# data reports



Cu  $K\alpha$  radiation

 $0.4 \times 0.2 \times 0.1 \text{ mm}$ 

 $\mu = 7.59 \text{ mm}^{-1}$ 

T = 120 K



OPEN d ACCESS

Crystal structure of 4-amino-2,6-dichlorophenol

### Kyle J. McDonald,<sup>a</sup> Vasumathi Desikan,<sup>a</sup> James A. Golen<sup>b</sup> and David R. Manke<sup>b\*</sup>

<sup>a</sup>Department of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and <sup>b</sup>Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. \*Correspondence e-mail: dmanke@umassd.edu

Received 5 May 2015; accepted 13 May 2015

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic

The title compound,  $C_6H_5Cl_2NO$ , has a single planar molecule in the asymmetric unit with the non-H atoms possessing a mean deviation from planarity of 0.020 Å. In the crystal, O- $H \cdot \cdot \cdot N$  hydrogen bonds lead to the formation of infinite chains along [101] which are further linked by  $N-H \cdots O$  hydrogen bonds, forming (010) sheets.

Keywords: crystal structure; aminophenols; hydrogen bonding.

CCDC reference: 1400729

### 1. Related literature

For the crystal structure of the parent *p*-aminophenol, see: Brown (1951). For other related structures, see: Ermer & Eling (1994); Dey et al. (2005); Bacchi et al. (2009).



### 2. Experimental

2.1. Crystal data C<sub>6</sub>H<sub>5</sub>Cl<sub>2</sub>NO  $M_r = 178.02$ 

Monoclinic,  $P2_1/n$ a = 4.6064 (5) Å

b = 11.7569 (12) Åc = 13.2291 (13) Å  $\beta = 96.760 \ (5)^{\circ}$ V = 711.47 (13) Å<sup>3</sup> Z = 4

#### 2.2. Data collection

| Bruker D8 Venture CMOS                 | 7481 measured reflections                |
|----------------------------------------|------------------------------------------|
| diffractometer                         | 1402 independent reflections             |
| Absorption correction: multi-scan      | 1273 reflections with $I \ge 2\sigma(I)$ |
| (SADABS; Bruker, 2014)                 | $R_{\rm int} = 0.043$                    |
| $T_{\min} = 0.425, \ T_{\max} = 0.754$ |                                          |

#### 2.3. Refinement

Table 1

| $R[F^2 > 2\sigma(F^2)] = 0.033$<br>$wR(F^2) = 0.091$<br>S = 1.05<br>1402 reflections<br>99 parameters<br>2 parameters | H atoms treated by a mixture of independent and constrained refinement $\begin{split} &\Delta\rho_{max}=0.33 \text{ e } \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.35 \text{ e } \text{\AA}^{-3} \end{split}$ |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 restraints                                                                                                          |                                                                                                                                                                                                           |

| Hydrogen-bond | geometry | (Å, | °). |
|---------------|----------|-----|-----|

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|----------|--------------|--------------|---------------------------|
|                             | 0.85 (2) | 1.82 (2)     | 2.653 (2)    | 168 (2)                   |
|                             | 0.87 (1) | 2.05 (1)     | 2.921 (2)    | 177 (2)                   |

Symmetry codes: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ 

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and OLEX2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

#### Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

Supporting information for this paper is available from the IUCr electronic archives (Reference: FF2137).

#### References

Bacchi, A., Carcelli, M., Chiodo, T., Cantoni, G., De Filippo, C. & Pipolo, S. (2009). CrystEngComm, 11, 1433-1441.

Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.

Brown, C. J. (1951). Acta Cryst. 4, 100-103.

Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545-10559.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Ermer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925-944.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2015). E71, o406 [doi:10.1107/S2056989015009172]

# Crystal structure of 4-amino-2,6-dichlorophenol

# Kyle J. McDonald, Vasumathi Desikan, James A. Golen and David R. Manke

## S1. Comment

The hydrogen bonding networks of aminophenols have been explored as hydroxy and amino groups are complementary hydrogen bonding donors and acceptors. This is exemplified in *p*-aminophenol, which exhibits a supertetrahedral hydrogen bonded architecture where all hydrogen bonding donors and acceptors are saturated (Brown, 1951; Ermer *et al.*, 1994). The mono-substitution in 4-amino-2-methylphenol and 4-amino-3-methylphenol yields a square motif structure that again exhibits saturation among hydrogen bonding donors and acceptors (Dey *et al.*, 2005). The more sterically encumbered substitution of 4-amino-2,6-diphenylphenol prevents the saturation in hydrogen bonding, with only O–H…N and N–H…aryl interactions observed (Bacchi *et al.*, 2009). The 2,6-dichloro substitution of the title compound also prevents saturation in its hydrogen bonding network.

The molecular structure of the title compound demonstrates a planar molecule with a mean deviation from the plane of the non-hydrogen atoms of 0.020 Å. Intermolecular hydrogen bonding between O1–H1…N1 results in infinite chains along [101] which combine with intermolecular hydrogen bonding between N1–H1a…O1 to give (010) sheets. The packing for the title compound indicating hydrogen bonding is shown in Figure 2.

## **S2.** Experimental

A commercial sample (Aldrich) was used for the crystallization. Crystals suitable for single crystal X-ray analysis were grown by slow evaporation of a methanol solution.

## **S3. Refinement**

All non-hydrogen atoms were refined anisotropically (Olex2) by full matrix least squares on F<sup>2</sup>. Hydrogen atoms H1, H1a and H1b were found from a Fourier difference map. H1 was allowed to refine freely with an isotropic displacement parameter of 1.20 times  $U_{eq}$  of the parent O atom. H1a and H1b were refined with a fixed distance of 0.87 (0.005) Å and isotropic displacement parameters of 1.20 times  $U_{eq}$  of the parent N atom. The two remaining hydrogen atoms were placed in calculated positions and then refined with riding model with C–H lengths of 0.95 Å with isotropic displacement parameters set to 1.20 times  $U_{eq}$  of the parent C atom.



# Figure 1

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.



# Figure 2

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

#### 4-Amino-2,6-dichlorophenol

#### Crystal data

C<sub>6</sub>H<sub>5</sub>Cl<sub>2</sub>NO  $M_r = 178.02$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 4.6064 (5) Å*b* = 11.7569 (12) Å c = 13.2291 (13) Å $\beta = 96.760 (5)^{\circ}$ V = 711.47 (13) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker D8 Venture CMOS                             |
|----------------------------------------------------|
| diffractometer                                     |
| Radiation source: microfocus Cu                    |
| HELIOS MX monochromator                            |
| Detector resolution: 102.4 pixels mm <sup>-1</sup> |
| $\varphi$ and $\omega$ scans                       |
| Absorption correction: multi-scan                  |
| (SADABS; Bruker, 2014)                             |
| $T_{\min} = 0.425, \ T_{\max} = 0.754$             |
|                                                    |

### Refinement

Refinement on  $F^2$ 7 constraints Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.033$ and constrained refinement  $wR(F^2) = 0.091$  $w = 1/[\sigma^2(F_0^2) + (0.0618P)^2 + 0.1912P]$ S = 1.05where  $P = (F_0^2 + 2F_c^2)/3$ 1402 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$ 99 parameters 2 restraints  $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$ 

### Special details

Experimental. Absorption correction: SADABS-2014/4 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.1370 before and 0.0641 after correction. The Ratio of minimum to maximum transmission is 0.5642. The  $\lambda/2$  correction factor is 0.00150.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| Cl1 | 0.10618 (10) | 0.09750 (4)  | 0.70434 (3)  | 0.02213 (17)                |  |
| Cl2 | 0.79187 (11) | 0.44532 (4)  | 0.61176 (4)  | 0.02666 (18)                |  |
| 01  | 0.4519 (3)   | 0.30303 (12) | 0.74687 (10) | 0.0214 (3)                  |  |
| N1  | 0.4522 (4)   | 0.13356 (14) | 0.35171 (12) | 0.0199 (4)                  |  |
| C1  | 0.4563 (4)   | 0.26523 (16) | 0.65055 (14) | 0.0176 (4)                  |  |
| C4  | 0.4607 (4)   | 0.17796 (16) | 0.45234 (13) | 0.0176 (4)                  |  |
| C5  | 0.6112 (4)   | 0.27756 (16) | 0.48060 (14) | 0.0196 (4)                  |  |
| Н5  | 0.7170 (4)   | 0.31620 (16) | 0.43359 (14) | 0.0235 (5)*                 |  |
| C2  | 0.3011 (4)   | 0.16753 (16) | 0.61822 (14) | 0.0171 (4)                  |  |
| C3  | 0.3014 (4)   | 0.12337 (16) | 0.52110 (14) | 0.0182 (4)                  |  |

F(000) = 363.7579 $D_{\rm x} = 1.662 \text{ Mg m}^{-3}$ Cu K $\alpha$  radiation,  $\lambda = 1.54178$  Å Cell parameters from 5198 reflections  $\theta = 5.1 - 72.2^{\circ}$  $\mu = 7.59 \text{ mm}^{-1}$ T = 120 KPlate. colourless  $0.4 \times 0.2 \times 0.1 \text{ mm}$ 

7481 measured reflections 1402 independent reflections 1273 reflections with  $I \ge 2\sigma(I)$  $R_{\rm int} = 0.043$  $\theta_{\text{max}} = 72.2^{\circ}, \ \theta_{\text{min}} = 5.1^{\circ}$  $h = -5 \rightarrow 5$  $k = -14 \rightarrow 14$  $l = -12 \rightarrow 16$ 

H atoms treated by a mixture of independent

| 0.1938 (4) | 0.05638 (16)                                                    | 0.50165 (14)                                                                                          | 0.0219 (5)*                                                                                                                                                    |
|------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.6052 (4) | 0.31990 (16)                                                    | 0.57788 (14)                                                                                          | 0.0179 (4)                                                                                                                                                     |
| 0.615 (5)  | 0.329 (2)                                                       | 0.7732 (18)                                                                                           | 0.0215 (5)*                                                                                                                                                    |
| 0.601 (3)  | 0.1551 (19)                                                     | 0.3217 (15)                                                                                           | 0.0215 (5)*                                                                                                                                                    |
| 0.451 (5)  | 0.0598 (4)                                                      | 0.3523 (17)                                                                                           | 0.0215 (5)*                                                                                                                                                    |
|            | 0.1938 (4)<br>0.6052 (4)<br>0.615 (5)<br>0.601 (3)<br>0.451 (5) | 0.1938 (4)0.05638 (16)0.6052 (4)0.31990 (16)0.615 (5)0.329 (2)0.601 (3)0.1551 (19)0.451 (5)0.0598 (4) | 0.1938 (4)0.05638 (16)0.50165 (14)0.6052 (4)0.31990 (16)0.57788 (14)0.615 (5)0.329 (2)0.7732 (18)0.601 (3)0.1551 (19)0.3217 (15)0.451 (5)0.0598 (4)0.3523 (17) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|------------|-------------|-------------|---------------|--------------|---------------|
| Cl1 | 0.0232 (3) | 0.0246 (3)  | 0.0204 (3)  | -0.00409 (16) | 0.00988 (19) | 0.00083 (17)  |
| Cl2 | 0.0334 (3) | 0.0245 (3)  | 0.0225 (3)  | -0.01014 (19) | 0.0052 (2)   | -0.00026 (18) |
| 01  | 0.0193 (6) | 0.0298 (7)  | 0.0156 (7)  | -0.0039 (6)   | 0.0046 (5)   | -0.0042 (6)   |
| N1  | 0.0206 (8) | 0.0247 (9)  | 0.0151 (8)  | 0.0013 (6)    | 0.0057 (6)   | -0.0009 (6)   |
| C1  | 0.0146 (8) | 0.0225 (9)  | 0.0159 (9)  | 0.0027 (7)    | 0.0023 (7)   | 0.0008 (7)    |
| C4  | 0.0138 (8) | 0.0248 (9)  | 0.0142 (9)  | 0.0050 (7)    | 0.0009 (7)   | 0.0005 (7)    |
| C5  | 0.0177 (9) | 0.0244 (10) | 0.0173 (9)  | 0.0005 (7)    | 0.0048 (7)   | 0.0054 (7)    |
| C2  | 0.0144 (8) | 0.0215 (9)  | 0.0163 (9)  | 0.0011 (7)    | 0.0051 (7)   | 0.0035 (7)    |
| C3  | 0.0148 (8) | 0.0217 (9)  | 0.0185 (10) | 0.0005 (7)    | 0.0029 (7)   | -0.0007 (7)   |
| C6  | 0.0158 (8) | 0.0188 (9)  | 0.0194 (9)  | -0.0007 (7)   | 0.0026 (7)   | 0.0016 (7)    |

Geometric parameters (Å, °)

| Cl1—C2       | 1.7387 (18)  | C1—C6        | 1.401 (3)    |
|--------------|--------------|--------------|--------------|
| Cl2—C6       | 1.7389 (19)  | C4—C5        | 1.389 (3)    |
| 01—C1        | 1.352 (2)    | C4—C3        | 1.391 (3)    |
| O1—H1        | 0.85 (2)     | С5—Н5        | 0.9500       |
| N1—C4        | 1.426 (2)    | C5—C6        | 1.383 (3)    |
| N1—H1a       | 0.870 (5)    | C2—C3        | 1.386 (3)    |
| N1—H1b       | 0.867 (5)    | С3—Н3        | 0.9500       |
| C1—C2        | 1.393 (3)    |              |              |
| H1—O1—C1     | 113.3 (16)   | C6—C5—C4     | 119.33 (17)  |
| H1a—N1—C4    | 112.6 (15)   | C6—C5—H5     | 120.34 (11)  |
| H1b—N1—C4    | 110.9 (15)   | C1—C2—Cl1    | 118.37 (14)  |
| H1b—N1—H1a   | 108 (2)      | C3—C2—Cl1    | 119.15 (14)  |
| C2-C1-O1     | 119.75 (16)  | C3—C2—C1     | 122.47 (16)  |
| C6-C1-O1     | 123.97 (17)  | C2—C3—C4     | 119.44 (18)  |
| C6—C1—C2     | 116.26 (17)  | H3—C3—C4     | 120.28 (11)  |
| C5-C4-N1     | 121.18 (17)  | H3—C3—C2     | 120.28 (11)  |
| C3—C4—N1     | 118.87 (18)  | C1—C6—Cl2    | 118.64 (14)  |
| C3—C4—C5     | 119.85 (17)  | C5—C6—Cl2    | 118.79 (14)  |
| Н5—С5—С4     | 120.34 (10)  | C5—C6—C1     | 122.57 (17)  |
| Cl1—C2—C3—C4 | -178.98 (14) | C4—C5—C6—Cl2 | -179.43 (14) |
| 01—C1—C2—Cl1 | -0.1 (2)     | C4—C5—C6—C1  | 1.0 (3)      |
| O1—C1—C2—C3  | -178.74 (17) | C5—C4—C3—C2  | -1.7 (3)     |
| O1-C1-C6-Cl2 | -1.1 (3)     | C2-C1-C6-Cl2 | 177.57 (13)  |
| O1—C1—C6—C5  | 178.43 (17)  | C2—C1—C6—C5  | -2.9 (3)     |
|              |              |              |              |

# supporting information

| N1-C4-C5-C6 | 177.70 (17)  | C3—C4—C5—C6  | 1.3 (3)      |
|-------------|--------------|--------------|--------------|
| N1—C4—C3—C2 | -178.14 (17) | C6-C1-C2-Cl1 | -178.80 (13) |
| C1—C2—C3—C4 | -0.3 (3)     | C6—C1—C2—C3  | 2.5 (3)      |

Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|------------------------------|----------|----------|-----------|-------------------------|
| O1—H1···N1 <sup>i</sup>      | 0.85 (2) | 1.82 (2) | 2.653 (2) | 168 (2)                 |
| N1— $H1a$ ···O1 <sup>n</sup> | 0.87 (1) | 2.05 (1) | 2.921 (2) | 177 (2)                 |

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) x+1/2, -y+1/2, z-1/2.