.22(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$115.05(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$114.37(11)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	107.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
H5A-C5-H5B	109.5
C4-C5-H5C	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5

178.03 (8)
-16.92 (8)
-103.32 (8)
83.05 (17)
101.76 (8)
-162.35 (12)
53.14 (8)
74.78 (8)
20.71 (8)
-175.57 (9)
-19.62 (9)
145.43 (7)
59.02 (7)
-114.60 (15)
-95.90 (7)
162.35 (12)
-144.52 (6)
-122.87 (9)
-176.95 (7)
-13.22 (6)
83.2 (3)
-111.8 (3)
161.8 (3)
-11.8(4)
6.9 (3)
-94.8 (3)
102.8 (3)

supporting information

$\mathrm{C} 1-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\mathrm{i}}$	$-159.32(9)$	$\mathrm{O} 1^{\mathrm{iii}-\mathrm{Ca} 1-\mathrm{C} 1-\mathrm{C} 2}$	$-41.7(3)$
$\mathrm{C} 1^{\mathrm{iii}}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\mathrm{i}}$	$-105.65(4)$	$\mathrm{C} 1^{\mathrm{iii}}-\mathrm{Ca} 1-\mathrm{C} 1-\mathrm{C} 2$	$-20.0(3)$
$\mathrm{Ca} 1^{\mathrm{iv}}-\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{Ca} 1^{\mathrm{i}}$	$-155.69(2)$	$\mathrm{Ca} 1^{\mathrm{iv}}-\mathrm{Ca} 1-\mathrm{C} 1-\mathrm{C} 2$	$-74.1(3)$
$\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$-18.87(13)$	$\mathrm{Ca} 1^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{C} 1-\mathrm{C} 2$	$89.6(3)$
$\mathrm{Ca} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$158.21(10)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$11.36(18)$
$\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$150.77(13)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-171.45(11)$
$\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$\mathrm{Ca} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$95.1(3)$	
$\mathrm{Ca} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-26.4(2)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-2.20(18)$
$\mathrm{Ca} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-159.21(10)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$177.69(12)$
$\mathrm{Ca} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ca} 1$	$132.83(18)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$73.21(15)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x,-y, z-1 / 2$; (iii) $-x+1, y,-z+1 / 2$; (iv) $-x+1,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{v}$	0.90	2.02	$2.8568(15)$	155
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{iv}}$	0.90	1.87	$2.7519(14)$	168

Symmetry codes: (iv) $-x+1,-y,-z$; (v) $x-1 / 2, y+1 / 2,-z+1 / 2$.

