

Received 28 April 2015 Accepted 15 May 2015

Edited by I. D. Brown, McMaster University, Canada

Keywords: crystal structure; usovite; Fecontaining usovite; disorder; fluorides

CCDC reference: 1401194 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the Fe-member of usovite

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria. *Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Crystals of the title compound, with the idealized composition Ba₂CaFeAl₂F₁₄, dibarium calcium iron(II) dialuminium tetradecafluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF₂, CaF₂ and AlF₃ in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba₂CaMgAl₂F₁₄), with Fe²⁺ cations replacing the Mg²⁺ cations. The principal building units are distorted [CaF₈] square-antiprisms (point group symmetry 2), [FeF₆] octahedra (point group symmetry 1) and [AlF₆] octahedra that are condensed into undulating $^{2}_{\infty}$ [CaFeAl₂F₁₄]⁴⁻ layers parallel (100). The Ba²⁺ cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), *versus* underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba₂Ca_{1.310 (15)}-Fe_{0.690 (15)}Al₂F₁₄ [model (I)] and Ba₂CaFe_{0.90 (1)}Al₂F₁₄ [model (II)].

1. Chemical context

Fluoridoaluminates with alkaline earth cations exhibit a rich crystal chemistry (Babel & Tressaud, 1985; Weil *et al.*, 2001). They are suitable host materials for optical applications as has been shown by luminescence exitation studies of SrAIF₅ or CaAlF₅ doped with Pr^{3+} and Mn^{2+} (van der Kolk *et al.*, 2004). In order to prepare large single crystals of a related fluoridoaluminate with composition BaCaAlF₇, a different preparation route was chosen in comparison with the reported crystal-growth procedure. Instead of using a ZnCl₂ melt (Werner & Weil, 2003), a carbon tool steel container shielded

OPEN d ACCESS

[AlF₆] octahedra (yellow, with F atoms green) and [FeF₆] octahedra (orange) are linked into crosslinked double chains parallel to [010]. Displacement ellipsoids are drawn at the 74% probability level.

Table 1 Selected bond lengths (Å) for model (I).

For model (II), bond lengths are the same within their standard uncertainti	ies
---	-----

Ba-F7	2.696 (2)	Ca2-F4	2.376 (2)
Ba-F4 ⁱ	2.730 (2)	Ca2-F4 ^{ix}	2.376 (2)
Ba-F1 ⁱ	2.755 (2)	Ca2-F5 ^x	2.544 (2)
Ba-F2 ⁱⁱ	2.765 (2)	Ca2-F5 ^{iv}	2.544 (2)
Ba-F5 ⁱⁱⁱ	2.766 (2)	Fe1-F7 ^x	2.015 (2)
Ba-F5 ^{iv}	2.827 (2)	Fe1-F7 ⁱ	2.015 (2)
Ba-F3 ^{iv}	2.889 (2)	Fe1-F2 ^{xi}	2.131 (2)
Ba-F1 ^v	2.889 (2)	Fe1-F2 ^{viii}	2.131 (2)
Ba-F3	2.974 (2)	Fe1-F3 ^x	2.216 (2)
Ba-F6 ⁱⁱⁱ	3.101 (2)	Fe1-F3 ⁱ	2.216 (2)
Ba-F6 ^{iv}	3.158 (2)	Al-F4 ^{xii}	1.780 (2)
Ba-F1 ^{vi}	3.233 (3)	Al-F1	1.780 (3)
Ca2-F7 ^{vii}	2.235 (2)	Al-F6 ^{iv}	1.790 (2)
Ca2-F7 ⁱ	2.235 (2)	Al-F2 ^{iv}	1.799 (2)
Ca2-F6 ⁱⁱⁱ	2.369 (2)	Al-F5 ⁱⁱⁱ	1.843 (2)
Ca2-F6 ^{viii}	2.369 (2)	Al-F3 ⁱⁱⁱ	1.846 (2)

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (iii) $x, -y + 1, z - \frac{1}{2};$ (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2};$ (vi) $x, -y + 1, z + \frac{1}{2};$ (vii)

with a molybdenum foil was used for solid state reactions between a mixture of the binary fluorides (Weil & Kubel, 2002). However, during one of these experiments it turned out that the container was not completely lined by the molybdenum foil which consequently led to a reaction with the container wall and an incorporation of iron into parts of the reaction products. Crystal structure analysis of selected crystals from this reaction batch revealed an Fe-containing phase that crystallizes isotypically with the mineral usovite, $Ba_2CaMgAl_2F_{14}$ (Litvin *et al.*, 1980).

Compounds with the usovite-type structure are represented by the general formula $Ba_2(M^{II}1)(M^{II}2)(M^{III}3)_2F_{14}$ ($M^{II}1 =$ Ca, Cd, Mn; $M^{II}2 =$ Mg, Co, Mn, Cu, Cd, Fe; $M^{III}3 =$ Al, V, Fe, Cr, Ga, Mn) and crystallize with four formula units in the space group *C*2/*c*. Most of the usovite-type representatives known so far were prepared and structurally determined by Babel, Tressaud and co-workers over the last three decades (Holler *et al.*, 1984, 1985; Kaiser *et al.*, 2002; Le Lirzin *et al.*, 1990, 1991, 2008; Qiang *et al.*, 1988).

2. Structural commentary

The principal building units of the usovite crystal structure are distorted $[BaF_{12}]$ polyhedra, $[(M^{II}1)F_8]$ sqare-antiprisms (point group symmetry 2) and $[(M^{II}2)F_6]$ octahedra (point group symmetry $\overline{1}$), as well as rather regular $[(M^{III}3)F_6]$ octahedra. The $[(M^{II2})F_6]$ and $[(M^{III3})F_6]$ octahedra are connected by corner-sharing into infinite crosslinked double chains ${}^{1}_{\infty}[(M^{II2})F_2F_{4/2}(M^{III3})_2F_8F_{4/2}]$ extending parallel to [010] (Fig. 1). Neighbouring chains are linked by the $[(M^{II1}1)F_8]$ square-antiprisms into undulating (100) layers with composition ${}^{\infty}_{\infty}[(M^{II1})(M^{II2})(M^{III3})_2F_{14}]^{4-}$, with the Ba²⁺ cations separating the individual layers (Fig. 2).

The unit-cell volume of the title compound [1067.9 (2) Å³] is slightly larger than that of usovite Ba₂CaMgAl₂F₁₄ (1027.9 Å; Litvin *et al.*, 1980) due to the replacement of the Mg²⁺ cations (ionic radius = 0.72 Å; Shannon, 1976) by the

Figure 2 The crystal structure of the usovite-type title compound, emphasizing the formation of the layered $^2_{\infty}$ [CaFeAl₂F₁₄]⁴⁻ framework parallel to (100), separated by Ba²⁺ cations. Displacement ellipsoids are drawn at the 74% probability level. The colour code is as in Fig. 1, with [CaF₈] polyhedra in blue and Ba atoms in red.

larger Fe²⁺ cations (ionic radius = 0.78 Å; Shannon, 1976) at the $M^{II}2$ site. This is also reflected by the bond lengths within the individual coordination polyhedra (Table 1). Wheras the Ba-F, Ca-F and Al-F distances remain nearly unaltered between the two structures, the Mg-F and Fe-F distances show remarkable differences. The Mg-F distances in the usovite structure range from 1.939 to 2.041 Å, the corresponding Fe-F distances in the title structure from 2.015 (2) to 2.216 (2) Å, with a mean distance of 2.123 Å. The latter is in reasonable agreement with the mean Fe^{II}-F distance of 2.106 Å in the isotypic crystal structure of Ba₂CaFeV₂F₁₄ (Kaiser *et al.*, 2002). However, the mean bond lengths in both the title structure and Ba₂CaFeV₂F₁₄ are considerably longer than that of 2.074 Å in the structure of the binary compound FeF₂ (Jauch *et al.*, 1993).

A similar increase of the M-F bond lengths of the $[(M^{II}2)F_6]$ octahedra was also observed for a series of other usovite-type structures and was associated with an occupational disorder of the $M^{II}2$ site. For these models, either a mutual substitution of Ca^{2+} (on the $M^{II}1$ site) with corresponding divalent transition metal ions on the $M^{II}2$ site, or partial replacement of the divalent transition metal ions by Ca^{2+} at the $M^{II}2$ site was considered, resulting in stoichiometric compounds and Ca-richer compounds, respectively (Kaiser et al., 2002). In the case of the title compound, a model with mutual substitution of Ca^{2+} and Fe^{2+} on the M^{II} and $M^{II}2$ sites could be ruled out during refinement. However, a model with an incorporation of Ca²⁺ on the Fe²⁺ site resulted in a ratio of Ca:Fe = 0.155 (7):0.345 (7) for this site [model (I); overall refined formula for the compound: Ba₂Ca_{1 310 (15)}- $Fe_{0.690(15)}Al_2F_{14}$ and converged with the same reliability

research communications

 Table 2

 Bond-valence sum calculations for model (I) in valence units.

Atom	Assumed valence state	Bond-valence sum	Deviation from assumed valence state in valence units	Bond-valence sum under consideration of mixed Fe1:Ca1 occupancy*
Ba	2	1.94	0.06	1.94
Fe1	2	1.73	0.27	2.00
Ca2	2	1.95	0.05	1.95
Al	3	2.97	0.03	2.97
F1	1	0.96	0.04	0.96
F2	1	0.99	0.01	1.03
F3	1	0.93	0.07	0.96
F4	1	1.00	0	1.00
F5	1	0.99	0.01	0.99
F6	1	0.92	0.08	0.92
F7	1	0.97	0.03	1.03

Note: (*) calculated with the weighted average Fe:Ca ratio of 0.77:0.23 at the M2 site.

factors and remaining electron densities as the model without an incorporation of Ca^{2+} and underoccupation of the Fe^{2+} site only [model (II); Table 3]. The refined formula for this model is $Ba_2Ca_2Fe_{0.90(1)}Al_2F_{14}$. Bond lengths and angles of the two models are the same within the corresponding standard uncertainties (Table 1).

Kaiser *et al.* (2002) have discussed in detail the pros and cons of the incorporation of Ca²⁺ (ionic radius = 1.0 Å; Shannon, 1976) at the $M^{II}2$ site for various usovite-type structures. Strong arguments supporting an $M^{II}2$ site with mixed Fe/Ca occupation are the resulting bond-valence sums

 Table 3

 Experimental details.

(Brown, 2002) that deviate significantly from the expected values of 2 if only Fe²⁺ ions are considered to be present at the $M^{II}2$ site (Table 2). Contrariwise, the bond-valence sums are in excellent agreement with the expected value if a mixed Fe/Ca occupancy is taken into account. The corresponding numbers are listed in Table 2 and were calculated with the weighted average occupancy ratio of Fe:Ca = 0.77:0.23 that was estimated by the program *VaList* (Wills, 2010). This ratio is in good agreement with the occupancy ratio from the refinement [model (I): Fe:Ca = 0.69:0.31]. The resulting global instability index (Brown, 2002) of 0.04 valence units for model (I) suggests a very tightly bonded structure with little strain. Any strain inherent in the usovite structure is obviously relieved by the substitution of Ca²⁺ on the $M^{II}2$ site.

On the other hand, an $M^{II}2$ site without an incorporation of Ca²⁺ would result in an underoccupation of Fe²⁺ [model (II)] and consequently requires the presence of an element in a higher oxidation state (here most probably Fe³⁺) to compensate the negative charge of -2 of the [Ba₂CaAl₂F₁₄] framework. Although in this case rather a decrease of $M^{II}2-F$ bond lengths should be expected (contrary to the findings of the current study), it cannot competely ruled out that Fe³⁺ ions are present at this site. As a matter of fact, based on diffraction data alone, there is a clear tendency towards model (I) but no definite answer whether Fe is partly replaced by Ca on the $M^{II}2$ site [model (I)] or is statistically occupied by Fe²⁺ and small amounts of Fe³⁺ [model (II)]. Complementary analytical techniques like Mössbauer spectroscopy will be needed in future to shed some light on this problem.

	Model (I)	Model (II)
Crystal data		
Chemical formula	$Ba_2Ca_{1,21}Fe_{0,60}Al_2F_{1,4}$	$Ba_2CaFe_{0.00}Al_2F_{14}$
M _r	685.68	684.98
Crystal system, space group	Monoclinic, $C2/c$	Monoclinic, $C2/c$
Temperature (K)	293	293
a, b, c (Å)	13.7387 (12), 5.2701 (5), 14.759 (3)	13.7387 (12), 5.2701 (5), 14.759 (3)
β (°)	92.074 (14)	92.074 (14)
$V(\dot{A}^3)$	1067.9 (2)	1067.9 (2)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	9.21	9.33
Crystal size (mm)	$0.43 \times 0.11 \times 0.07$	$0.43 \times 0.11 \times 0.07$
Data collection		
Diffractometer	Nonius CAD-4 four-circle diffractometer	Nonius CAD-4 four-circle diffractometer
Absorption correction	ψ scan (North <i>et al.</i> , 1968)	ψ scan (North <i>et al.</i> , 1968)
T_{\min}, \hat{T}_{\max}	0.329, 0.901	0.329, 0.901
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5922, 1564, 1490	5922, 1564, 1490
R _{int}	0.055	0.055
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.703	0.703
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.078, 1.09	0.032, 0.078, 1.10
No. of reflections	1564	1564
No. of parameters	95	96
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	2.31, -2.03	2.32, -2.03

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), HELENA implemented in PLATON (Spek, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006) and publicIF (Westrip, 2010).

3. Synthesis and crystallization

The binary fluorides AlF₃ (Merck, Patinal), CaF₂ (Merck, Suprapur) and BaF₂ (Riedel de Haen, pure) were mixed in the stoichiometric ratio 1:1:1 and thoroughly ground in a ball mill, pressed into tablets and placed in a carbon tool steel container shielded with a molybdenum foil. NH₄F·HF (100 mg, Fluka, $p \cdot A$.) were added to the mixture to increase the HF pressure, to expel the remaining oxygen and to adjust a slightly reducing atmosphere during the reaction. The reactor was then closed and heated to 1173 K in the course of 20 h, kept at that temperature for 24 h, and then cooled slowly to 973 K at a rate of 10 K h⁻¹, kept at this temperature for 24 h and finally cooled to room temperature overnight. After opening the reactor it became evident that parts of the molybdenum foil were torn apart accompanied by a severe attack of the inner container wall. Single crystals of the title compound were separated from the obtained colourless to light-green bulk material. X-ray powder diffraction of the bulk revealed the formation of α -BaCaAlF₇ as the main phase and the title compound as a minority phase. Some additional reflections were also present that could not be assigned to any known phases.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Coordinates of usovite (Litvin et al., 1980) were used as starting parameters for refinement. The model converged rather smoothly with R1 = 0.034 and wR2 =0.089. However, negative residual electron density at the Fe atom pointed to an underoccupation and/or a statistical disorder of the $M^{II}2$ site with a lighter element present. In fact, free refinement of the site occupation factor for this site resulted in only 90% occupancy and significant better reliability factors (see Table 3). The same procedure applied for all other atoms resulted in full occupancy within the twofold standard uncertainty. For the final models, full occupancy was therefore considered for all atoms except Fe. Model (I) accounts for an incorporation of Ca²⁺ at the Fe site under consideration of full occupancy; in model (II), the site occupation factor of the Fe site was refined freely without contribution of Ca²⁺ at this site. The remaining electron densities (Table 3) are virtually the same for both models. They are associated with truncation effects close to the heavy Ba sites, with the maximum electron density 0.68 Å and the minimum electron density 0.96 Å away from the Ba atom.

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer. I thank I. D. Brown for very helpful comments and suggestions regarding the bond-valence method.

References

- Babel, D. & Tressaud, A. (1985). *Inorganic Solid Fluorides*, edited by P. Hagenmuller, pp. 79–203. Orlando: Academic Press.
- Brown, I. D. (2002). In *The Chemical Bond in Inorganic Chemistry: The Bond Valence Model*. Oxford University Press.
- Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Holler, H., Babel, D., Samouel, M. & de Kozak, A. (1984). Rev. Chim. Miner. 21, 358–369.
- Holler, H., Pebler, J. & Babel, D. (1985). Z. Anorg. Allg. Chem. 522, 189–201.
- Jauch, W., Palmer, A. & Schultz, A. J. (1993). Acta Cryst. B49, 984–987.
- Kaiser, V., Le Lirzin, A., Darriet, J., Tressaud, A., Holler, H. & Babel, D. (2002). Z. Anorg. Allg. Chem. 628 2617–2626.
- Kolk, E. van der, Dorenbos, P., Van Eijk, C. W. E., Vink, A. P., Weil, M. & Chaminade, J.-P. (2004). J. Appl. Phys. 95, 7867–7872.
- Le Lirzin, A., Darriet, J., Tressaud, A. & Babel, D. (2008). Z. Anorg. Allg. Chem. 634 2737–2739.
- Le Lirzin, A., Quiang, X., Darriet, J., Soubeyroux, J. L., Kaiser, V., Pebler, J. & Babel, D. (1990). Eur. J. Solid State Inorg. Chem. 27, 791–803.
- Le Lirzin, A., Soubeyroux, J. L., Tressaud, A., Georges, R. & Darriet, J. (1991). J. Chim. Phys. Phys.-Chim. Biol. 88, 2173–2189.
- Litvin, A. L., Petrunina, A. A., Ostapenko, S. S. & Povarennykh, A. S. (1980). Dopov. Akad. Nauk Ukr. RSR Ser. pp. 47–50.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Qiang, X., Darriet, J., Tressaud, A., Soubeyroux, J. L. & Hagenmuller, P. (1988). *Mater. Res. Bull.* 23, 637–645.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Weil, M. & Kubel, F. (2002). J. Solid State Chem. 164, 150-156.
- Weil, M., Zobetz, E., Werner, F. & Kubel, F. (2001). Solid State Sci. 3, 441–453.
- Werner, F. & Weil, M. (2003). Acta Cryst. E59, i17-i19.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wills, A. S. (2010). VaList. Program available from www.CCP14.ac. uk.

supporting information

Acta Cryst. (2015). E71, 640-643 [doi:10.1107/S2056989015009251]

Crystal structure of the Fe-member of usovite

Matthias Weil

Computing details

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989) for modelI; *CAD-4 Software* (Enraf-Nonius, 1989) for modelII. Cell refinement: *CAD-4 Software* (Enraf–Nonius, 1989) for modelI; *CAD-4 Software* (Enraf-Nonius, 1989) for modelII. For both compounds, data reduction: *HELENA* implemented in *PLATON* (Spek, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008). Molecular graphics: *ATOMS for Windows* (Dowty, 2006) for modelI; Atoms for Windows (Dowty, 2006) for modelII. For both compounds, software used to prepare material for publication: *publCIF* (Westrip, 2010).

(modell) Dibarium calcium iron(II) dialuminium tetradecafluoride

Crystal data

Ba₂CaFeAl₂F₁₄ $M_r = 685.68$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.7387 (12) Å b = 5.2701 (5) Å c = 14.759 (3) Å $\beta = 92.074$ (14)° V = 1067.9 (2) Å³ Z = 4

Data collection

Nonius CAD-4 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.329, T_{\max} = 0.901$ 5922 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S = 1.091564 reflections 95 parameters F(000) = 1233 $D_x = 4.265 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 16.0-28.7^{\circ}$ $\mu = 9.21 \text{ mm}^{-1}$ T = 293 KLath, colourless $0.43 \times 0.11 \times 0.07 \text{ mm}$

1564 independent reflections 1490 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -19 \rightarrow 19$ $k = -7 \rightarrow 7$ $I = -20 \rightarrow 20$ 3 standard reflections every 240 min intensity decay: none

0 restraints Primary atom site location: isomorphous structure methods $w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 2.0371P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 2.31$ e Å⁻³ $\Delta \rho_{\rm min} = -2.03 \text{ e } \text{\AA}^{-3}$

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0022 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ba	0.308721 (14)	0.46574 (4)	0.379963 (13)	0.01408 (12)	
Fe1	0.0000	0.5000	0.0000	0.0122 (2)	0.690 (15)
Cal	0.0000	0.5000	0.0000	0.0122 (2)	0.310 (15)
Ca2	0.0000	0.44616 (15)	0.2500	0.01239 (19)	
Al	0.38007 (8)	0.50390 (18)	0.12342 (7)	0.0111 (2)	
F1	0.25596 (18)	0.4521 (4)	0.0896 (2)	0.0240 (5)	
F2	0.08574 (15)	0.1721 (4)	0.97491 (13)	0.0184 (4)	
F3	0.37359 (16)	0.2100 (4)	0.55132 (14)	0.0197 (4)	
F4	0.00268 (16)	0.0837 (4)	0.15434 (15)	0.0190 (4)	
F5	0.34180 (14)	0.2933 (4)	0.71743 (13)	0.0157 (4)	
F6	0.12186 (16)	0.2677 (4)	0.80391 (15)	0.0207 (4)	
F7	0.43370 (17)	0.0715 (4)	0.37866 (16)	0.0208 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba	0.01226 (15)	0.01401 (16)	0.01593 (15)	-0.00069 (5)	-0.00023 (9)	0.00074 (5)
Fe1	0.0106 (4)	0.0124 (3)	0.0136 (4)	0.0004 (2)	-0.0005 (3)	-0.0029 (2)
Cal	0.0106 (4)	0.0124 (3)	0.0136 (4)	0.0004 (2)	-0.0005 (3)	-0.0029 (2)
Ca2	0.0131 (4)	0.0124 (4)	0.0118 (4)	0.000	0.0019 (3)	0.000
Al	0.0114 (5)	0.0096 (3)	0.0123 (5)	-0.0007 (3)	-0.0004 (4)	0.0005 (3)
F1	0.0130 (11)	0.0219 (11)	0.0366 (14)	-0.0017 (8)	-0.0069 (10)	-0.0007 (9)
F2	0.0218 (10)	0.0183 (9)	0.0148 (8)	0.0033 (8)	-0.0016 (7)	-0.0026 (7)
F3	0.0269 (11)	0.0140 (8)	0.0184 (9)	-0.0003 (8)	0.0027 (8)	-0.0032 (7)
F4	0.0100 (9)	0.0247 (9)	0.0224 (10)	-0.0014 (8)	0.0000 (7)	-0.0087 (8)
F5	0.0155 (9)	0.0173 (8)	0.0145 (8)	-0.0037 (7)	0.0027 (6)	0.0004 (7)
F6	0.0220 (10)	0.0161 (8)	0.0243 (10)	0.0037 (8)	0.0035 (8)	0.0076 (8)
F7	0.0183 (11)	0.0239 (10)	0.0206 (10)	0.0009 (9)	0.0052 (8)	-0.0067 (8)

Geometric parameters (Å, °)

Ba—F7	2.696 (2)	Ca2—F4	2.376 (2)
Ba—F4 ⁱ	2.730 (2)	Ca2—F4 ^{ix}	2.376 (2)

	/		
$Ba - F1^{1}$	2.755 (2)	Ca2—F5 ^x	2.544 (2)
Ba—F2 ⁱⁱ	2.765 (2)	Ca2—F5 ^{iv}	2.544 (2)
Ba—F5 ⁱⁱⁱ	2.766 (2)	Fe1—F7 ^x	2.015 (2)
Ba—F5 ^{iv}	2.827 (2)	Fe1—F7 ⁱ	2.015 (2)
Ba—F3 ^{iv}	2.889 (2)	Fe1—F2 ^{xi}	2.131 (2)
Ba—F1 ^v	2.889 (2)	Fe1—F2 ^{viii}	2.131 (2)
Ba—F3	2.974 (2)	Fe1—F3 ^x	2.216 (2)
Ba—F6 ⁱⁱⁱ	3.101 (2)	Fe1—F3 ⁱ	2.216 (2)
Ba—F6 ^{iv}	3 158 (2)	A1—F4 ^{xii}	1,780(2)
B_{2} F_{1}^{vi}	3 233 (3)		1.780(2)
$C_{0}2$ $F7^{vii}$	2,235(3)		1.700(3)
C_{a2} F_{7i}	2.235(2)		1.790(2) 1.700(2)
Ca2 - F	2.233(2)		1.799(2)
	2.369 (2)		1.843 (2)
Ca2—F6 ^{vm}	2.369 (2)	AI—F3	1.846 (2)
F7—Ba—F4 ⁱ	64.22 (7)	F6 ⁱⁱⁱ —Ca2—F6 ^{viii}	100.95 (11)
F7—Ba—F1 ⁱ	158.04 (7)	F7 ^{vii} —Ca2—F4	139.26 (9)
F4 ⁱ —Ba—F1 ⁱ	97.60 (7)	$F7^{i}$ —Ca2—F4	73.58 (8)
F7—Ba—F2 ⁱⁱ	89 56 (7)	$F6^{iii}$ —Ca2—F4	13325(7)
$F4^{i}$ Ba $F2^{ii}$	65 13 (7)	$F6^{\text{viii}}$ $Ca2 = F4$	109.76 (8)
$F1^{i}$ $B3$ $F2^{ii}$	70.80(7)	$F_{i} = C_{a2} = F_{i}$	73 58 (8)
$F7 B_2 F5^{iii}$	102.89 (6)	F_{i}^{i} C ₂ 2 F_{i}^{ix}	130 26 (0)
$F_{i} = B_{a} = F_{i}$	102.09(0)	$F_{1} = C_{1} C_$	139.20(9) 100.76(8)
$\Gamma 4 - Da - \Gamma J^{}$	05.11(0)	$F0^{$	109.70(8)
F1-Ba-F5	//.18(/)	$F0^{}Ca2F4^{}$	133.25 (7)
F2 ^m —Ba—F5 ^m	113.14 (6)	F4—Ca2—F4 ^{IX}	73.00 (12)
F'/-Ba-F5''	94.51 (6)	$F'/^{vn}$ —Ca2—F5x	86.30 (7)
$F4^{i}$ —Ba— $F5^{iv}$	134.23 (6)	$F7^{1}$ —Ca2—F5 ^x	110.96 (8)
$F1^{i}$ —Ba— $F5^{iv}$	107.32 (7)	$F6^{m}$ —Ca2—F5 ^x	165.39 (7)
$F2^{ii}$ —Ba— $F5^{iv}$	159.58 (6)	$F6^{viii}$ —Ca2—F5 ^x	70.35 (7)
F5 ⁱⁱⁱ —Ba—F5 ^{iv}	85.46 (4)	F4—Ca2—F5 ^x	61.35 (7)
F7—Ba—F3 ^{iv}	108.42 (7)	$F4^{ix}$ —Ca2—F5 ^x	71.46 (7)
F4 ⁱ —Ba—F3 ^{iv}	168.26 (6)	$F7^{vii}$ —Ca2—F 5^{iv}	110.96 (8)
F1 ⁱ —Ba—F3 ^{iv}	87.26 (7)	$F7^{i}$ —Ca2— $F5^{iv}$	86.30 (7)
F2 ⁱⁱ —Ba—F3 ^{iv}	106.93 (6)	F6 ⁱⁱⁱ —Ca2—F5 ^{iv}	70.35 (7)
F5 ⁱⁱⁱ —Ba—F3 ^{iv}	128.56 (6)	F6 ^{viii} —Ca2—F5 ^{iv}	165.39 (7)
F5 ^{iv} —Ba—F3 ^{iv}	52.84 (6)	F4—Ca2—F5 ^{iv}	71.46 (7)
F7—Ba—F1 ^v	58.57 (7)	F4 ^{ix} —Ca2—F5 ^{iv}	61.35 (7)
F4 ⁱ —Ba—F1 ^v	122.79 (7)	$F5^{x}$ —Ca2— $F5^{iv}$	120.53 (9)
$F1^{i}$ Ba $F1^{v}$	138.03 (11)	Fe1 ^{ix} —Ca2—Ca1 ^{ix}	0.0
$F2^{ii}$ _Ba_ $F1^{v}$	113 81 (7)	$F4^{xii}$ A1 F1	$175\ 02\ (12)$
F_{2} F_{2} F_{2} F_{1}	128.75(7)	FA^{xii} A1 $F6^{iv}$	03 00 (12)
$F_{5} = Ba = F_{1}$	120.75(7)	$F_1 = A_1 = F_0$	95.99(12)
$\mathbf{F}_{2iv} = \mathbf{D}_{a} - \mathbf{F}_{1v}$	50.02 (7)	$\mathbf{F}_{\mathbf{A}}$	03 22 (11)
$\Gamma J = Da = \Gamma \Gamma$	50.92 (7)	$\Gamma + - AI - \Gamma Z^{T}$ $E1 - AI - E2iv$	73.23 (11) 99.20 (12)
$\Gamma / - Ba - \Gamma S$	39.03 (0) 00.21 (C)	$\Gamma I \longrightarrow AI \longrightarrow \Gamma Z^{*}$	00.3U (12)
r4-Ba-F3	90.21 (6)	$FO^{\prime\prime} - AI - FZ^{\prime\prime}$	94.65 (11)
	111.82 (7)		8/.88 (10)
F ² ^u —Ba—F ³	52.19 (6)	F1—AI—F5 ^m	90.20 (12)
F5 ^m —Ba—F3	153.12 (6)	$F6^{iv}$ —Al— $F5^{iii}$	90.11 (11)

	112 00 (6)		175 00 (11)
$F5^{IV}$ —Ba—F3	113.88 (6)	$F2^{TV}$ AI $F5^{TT}$	1/5.02 (11)
$F3^{IV}$ —Ba—F3	/8.06 (/)	$F4^{xn}$ $Al - F3^{m}$	88.87 (11)
$F1^{\circ}$ Ba $F3$	61.81 (7)	$F1 \longrightarrow F3^{m}$	86.45 (11)
F7—Ba—F6 ^m	149.96 (6)	$F6^{iv}$ —Al— $F3^{iii}$	176.00 (12)
$F4^{i}$ —Ba— $F6^{in}$	127.50 (6)	$F2^{iv}$ —Al— $F3^{iii}$	87.98 (11)
F1 ⁱ —Ba—F6 ⁱⁱⁱ	50.94 (6)	$F5^{iii}$ —Al— $F3^{iii}$	87.19 (10)
$F2^{ii}$ —Ba— $F6^{iii}$	120.41 (6)	Al—F1—Ba ^v	114.10 (11)
F5 ⁱⁱⁱ —Ba—F6 ⁱⁱⁱ	68.78 (5)	Al—F1—Ba ⁱ	96.30 (9)
F5 ^{iv} —Ba—F6 ⁱⁱⁱ	56.89 (6)	$Ba^v - F1 - Ba^i$	138.03 (11)
F3 ^{iv} —Ba—F6 ⁱⁱⁱ	63.59 (6)	Al—F1—Ba ⁱⁱⁱ	90.11 (11)
F1 ^v —Ba—F6 ⁱⁱⁱ	103.02 (6)	Ba ^v —F1—Ba ⁱⁱⁱ	111.43 (8)
F3—Ba—F6 ⁱⁱⁱ	137.04 (6)	Ba ⁱ —F1—Ba ⁱⁱⁱ	95.98 (7)
F7—Ba—F6 ^{iv}	58.76 (6)	Al ^{iv} —F2—Ca1 ^{xiii}	136.08 (11)
F4 ⁱ —Ba—F6 ^{iv}	67.12 (6)	Al ^{iv} —F2—Fe1 ^{xiii}	136.08 (11)
F1 ⁱ —Ba—F6 ^{iv}	127.71 (7)	Ca1 ^{xiii} —F2—Fe1 ^{xiii}	0.0
F2 ⁱⁱ —Ba—F6 ^{iv}	130.73 (6)	Al ^{iv} —F2—Ba ^{xiv}	106.09 (9)
F5 ⁱⁱⁱ —Ba—F6 ^{iv}	50.92 (6)	Ca1 ^{xiii} —F2—Ba ^{xiv}	117.51 (8)
$F5^{iv}$ —Ba—F 6^{iv}	67.24 (5)	Fe1 ^{xiii} —F2—Ba ^{xiv}	117.51 (8)
$F3^{iv}$ —Ba—F6 ^{iv}	118.00 (6)	$A1^{vi}$ F3 Ca1 ^v	125.67(12)
$F1^{v}$ Ba $F6^{iv}$	82 68 (7)	$A1^{vi}$ F3 Fe1 ^v	125.67(12)
$F3 - Ba - F6^{iv}$	117.62(5)	$Ca1^v - F3 - Fe1^v$	0.0
$F6^{iii}$ Ba $F6^{iv}$	97.89 (5)	$A1^{vi} = F3 = Ba^{iv}$	94 81 (9)
$F7 = Ba = F1^{vi}$	105 96 (6)	$Ca1v - F3 - Ba^{iv}$	131 32 (9)
$\mathbf{F}\mathbf{\Lambda}^{i}$ Ba $\mathbf{F}1^{vi}$	105.90(0) 113.22(7)	E_{e1}^{v} E3 B_{2}^{iv}	131.32(9)
$\mathbf{F} \mathbf{I}^{i} = \mathbf{D} \mathbf{a} \mathbf{F} \mathbf{I}^{i}$	68 57 (8)	A_{1}^{vi} E3 Ba	131.32(9)
$\Gamma I \longrightarrow Da \longrightarrow \Gamma I$ $\Gamma 2ii Da \Gamma 1 vi$	08.37 (8) 48.35 (6)	AI - I' J - Da	97.28(9)
$\Gamma Z \longrightarrow Da \longrightarrow \Gamma I^{\prime}$	46.55(0)	Ca1 - r5 - Ba	98.03(7)
$\Gamma J^{m} - Da - \Gamma I^{m}$	144.90 (0)	rel - ro - ba	98.03(7)
$\Gamma J^{*} \longrightarrow Da \longrightarrow \Gamma I^{*}$	111.48(0)	$Da^{-} - \Gamma J - Da$	101.94(7)
$F3^{*}$ —Ba—F1 ^{**}	58.64 (6)	AI^{xy} F4 $Ca2$	107.90 (10)
$F1^{}Ba^{}F1^{++}$	84.02 (/)	AI^{xy} —F4—Bay	142.62 (11)
$F_3 - B_a - F_1^{v_1}$	46.95 (6)	Ca2—F4—Bav	109.17 (8)
$F6^{m}$ —Ba— $F1^{v_{1}}$	94.27 (6)	AI^{v_1} —F5—Ca2 ^{iv}	99.49 (9)
$F6^{iv}$ —Ba— $F1^{vi}$	163.69 (5)	Al^{v_1} F5 Ba^{v_1}	116.54 (9)
$F7^{x}$ — $Fe1$ — $F2^{x_{1}}$	85.92 (8)	$Ca2^{iv}$ —F5—Ba ^{vi}	103.29 (7)
$F7^{i}$ — $Fe1$ — $F2^{xi}$	94.08 (8)	Al ^{vi} —F5—Ba ^{iv}	96.93 (8)
$F7^{x}$ — $Fe1$ — $F2^{viii}$	94.08 (8)	Ca2 ^{iv} —F5—Ba ^{iv}	117.45 (8)
$F7^{i}$ — $Fe1$ — $F2^{viii}$	85.92 (8)	Ba ^{vi} —F5—Ba ^{iv}	121.50 (7)
$F7^{x}$ — $Fe1$ — $F3^{x}$	82.86 (8)	Al ^{iv} —F6—Ca2 ^{viii}	133.22 (12)
$F7^{i}$ — $Fe1$ — $F3^{x}$	97.14 (8)	Al ^{iv} —F6—Ba ^{vi}	100.10 (9)
$F2^{xi}$ — $Fe1$ — $F3^{x}$	95.71 (8)	Ca2 ^{viii} —F6—Ba ^{vi}	113.52 (8)
$F2^{viii}$ — $Fe1$ — $F3^{x}$	84.29 (8)	Al ^{iv} —F6—Ba ^{iv}	102.40 (9)
F7 ^x —Fe1—F3 ⁱ	97.14 (8)	Ca2 ^{viii} —F6—Ba ^{iv}	101.02 (7)
F7 ⁱ —Fe1—F3 ⁱ	82.86 (8)	Ba ^{vi} —F6—Ba ^{iv}	102.46 (6)
F2 ^{xi} —Fe1—F3 ⁱ	84.29 (8)	Ca1 ^v —F7—Fe1 ^v	0.0
F2 ^{viii} —Fe1—F3 ⁱ	95.71 (8)	Ca1 ^v —F7—Ca2 ^{xvi}	120.98 (11)
F7 ^{vii} —Ca2—F7 ⁱ	145.63 (12)	Fe1 ^v —F7—Ca2 ^{xvi}	120.98 (11)
F7 ^{vii} —Ca2—F6 ⁱⁱⁱ	80.29 (8)	Ca1 ^v —F7—Ba	113.91 (9)
F7 ⁱ —Ca2—F6 ⁱⁱⁱ	78.02 (8)	Fe1 ^v —F7—Ba	113.91 (9)

F7 ^{vii} —Ca2—F6 ^{viii}	78.02 (8)	Ca2 ^{xvi} —F7—Ba	120.86 (10)
F7 ⁱ —Ca2—F6 ^{viii}	80.29 (8)		

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) x, -y+1, z-1/2; (iv) -x+1/2, -y+1/2, -z+1; (v) -x+1/2, y-1/2, -z+1/2; (vi) x, -y+1/2, -z+1/2; (vi) x, -x+1/2, -z+1/2; (vi) -x+1/2; (vi) -x+1/2, -z+1/2; (vi) -x+1/2; (vi) -x+1/2-y+1, z+1/2; (vii) x-1/2, y+1/2, z; (viii) -x, -y+1, -z+1; (ix) -x, y, -z+1/2; (x) x-1/2, -y+1/2, z-1/2; (xi) x, y, z-1; (xii) x+1/2, y+1/2, z; (xiii) x, y, z+1; (xiv) - x + 1/2, y - 1/2, -z + 3/2; (xv) x - 1/2, y - 1/2, z; (xvi) x + 1/2, y - 1/2, z.

(modelII)

Crystal data

Al₂Ba₂CaF₁₄Fe_{0.90} $M_r = 684.98$ Monoclinic, C2/cHall symbol: -C 2yc *a* = 13.7387 (12) Å *b* = 5.2701 (5) Å c = 14.759 (3) Å $\beta = 92.074 \ (14)^{\circ}$ V = 1067.9 (2) Å³ Z = 4

Data collection

Nonius CAD-4 four-circle	1564 independent refl
diffractometer	1490 reflections with
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.055$
Graphite monochromator	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.8$
$\omega/2\theta$ scans	$h = -19 \rightarrow 19$
Absorption correction: ψ scan	$k = -7 \rightarrow 7$
(North <i>et al.</i> , 1968)	$l = -20 \rightarrow 20$
$T_{\min} = 0.329, \ T_{\max} = 0.901$	3 standard reflections
5922 measured reflections	intensity decay: none

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S = 1.101564 reflections 96 parameters 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F(000) = 1240 $D_{\rm x} = 4.260 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 16.0 - 28.7^{\circ}$ $\mu = 9.33 \text{ mm}^{-1}$ T = 293 KLath, colourless $0.43 \times 0.11 \times 0.07 \text{ mm}$

lections $I > 2\sigma(I)$ ٢٥ every 240 min

Primary atom site location: isomorphous structure methods $w = 1/[\sigma^2(F_0^2) + (0.0532P)^2 + 1.6437P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 2.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -2.03 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0022 (2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ba	0.308719 (14)	0.46574 (4)	0.379962 (12)	0.01408 (12)	
Ca	0.0000	0.44617 (15)	0.2500	0.01239 (19)	
Al	0.38008 (8)	0.50390 (18)	0.12340 (7)	0.0111 (2)	
Fe	0.0000	0.5000	0.0000	0.0114 (3)	0.901 (5)
F1	0.25596 (18)	0.4521 (4)	0.0896 (2)	0.0240 (5)	
F2	0.08572 (15)	0.1721 (4)	0.97492 (13)	0.0184 (4)	
F3	0.37360 (16)	0.2100 (4)	0.55132 (14)	0.0197 (4)	
F4	0.00267 (15)	0.0837 (4)	0.15434 (15)	0.0190 (4)	
F5	0.34178 (14)	0.2932 (4)	0.71742 (13)	0.0157 (4)	
F6	0.12185 (16)	0.2677 (4)	0.80392 (14)	0.0207 (4)	
F7	0.43372 (16)	0.0715 (4)	0.37867 (16)	0.0208 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba	0.01226 (16)	0.01399 (16)	0.01592 (15)	-0.00069 (5)	-0.00023 (9)	0.00074 (5)
Ca	0.0131 (4)	0.0124 (4)	0.0118 (4)	0.000	0.0019 (3)	0.000
Al	0.0114 (5)	0.0096 (3)	0.0123 (5)	-0.0007 (3)	-0.0003 (4)	0.0005 (3)
Fe	0.0098 (4)	0.0115 (3)	0.0128 (4)	0.0004 (2)	-0.0005 (3)	-0.0030 (2)
F1	0.0129 (11)	0.0219 (11)	0.0366 (14)	-0.0017 (8)	-0.0068 (10)	-0.0007 (9)
F2	0.0219 (10)	0.0184 (9)	0.0148 (8)	0.0032 (8)	-0.0016 (7)	-0.0026 (7)
F3	0.0270 (11)	0.0140 (8)	0.0184 (9)	-0.0004 (8)	0.0027 (8)	-0.0031 (7)
F4	0.0100 (9)	0.0247 (9)	0.0224 (10)	-0.0013 (8)	0.0000 (7)	-0.0086 (8)
F5	0.0156 (9)	0.0172 (8)	0.0145 (8)	-0.0038 (7)	0.0027 (6)	0.0004 (7)
F6	0.0221 (10)	0.0160 (8)	0.0243 (10)	0.0037 (8)	0.0036 (8)	0.0076 (8)
F7	0.0182 (11)	0.0238 (9)	0.0207 (10)	0.0008 (8)	0.0053 (8)	-0.0067 (8)

Geometric parameters (Å, °)

Ba—F7	2.696 (2)	Ca—F4	2.376 (2)
Ba—F4 ⁱ	2.730 (2)	Ca—F4 ^{ix}	2.376 (2)
Ba—F1 ⁱ	2.755 (2)	Ca—F5 ^x	2.544 (2)
Ba—F2 ⁱⁱ	2.766 (2)	Ca—F5 ^{iv}	2.544 (2)
Ba—F5 ⁱⁱⁱ	2.767 (2)	Fe—F7 ⁱ	2.015 (2)
Ba—F5 ^{iv}	2.826 (2)	Fe—F7 ^x	2.015 (2)
Ba—F3 ^{iv}	2.889 (2)	Fe—F2 ^{viii}	2.131 (2)
Ba—F1 ^v	2.889 (2)	Fe—F2 ^{xi}	2.131 (2)
Ba—F3	2.974 (2)	Fe—F3 ^x	2.216 (2)
Ba—F6 ⁱⁱⁱ	3.101 (2)	Fe—F3 ⁱ	2.216 (2)
Ba—F6 ^{iv}	3.159 (2)	Al—F4 ^{xii}	1.779 (2)
Ba—F1 ^{vi}	3.232 (3)	Al—F1	1.780 (3)
Ca—F7 ^{vii}	2.235 (2)	Al—F6 ^{iv}	1.790 (2)
Ca—F7 ⁱ	2.235 (2)	Al—F2 ^{iv}	1.799 (2)
Ca—F6 ⁱⁱⁱ	2.369 (2)	Al—F5 ⁱⁱⁱ	1.843 (2)
Ca—F6 ^{viii}	2.369 (2)	Al—F3 ⁱⁱⁱ	1.846 (2)

$F7$ — Ba — $F4^{i}$	64.22 (7)	F7 ⁱ —Ca—F4 ^{ix}	139.26 (9)
F7—Ba—F1 ⁱ	158.04 (7)	F6 ⁱⁱⁱ —Ca—F4 ^{ix}	109.75 (8)
F4 ⁱ —Ba—F1 ⁱ	97.60 (7)	F6 ^{viii} —Ca—F4 ^{ix}	133.25 (7)
F7—Ba—F2 ⁱⁱ	89.56 (7)	F4—Ca—F4 ^{ix}	73.01 (12)
F4 ⁱ —Ba—F2 ⁱⁱ	65.12 (7)	F7 ^{vii} —Ca—F5 ^x	86.30 (7)
F1 ⁱ —Ba—F2 ⁱⁱ	70.80 (7)	F7 ⁱ —Ca—F5 ^x	110.95 (8)
F7—Ba—F5 ⁱⁱⁱ	102.89 (6)	F6 ⁱⁱⁱ —Ca—F5 ^x	165.38 (7)
F4 ⁱ —Ba—F5 ⁱⁱⁱ	63.12 (6)	F6 ^{viii} —Ca—F5 ^x	70.34 (7)
F1 ⁱ —Ba—F5 ⁱⁱⁱ	77.18 (7)	F4—Ca—F5 ^x	61.35 (7)
F2 ⁱⁱ —Ba—F5 ⁱⁱⁱ	113.14 (6)	F4 ^{ix} —Ca—F5 ^x	71.47 (7)
F7—Ba—F5 ^{iv}	94.51 (6)	F7 ^{vii} —Ca—F5 ^{iv}	110.95 (7)
F4 ⁱ —Ba—F5 ^{iv}	134.23 (6)	F7 ⁱ —Ca—F5 ^{iv}	86.30 (7)
F1 ⁱ —Ba—F5 ^{iv}	107.33 (6)	F6 ⁱⁱⁱ —Ca—F5 ^{iv}	70.34 (7)
F2 ⁱⁱ —Ba—F5 ^{iv}	159.58 (6)	F6 ^{viii} —Ca—F5 ^{iv}	165.38 (7)
F5 ⁱⁱⁱ —Ba—F5 ^{iv}	85.46 (4)	F4—Ca—F5 ^{iv}	71.47 (7)
F7—Ba—F3 ^{iv}	108.42 (6)	F4 ^{ix} —Ca—F5 ^{iv}	61.35 (7)
F4 ⁱ —Ba—F3 ^{iv}	168.26 (6)	F5 ^x —Ca—F5 ^{iv}	120.54 (9)
F1 ⁱ —Ba—F3 ^{iv}	87.26 (7)	F4 ^{xii} —Al—F1	175.02 (12)
F2 ⁱⁱ —Ba—F3 ^{iv}	106.93 (6)	$F4^{xii}$ — $A1$ — $F6^{iv}$	94.00 (11)
F5 ⁱⁱⁱ —Ba—F3 ^{iv}	128.56 (6)	F1—Al—F6 ^{iv}	90.60 (11)
F5 ^{iv} —Ba—F3 ^{iv}	52.85 (6)	$F4^{xii}$ — $A1$ — $F2^{iv}$	93.23 (11)
F7—Ba—F1 ^v	58.57 (7)	$F1$ — $A1$ — $F2^{iv}$	88.31 (12)
F4 ⁱ —Ba—F1 ^v	122.79 (7)	$F6^{iv}$ —Al— $F2^{iv}$	94.65 (11)
F1 ⁱ —Ba—F1 ^v	138.03 (11)	F4 ^{xii} —Al—F5 ⁱⁱⁱ	87.88 (10)
F2 ⁱⁱ —Ba—F1 ^v	113.81 (7)	F1—Al—F5 ⁱⁱⁱ	90.18 (12)
F5 ⁱⁱⁱ —Ba—F1 ^v	128.76 (7)	F6 ^{iv} —Al—F5 ⁱⁱⁱ	90.11 (11)
F5 ^{iv} —Ba—F1 ^v	53.36 (6)	F2 ^{iv} —Al—F5 ⁱⁱⁱ	175.02 (10)
$F3^{iv}$ —Ba— $F1^{v}$	50.92 (7)	F4 ^{xii} —Al—F3 ⁱⁱⁱ	88.87 (11)
F7—Ba—F3	59.02 (6)	F1—A1—F3 ⁱⁱⁱ	86.45 (11)
F4 ⁱ —Ba—F3	90.21 (6)	F6 ^{iv} —Al—F3 ⁱⁱⁱ	175.99 (12)
F1 ⁱ —Ba—F3	111.81 (7)	F2 ^{iv} —Al—F3 ⁱⁱⁱ	87.98 (10)
F2 ⁱⁱ —Ba—F3	52.19 (6)	F5 ⁱⁱⁱ —Al—F3 ⁱⁱⁱ	87.19 (10)
F5 ⁱⁱⁱ —Ba—F3	153.12 (6)	F7 ⁱ —Fe—F2 ^{viii}	85.92 (8)
F5 ^{iv} —Ba—F3	113.88 (6)	F7 ^x —Fe—F2 ^{viii}	94.08 (8)
F3 ^{iv} —Ba—F3	78.06 (7)	$F7^{i}$ — Fe — $F2^{xi}$	94.08 (8)
F1 ^v —Ba—F3	61.81 (6)	$F7^{x}$ — Fe — $F2^{xi}$	85.92 (8)
F7—Ba—F6 ⁱⁱⁱ	149.97 (6)	$F7^{i}$ — Fe — $F3^{x}$	97.13 (8)
F4 ⁱ —Ba—F6 ⁱⁱⁱ	127.50 (6)	$F7^{x}$ — Fe — $F3^{x}$	82.87 (8)
F1 ⁱ —Ba—F6 ⁱⁱⁱ	50.94 (6)	$F2^{viii}$ — Fe — $F3^{x}$	84.30 (8)
F2 ⁱⁱ —Ba—F6 ⁱⁱⁱ	120.42 (6)	$F2^{xi}$ — Fe — $F3^{x}$	95.70 (8)
F5 ⁱⁱⁱ —Ba—F6 ⁱⁱⁱ	68.77 (5)	$F7^{i}$ — Fe — $F3^{i}$	82.87 (8)
F5 ^{iv} —Ba—F6 ⁱⁱⁱ	56.89 (6)	$F7^{x}$ — Fe — $F3^{i}$	97.13 (8)
F3 ^{iv} —Ba—F6 ⁱⁱⁱ	63.59 (6)	F2 ^{viii} —Fe—F3 ⁱ	95.70 (8)
F1 ^v —Ba—F6 ⁱⁱⁱ	103.02 (6)	F2 ^{xi} —Fe—F3 ⁱ	84.30 (8)
F3—Ba—F6 ⁱⁱⁱ	137.04 (6)	$Al - F1 - Ba^{v}$	114.10 (11)
F7—Ba—F6 ^{iv}	58.77 (6)	Al—F1—Ba ⁱ	96.30 (9)
F4 ⁱ —Ba—F6 ^{iv}	67.12 (6)	Ba^{v} — $F1$ — Ba^{i}	138.03 (10)

127.71 (7)	Al—F1—Ba ⁱⁱⁱ	90.11 (11)
130.72 (6)	Bav—F1—Ba ⁱⁱⁱ	111.43 (8)
50.93 (5)	Ba ⁱ —F1—Ba ⁱⁱⁱ	95.98 (7)
67.24 (5)	Al ^{iv} —F2—Fe ^{xiii}	136.08 (11)
118.00 (6)	Al ^{iv} —F2—Ba ^{xiv}	106.08 (9)
82.69 (7)	Fe ^{xiii} —F2—Ba ^{xiv}	117.52 (8)
117.62 (5)	Al ^{vi} —F3—Fe ^v	125.66 (11)
97.89 (5)	Al ^{vi} —F3—Ba ^{iv}	94.81 (9)
105.96 (6)	Fe ^v —F3—Ba ^{iv}	131.32 (9)
113.22 (7)	Al ^{vi} —F3—Ba	97.27 (9)
68.57 (8)	Fe ^v —F3—Ba	98.64 (7)
48.36 (6)	Ba ^{iv} —F3—Ba	101.94 (7)
144.89 (5)	Al ^{xv} —F4—Ca	107.92 (10)
111.48 (6)	Al ^{xv} —F4—Ba ^v	142.62 (11)
58.64 (6)	Ca—F4—Ba ^v	109.17 (8)
84.02 (7)	Al ^{vi} —F5—Ca ^{iv}	99.48 (9)
46.95 (6)	Al ^{vi} —F5—Ba ^{vi}	116.53 (9)
94.27 (6)	Ca ^{iv} —F5—Ba ^{vi}	103.28 (7)
163.69 (5)	Al ^{vi} —F5—Ba ^{iv}	96.94 (8)
145.64 (12)	Ca ^{iv} —F5—Ba ^{iv}	117.45 (7)
80.29 (8)	Ba ^{vi} —F5—Ba ^{iv}	121.51 (7)
78.04 (8)	Al ^{iv} —F6—Ca ^{viii}	133.22 (12)
78.04 (8)	Al ^{iv} —F6—Ba ^{vi}	100.10 (9)
80.29 (8)	Ca ^{viii} —F6—Ba ^{vi}	113.52 (8)
100.95 (11)	Al ^{iv} —F6—Ba ^{iv}	102.40 (9)
139.26 (9)	Ca ^{viii} —F6—Ba ^{iv}	101.01 (7)
73.57 (8)	Ba ^{vi} —F6—Ba ^{iv}	102.45 (6)
133.25 (7)	Fe ^v —F7—Ca ^{xvi}	120.99 (11)
109.75 (8)	Fe ^v —F7—Ba	113.91 (9)
73.57 (8)	Ca ^{xvi} —F7—Ba	120.85 (10)
	127.71(7) 130.72(6) 50.93(5) 67.24(5) 118.00(6) 82.69(7) 117.62(5) 97.89(5) 105.96(6) 113.22(7) 68.57(8) 48.36(6) 144.89(5) 111.48(6) 58.64(6) 84.02(7) 46.95(6) 94.27(6) 163.69(5) 145.64(12) 80.29(8) 78.04(8) 78.04(8) 78.04(8) 80.29(8) 100.95(11) 139.26(9) 73.57(8) 133.25(7) 109.75(8) 73.57(8)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) x, -y+1, z-1/2; (iv) -x+1/2, -y+1/2, -z+1; (v) -x+1/2, y-1/2, -z+1/2; (vi) x, -y+1, z+1/2; (vii) x-1/2, y+1/2, z; (viii) -x, -y+1, -z+1; (ix) -x, y, -z+1/2; (x) x-1/2, -y+1/2, z-1/2; (xi) x, y, z-1; (xii) x+1/2, y+1/2, z; (xiii) x, y, z+1; (xiv) -x+1/2, y-1/2, -z+3/2; (xv) x-1/2, y-1/2, z; (xvi) x+1/2, y-1/2, z.