

Received 28 April 2015 Accepted 19 May 2015

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

**Keywords**: crystal structure; amino acid; coordination polymer; calcium; proline

CCDC references: 1401789; 1401788 Supporting information: this article has supporting information at journals.iucr.org/e





# Crystal structures of coordination polymers from Cal<sub>2</sub> and proline

Kevin Lamberts and Ulli Englert\*

Institute of Inorganic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany. \*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

Completing our reports concerning the reaction products from calcium halides and the amino acid proline, two different solids were found for the reaction of L- and DL-proline with CaI<sub>2</sub>. The enantiopure amino acid yields the onedimensional coordination polymer *catena*-poly[[aqua- $\mu_3$ -L-proline-tetra- $\mu_2$ -Lproline-dicalcium] tetraiodide 1.7-hydrate],  $\{[Ca_2(C_5H_9NO_2)_5(H_2O)]I_4$ .  $1.7H_2O_{\mu\nu}$  (1), with two independent Ca<sup>2+</sup> cations in characteristic seven- and eightfold coordination. Five symmetry-independent zwitterionic L-proline molecules bridge the metal sites into a cationic polymer. Racemic proline forms with Ca<sup>2+</sup> cations heterochiral chains of the one-dimensional polymer *catena*-poly[[diaguadi- $\mu_2$ -DL-proline-calcium] diiodide],  $\{[Ca(C_5H_9NO_2)_2 (H_2O)_2|I_2|_n$ , (2). The centrosymmetric structure is built by one Ca<sup>2+</sup> cation that is bridged towards its symmetry equivalents by two zwitterionic proline molecules. In both structures, the iodide ions remain non-coordinating and hydrogen bonds are formed between these counter-anions, the amino groups, coordinating and co-crystallized water molecules. While the overall composition of (1) and (2) is in line with other structures from calcium halides and amino acids, the diversity of the carboxylate coordination geometry is quite surprising.

### 1. Chemical context

The large field of crystal engineering benefits from the growing amount of structural data obtained by single-crystal diffraction. Amino acids are the building blocks of proteins and important molecules for various applications in chemistry and life sciences. Their metal complexes have, however, been investigated less often than their availability suggests. Many of these studies address the amino acids in their deprotonated form in which it mostly acts as a N,O chelating ligand. (e.g. Ito et al., 1971; Kato et al., 2008; Magill et al., 1993; Marandi & Shahbakhsh, 2007; Mathieson & Welsh, 1952; Mikhalyova et al., 2010; Oki & Yoneda, 1981). In contrast, the zwitterionic overall neutral amino acids show more analogy to carboxylates; for these, a large variety of coordination modes has been established (Batten et al., 2008). While the protonated amino group is no longer nucleophilic, it may act as a hydrogen-bond donor. The pattern formed by these interactions also depends on the chirality of the enantiopure or racemic amino acid. When both carboxylate coordination and intermolecular hydrogen bonds are taken into account, a large number of potentially competitive structures arises and subtle changes in the coordination chemistry may determine which product will be obtained. An overview of the crystal chemistry of amino acids has been published by Fleck & Petrosyan (2014). We here complete our reports concerning the reaction products from calcium halides and the amino acid proline. In this context, we encountered coordination polymers, isoreticular

### research communications

coordination networks, and polymorphism (Lamberts *et al.*, 2014*b*; Lamberts *et al.*, 2015). The two structures reported here are coordination polymers obtained from calcium iodide and proline: the scheme shows that compounds (1) and (2) form from enantiopure L-proline and racemic proline, respectively.



### 2. Structural commentary

Compound (1) crystallizes in the chiral orthorhombic space group  $P2_12_12_1$  with two calcium cations, five proline ligands, one coordinating water ligand, 1.7 non-coordinating water molecules and four iodide anions in the asymmetric unit; all constituents are necessarily located in general positions (Fig. 1).

The five independent proline molecules show three different coordination modes; in the following discussion, they are labelled according to their N atom. Proline 1 acts as a chelating ligand towards Ca1 and simultaneously as a bridge to Ca2 in a  $\mu_2$ - $\kappa^2$ : $\kappa^1$  configuration. An analogous situation is found for proline 4, chelating Ca2 and bridging towards Ca1<sup>iii</sup> [(iii) = -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ]. Proline 3 connects three Ca positions in a  $\mu_3$ - $\kappa^2$ : $\kappa^2$  coordination mode. The remaining proline ligands (2 and 5) do not chelate but only bridge two cations in a *syn-syn* configuration. Herein, proline 2 shows a more symmetric coordination, being located approximately in the middle of Ca1 and Ca2, whereas proline 5 is strongly dislocated towards Ca1.



**Figure 1** The asymmetric unit of (1). Displacement ellipsoid are shown at the 80% probability level.

In view of the strongly ionic nature of an interaction between a carboxylate and a calcium dication, the 3.040 (5) Å distance between Ca1 and O9<sup>i</sup> [(i) = -x + 1,  $y - \frac{1}{2}, -z + \frac{1}{2}$ ] represents an additional, energetically favourable contact which, however, is much longer than a classical coordinative bond and does not affect the topology of the compound.

We mentioned in our earlier direct comparison between coordination polymers based on  $Ca^{2+}$  and  $Mn^{2+}$  (Lamberts *et al.*, 2014*a*) that the absence of crystal field effects is reflected in variable and often less regular coordination spheres about the alkaline earth cation. The two cations in (1) have significantly different coordination environments: Ca1 is seven-coordinated by carboxylato O atoms, while Ca2 offers an additional coordination site towards the water ligand to complete an eightfold coordination environment. The atoms around Ca1



The polymeric chain of (1). H atoms and C atoms of the proline ring have been omitted for clarity.

Table 1Selected bond lengths (Å) for (1).

| Ca1-O3               | 2.319 (5)   | Ca2-O9  | 2.337 (5) |
|----------------------|-------------|---------|-----------|
| Ca1-O5               | 2.326 (5)   | Ca2-O4  | 2.368 (5) |
| Ca1-O6 <sup>i</sup>  | 2.353 (5)   | Ca2-O11 | 2.378 (5) |
| Ca1-O8 <sup>i</sup>  | 2.358 (5)   | Ca2-O1  | 2.378 (5) |
| Ca1-O10 <sup>i</sup> | 2.393 (5)   | Ca2-O5  | 2.442 (5) |
| Ca1-O2               | 2.477 (5)   | Ca2-O8  | 2.501 (5) |
| Ca1-O1               | 2.617 (5)   | Ca2-O7  | 2.572 (5) |
| Ca1-Ca2              | 3.8144 (18) | Ca2-O6  | 2.820 (5) |
| Ca1-Ca2 <sup>i</sup> | 3.8315 (18) |         |           |

Symmetry code: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

are provided by two oxygen atoms of the chelating part of proline 1, and five single oxygen atoms from different bridging proline molecules. Ca2 is coordinated by two chelating carboxylato groups. Only three additional Ca...O contacts are formed from neighbouring, bridging proline ligands, whereas the remaining coordination partner is the coordinating water molecule. Each Ca<sup>2+</sup> cation is coordinated by the independent *syn-syn* bridging proline ligands 2 and 5; they are arranged on opposite sides around Ca1 and next to each other around Ca2.

Overall, a one dimensional coordination polymer is formed (Fig. 2). The chain extends along *b*; its projection on the *bc* plane is a sinusoidal curve, with alternating Ca1 and Ca2 positions. Each chain segment is triple bridged with two very similar independent Ca···Ca separations of 3.814 (2) and 3.832 (2) Å. The  $\mu_3$ - $\kappa^2$ : $\kappa^2$  proline 3 coordinates within the sinusoidal plane in the concave parts, while proline 1 and the aqua ligand coordinate on the convex side. Selected distances are compiled in Table 1.

The iodide I4 shows positional disorder over two mutually exclusive sites, and three proline molecules exhibit slight disorder of carbon atoms of the five-membered proline envelopes.

Coordination polymer (2) forms under similar conditions as (1) but from racemic proline. The compound crystallizes in

| Table 2  |                                       |
|----------|---------------------------------------|
| Selected | bond lengths $(\text{Å})$ for $(2)$ . |

| Ca1-O1              | 2.621 (6) | Ca1-O1 <sup>ii</sup>  | 2.323 (5) |
|---------------------|-----------|-----------------------|-----------|
| Ca1-O2              | 2.489 (6) | Ca1-O3                | 2.252 (5) |
| Ca1-O4 <sup>i</sup> | 2.396 (5) | Ca1-Ca1 <sup>i</sup>  | 4.829 (4) |
| Ca1-O5              | 2.376 (5) | Ca1-Ca1 <sup>ii</sup> | 4.032 (4) |
| Ca1-O6              | 2.365 (6) |                       |           |

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z.

space group  $P\overline{1}$  with one Ca<sup>II</sup> cation, two proline ligands and two water ligands and two non-coordinating iodide anions in the asymmetric unit, all in general positions (Fig. 3).

One proline molecule chelates the calcium cation with its carboxylato group and additionally bridges towards a second calcium of the polymer chain  $(\mu_2 - \kappa^2 : \kappa^1)$ . The other proline molecule only bridges two adjacent calcium atoms in a *syn*-*anti* conformation  $(\mu_2 - \kappa^1 : \kappa^1)$ .

Together with the two aqua ligands, this results in a sevenfold coordination of the Ca<sup>2+</sup> cation. Since the inversion centres lie in between the calcium atoms, two different chain connections are obtained: one is built by two simultaneously bridging and chelating proline ligands [Ca···Ca = 4.032 (4) Å], the other one by two *syn-anti* bridging proline ligands [Ca···Ca = 4.829 (4) Å, parallelogram-shaped motif]. Overall, a zigzag-shaped polymer chain is formed which extends along the shortest unit-cell axis *a* (Fig. 4). Selected distances are given in Table 2.

#### 3. Supramolecular features

Since most hydrogen atoms in (1) have been constrained to calculated positions, their relevance should not be overestimated. The following points should, however, be mentioned: all hydrogen-bond donors find suitable acceptors. Most hydrogen bonds involve iodide and hence occur between different residues. However, only a few hydrogen bonds actually connect two neighbouring chains, resulting in an overall three-dimensional network (Fig. 5). Interestingly, only



**Figure 3** The asymmetric unit of (2). Displacement ellipsoid are shown at the 80% probability level.



Figure 4 The polymeric chain of (2). H atoms have been omitted for clarity.

### research communications

Table 3Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (1).

| $D - H \cdot \cdot \cdot A$             | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $N1-H1A\cdots I3^{ii}$                  | 0.99           | 2.60                    | 3.526 (7)    | 155                                  |
| $N1 - H1B \cdots O11$                   | 0.99           | 2.10                    | 2.996 (9)    | 150                                  |
| $N2-H2A\cdots I1$                       | 0.99           | 2.75                    | 3.603 (5)    | 145                                  |
| $N2 - H2B \cdots I4A$                   | 0.99           | 2.53                    | 3.400 (6)    | 146                                  |
| $N3-H3A\cdots O2^{iii}$                 | 0.99           | 1.94                    | 2.829 (7)    | 147                                  |
| $N3-H3B\cdots I2$                       | 0.99           | 2.61                    | 3.447 (5)    | 143                                  |
| $N4-H4A\cdots O12$                      | 0.99           | 1.80                    | 2.750 (8)    | 159                                  |
| N4-H4 $B$ ···I3 <sup>ii</sup>           | 0.99           | 2.92                    | 3.674 (6)    | 133                                  |
| $N5-H5A\cdots I1$                       | 0.99           | 2.74                    | 3.627 (6)    | 149                                  |
| $N5 - H5B \cdot \cdot \cdot I3$         | 0.99           | 2.62                    | 3.478 (6)    | 146                                  |
| $O11 - H11A \cdots I1$                  | 0.84 (6)       | 2.56 (6)                | 3.389 (5)    | 171 (7)                              |
| $O11 - H11B \cdot \cdot \cdot I2^{iii}$ | 0.83 (7)       | 2.71 (7)                | 3.524 (6)    | 168 (5)                              |
| $O12-H12A\cdots O10^{ii}$               | 0.83 (4)       | 2.06 (5)                | 2.732 (7)    | 137 (4)                              |
| $O12-H12B\cdots O2^{iv}$                | 0.83 (3)       | 2.54 (4)                | 3.339 (8)    | 162 (7)                              |
| $O13-H13A\cdots I4A^{iii}$              | 0.85 (11)      | 2.90 (11)               | 3.703 (11)   | 159 (10)                             |
| $O13-H13B\cdots I4A^{v}$                | 0.85 (8)       | 2.76 (8)                | 3.598 (11)   | 172 (10)                             |

Symmetry codes: (ii) x + 1, y, z; (iii) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iv) -x + 2,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (v)  $-x + \frac{3}{2}$ , -y + 1,  $z - \frac{1}{2}$ .

one of the five proline molecules contributes to an N-H···O hydrogen bond along the chain  $[N3-H3A···O2^{iii}; (iii) = -x + 1, y + \frac{1}{2}, -z + \frac{1}{2}].$ 

Each of the two independent aqua ligands in (2) donates hydrogen bonds towards two iodides. The amino group associated with N2 on the one hand also forms a hydrogen bond towards iodide, on the other hand directly connects two neighbouring chains by finding a coordinating water molecule as acceptor. N1 also interacts with an iodide counter-anion. This second NH donor can, however, not be unambiguously assigned to a hydrogen-bond acceptor: Two iodide anions are situated in its vicinity and may be regarded as acceptors for a bifurcated hydrogen bond with  $H \cdots I$  distances of 3.24 (5) and 3.33 (8) Å. Overall, a two-dimensional framework is formed in the *ab* plane (Fig. 5). A complete overview of hydrogen-bond geometries is given in Tables 3 and 4.

Table 4Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (2).

| , , ,                                 | ,        | ( )                     |              |                  |
|---------------------------------------|----------|-------------------------|--------------|------------------|
| $D - H \cdots A$                      | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
| $N1-H1A\cdots I2$                     | 0.85 (7) | 2.67 (7)                | 3.459 (8)    | 154 (7)          |
| $N1 - H1B \cdot \cdot \cdot I1$       | 0.86(7)  | 3.33 (7)                | 3.809(7)     | 118 (6)          |
| $N1 - H1B \cdot \cdot \cdot I2^{iii}$ | 0.86 (7) | 3.24 (7)                | 3.695 (7)    | 116 (5)          |
| $N2-H2A\cdots I1^{iv}$                | 0.85 (6) | 2.88 (6)                | 3.700 (8)    | 161 (7)          |
| $N2-H2B)\cdots O5^{v}$                | 0.86 (6) | 2.13 (7)                | 2.904 (9)    | 151 (7)          |
| $O5-H1W \cdots I1$                    | 0.84(7)  | 2.68 (7)                | 3.486 (6)    | 163 (6)          |
| $O5-H2W \cdot \cdot \cdot I1^{vi}$    | 0.83 (3) | 2.77 (6)                | 3.491 (6)    | 147 (7)          |
| $O6-H3W \cdot \cdot \cdot I1^{vii}$   | 0.87 (6) | 2.65 (6)                | 3.509 (7)    | 167 (5)          |
| $O6-H4W\cdots I2^{vii}$               | 0.84 (5) | 2.77 (4)                | 3.543 (6)    | 155 (7)          |

Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y - 1, z; (v) x, y - 1, z; (vi) -x + 1, -y + 1, -z; (vii) x + 1, y, z.

#### 4. Database survey

Database searches (Groom & Allen, 2014) were performed using the Cambridge Crystallographic Database (CSD, Version 5.36, including updates until November 2014). All searches were restricted to error-free entries for which 3D coordinates were available. A search for structures containing calcium and proline or derivatives in any protonation state comes up with eight hits. Six of them correspond to the aforementioned structures published by our group (Lamberts *et al.*, 2014*a*,*b*, 2015). These are coordination polymers and networks based on calcium chloride and bromide with both L-proline and DL-proline. The other two structures are a molecular complex with deprotonated *N*,*O*-chelating hydroxyproline (Kim *et al.*, 1985), and a coordination network of calcium pyroglutamate (Schmidbaur *et al.*, 1991).

#### 5. Synthesis and crystallization

Single crystals of (1) were obtained by dissolving 92 mg (0.8 mmol) L-proline in 1 ml of aqueous 0.4 molar  $CaI_2$  solution. The solvent was evaporated under controlled conditions





Table 5Experimental details.

|                                                                             | (1)                                                                                           | (2)                                                                       |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Crystal data                                                                |                                                                                               |                                                                           |
| Chemical formula                                                            | $[Ca_{2}(C_{5}H_{0}NO_{2})_{5}(H_{2}O)]I_{4}\cdot 1.7H_{2}O$                                  | $[Ca(C_5H_0NO_2)_2(H_2O)_2]I_2$                                           |
| $M_r$                                                                       | 1212.21                                                                                       | 560.17                                                                    |
| Crystal system, space group                                                 | Orthorhombic, $P2_12_12_1$                                                                    | Triclinic, P1                                                             |
| Temperature (K)                                                             | 100                                                                                           | 100                                                                       |
| a, b, c (Å)                                                                 | 11.5276 (9), 12.7878 (10), 28.285 (2)                                                         | 7.958 (7), 9.080 (8), 13.591 (11)                                         |
| $\alpha, \beta, \gamma$ (°)                                                 | 90, 90, 90                                                                                    | 105.757 (10), 104.501 (11), 97.911 (12)                                   |
| $V(\dot{A}^3)$                                                              | 4169.6 (5)                                                                                    | 892.5 (13)                                                                |
| Z                                                                           | 4                                                                                             | 2                                                                         |
| Radiation type                                                              | Μο Κα                                                                                         | Μο Κα                                                                     |
| $\mu (\text{mm}^{-1})$                                                      | 3.29                                                                                          | 3.84                                                                      |
| Crystal size (mm)                                                           | $0.22 \times 0.20 \times 0.10$                                                                | $0.22 \times 0.13 \times 0.05$                                            |
| Data collection                                                             |                                                                                               |                                                                           |
| Diffractometer                                                              | Bruker D8 with APEX CCD area detector and<br>Incoatec microsource                             | Bruker D8 with APEX CCD area detector and<br>Incoatec microsource         |
| Absorption correction                                                       | Multi-scan (SADABS; Bruker, 2008)                                                             | Multi-scan (SADABS; Bruker, 2008)                                         |
| $T_{\min}, T_{\max}$                                                        | 0.563, 0.746                                                                                  | 0.447, 0.745                                                              |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections    | 58117, 10475, 9862                                                                            | 8805, 3533, 2603                                                          |
| R <sub>int</sub>                                                            | 0.053                                                                                         | 0.079                                                                     |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                        | 0.669                                                                                         | 0.620                                                                     |
| Refinement                                                                  |                                                                                               |                                                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                         | 0.036, 0.072, 1.10                                                                            | 0.047, 0.116, 1.02                                                        |
| No. of reflections                                                          | 10475                                                                                         | 3533                                                                      |
| No. of parameters                                                           | 455                                                                                           | 214                                                                       |
| No. of restraints                                                           | 10                                                                                            | 29                                                                        |
| H-atom treatment                                                            | H atoms treated by a mixture of independent<br>and constrained refinement                     | H atoms treated by a mixture of independent<br>and constrained refinement |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.93, -0.66                                                                                   | 1.05, -2.20                                                               |
| Absolute structure                                                          | Flack x determined using 4114 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons & Flack, 2004) | -                                                                         |
| Absolute structure parameter                                                | 0.023 (8)                                                                                     | _                                                                         |

Computer programs: SMART and SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

(Lamberts *et al.*, 2014*b*) at 313 K. Suitable crystals were obtained after 5 d as yellow blocks. Crystals of (2) were obtained by using DL-proline under the same conditions and grew after 5 d as yellow plates.

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. Non-hydrogen atoms were refined with anisotropic displacement parameters where possible. H atoms connected to carbon were placed in idealized positions and treated as riding, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

In (1), significant residual density maxima indicated disorder. An alternative position for I4 was assigned and refined with an isotropic displacement parameter to a refined occupancy of 0.134 (7) (total occupancy of I4 over both positions constrained to 1). Atoms C4 and C5, C18 and C19, and C14 were also refined as split over two positions. They were given a common isotropic displacement parameter and their occupancy was refined. The occupancy of the alternative positions refined to 0.519 (12) for C4 and C5, 0.218 (12) for C18 and C19, and 0.270 (12) for C14; the occupancy sum of the alternative sites for each atom was constrained to unity. Carbon atoms connected to disordered neighbours were given

two alternative geometries of calculated hydrogen positions. The occupancy of the non-coordinating water molecule associated with O13 refined to 0.707 (17); tentative refinement with full occupancy resulted in an unusually large displacement parameter. Given the limited data quality, H atoms connected to nitrogen atoms were not refined but treated as riding in idealized positions, with N-H = 0.99 Å and  $U_{iso}(H)$ =  $1.2U_{eq}(N)$ . The hydrogen atoms of the three water molecules were modelled as oriented towards the closest acceptor and restrained to O-H distances of 0.84 Å. Further distance restraints were applied to ensure stable refinement of a reasonable hydrogen-bond geometry.

In (2), no disorder was encountered. Hydrogen atoms attached to non-carbon atoms were located in a difference Fourier map and treated as riding, with  $U_{iso}(H) = 1.2U_{eq}(non-H)$ . N-H distances were refined with similarity restraints whereas O-H distances were restrained to 0.84 Å. H3W was assigned a distance restraint towards a neighbouring I1 anion to ensure suitable hydrogen-bond geometry. Reflection  $0\overline{11}$  was omitted from the final refinement because it was obstructed by the beamstop.

### Acknowledgements

The authors thank Evonik Industries for providing proline.

### References

- Batten, S. R., Neville, S. M. & Turner, D. R. (2008). Coordination Polymers: Design, Analysis and Application, pp. 172–178, 202–212. London: Royal Society of Chemistry.
- Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fleck, M. & Petrosyan, A. M. (2014). Salts of amino acids: Crystallization, Structure and Properties. Switzerland: Springer International Publishing.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Ito, T., Marumo, F. & Saito, Y. (1971). Acta Cryst. B27, 1062-1066.
- Kato, M., Hayashi, M., Fujihara, T. & Nagasawa, A. (2008). Acta Cryst. E64, m684.
- Kim, E. E., Sicignano, A. & Eriks, K. (1985). J. Am. Chem. Soc. 107, 6042–6046.
- Lamberts, K., Möller, A. & Englert, U. (2014*a*). Acta Cryst. B**70**, 989–998.
- Lamberts, K., Porsche, S., Hentschel, B., Kuhlen, T. & Englert, U. (2014b). CrystEngComm, 16, 3305–3311.

- Lamberts, K., Şerb, M.-D. & Englert, U. (2015). Acta Cryst. C71, 311–317.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Magill, C. P., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1993). Inorg. Chem. 32, 2729–2735.
- Marandi, F. & Shahbakhsh, N. (2007). J. Coord. Chem. 60, 2589–2595.
- Mathieson, A. & Welsh, H. K. (1952). Acta Cryst. 5, 599-604.
- Mikhalyova, E. A., Kolotilov, S. V., Cador, O., Pointillart, F., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). *Inorg. Chim. Acta*, **363**, 3453–3460.
- Oki, H. & Yoneda, H. (1981). Inorg. Chem. 20, 3875-3879.
- Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
- Schmidbaur, H., Kiprof, P., Kumberger, O. & Riede, J. (1991). Chem. Ber. 124, 1083–1087.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

# supporting information

Acta Cryst. (2015). E71, 675-680 [doi:10.1107/S2056989015009597]

### Crystal structures of coordination polymers from Cal<sub>2</sub> and proline

### Kevin Lamberts and Ulli Englert

### **Computing details**

For both compounds, data collection: *SMART* (Bruker, 2008); cell refinement: *SAINT-Plus* (Bruker, 2008); data reduction: *SAINT-Plus* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2015).

### (1) catena-poly[[aqua- $\mu_3$ -L-proline-tetra- $\mu_2$ -L-proline-dicalcium] tetraiodide 1.7-hydrate]

| Crystal data                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Ca_{2}(C_{5}H_{9}NO_{2})_{5}(H_{2}O)]I_{4} \cdot 1.7H_{2}O$<br>$M_{r} = 1212.21$<br>Orthorhombic, $P2_{1}2_{1}2_{1}$<br>a = 11.5276 (9) Å<br>b = 12.7878 (10) Å<br>c = 28.285 (2) Å<br>V = 4169.6 (5) Å <sup>3</sup><br>Z = 4<br>F(000) = 2356    | $D_x = 1.931 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 9906 reflections<br>$\theta = 2.4-26.3^{\circ}$<br>$\mu = 3.29 \text{ mm}^{-1}$<br>T = 100  K<br>Block, yellow<br>$0.22 \times 0.20 \times 0.10 \text{ mm}$                                                                                                                                                                                                                                                  |
| Data collection                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bruker D8 with APEX CCD area detector and<br>Incoatec microsource<br>diffractometer<br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008)<br>$T_{\min} = 0.563, T_{\max} = 0.746$<br>58117 measured reflections | 10475 independent reflections<br>9862 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.053$<br>$\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 1.9^{\circ}$<br>$h = -15 \rightarrow 15$<br>$k = -17 \rightarrow 17$<br>$l = -37 \rightarrow 37$                                                                                                                                                                                                                                                                                |
| Refinement                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.036$<br>$wR(F^2) = 0.072$<br>S = 1.10<br>10475 reflections<br>455 parameters<br>10 restraints<br>Hydrogen site location: mixed                                      | H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.005P)^2 + 7.P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.93$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.66$ e Å <sup>-3</sup><br>Absolute structure: Flack <i>x</i> determined using<br>4114 quotients [( <i>I</i> <sup>+</sup> )-( <i>I</i> )]/[( <i>I</i> <sup>+</sup> )+( <i>I</i> )] (Parsons &<br>Flack, 2004)<br>Absolute structure parameter: 0.023 (8) |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1)  |
|------|--------------|--------------|--------------|-----------------------------|------------|
| I1   | 0.50063 (4)  | 0.78534 (4)  | 0.46773 (2)  | 0.02285 (11)                |            |
| I2   | 0.09876 (4)  | 0.41042 (4)  | 0.14734 (2)  | 0.02416 (11)                |            |
| 13   | 0.11459 (5)  | 0.59585 (4)  | 0.30876 (2)  | 0.03516 (14)                |            |
| I4A  | 0.56556 (15) | 0.30647 (9)  | 0.51264 (3)  | 0.0380 (4)                  | 0.866 (7)  |
| I4B  | 0.6104 (12)  | 0.3290 (8)   | 0.5192 (3)   | 0.063 (3)*                  | 0.134 (7)  |
| Cal  | 0.53455 (11) | 0.37203 (10) | 0.27820 (5)  | 0.0131 (3)                  |            |
| Ca2  | 0.55317 (12) | 0.66087 (10) | 0.31101 (5)  | 0.0138 (3)                  |            |
| 01   | 0.6580 (4)   | 0.5048 (4)   | 0.32742 (16) | 0.0182 (10)                 |            |
| O2   | 0.7001 (5)   | 0.3367 (4)   | 0.33170 (18) | 0.0239 (12)                 |            |
| O3   | 0.4226 (4)   | 0.4116 (4)   | 0.34390 (16) | 0.0247 (11)                 |            |
| O4   | 0.4391 (4)   | 0.5772 (4)   | 0.36946 (16) | 0.0236 (11)                 |            |
| 05   | 0.4838 (4)   | 0.5378 (4)   | 0.25134 (16) | 0.0183 (10)                 |            |
| O6   | 0.4223 (5)   | 0.6927 (4)   | 0.22803 (16) | 0.0223 (11)                 |            |
| O7   | 0.7622 (4)   | 0.6802 (4)   | 0.28044 (16) | 0.0183 (10)                 |            |
| 08   | 0.6321 (4)   | 0.7962 (4)   | 0.25585 (16) | 0.0204 (10)                 |            |
| 09   | 0.4242 (4)   | 0.7994 (4)   | 0.32275 (16) | 0.0213 (11)                 |            |
| O10  | 0.3145 (4)   | 0.9020 (4)   | 0.27825 (16) | 0.0216 (10)                 |            |
| O11  | 0.6681 (5)   | 0.7372 (4)   | 0.37170 (18) | 0.0226 (11)                 |            |
| H11B | 0.716 (6)    | 0.783 (5)    | 0.364 (3)    | 0.027*                      |            |
| H11A | 0.632 (6)    | 0.755 (6)    | 0.3963 (18)  | 0.027*                      |            |
| O12  | 1.0987 (5)   | 0.9338 (4)   | 0.24099 (19) | 0.0306 (13)                 |            |
| H12A | 1.141 (4)    | 0.928 (7)    | 0.2647 (10)  | 0.037*                      |            |
| H12B | 1.154 (3)    | 0.924 (6)    | 0.2225 (8)   | 0.037*                      |            |
| O13  | 0.6478 (10)  | 0.6644 (9)   | 0.0612 (4)   | 0.059 (4)                   | 0.707 (17) |
| H13B | 0.712 (6)    | 0.670 (13)   | 0.047 (4)    | 0.070*                      | 0.707 (17) |
| H13A | 0.612 (10)   | 0.691 (12)   | 0.038 (3)    | 0.070*                      | 0.707 (17) |
| N1   | 0.8513 (6)   | 0.5710 (5)   | 0.3712 (2)   | 0.0291 (15)                 |            |
| H1A  | 0.9093       | 0.5919       | 0.3472       | 0.035*                      |            |
| H1B  | 0.7779       | 0.6077       | 0.3639       | 0.035*                      |            |
| N2   | 0.4256 (6)   | 0.5121 (4)   | 0.4621 (2)   | 0.0242 (14)                 |            |
| H2A  | 0.4539       | 0.5790       | 0.4488       | 0.029*                      |            |
| H2B  | 0.4922       | 0.4751       | 0.4765       | 0.029*                      |            |
| N3   | 0.2892 (5)   | 0.6171 (4)   | 0.1571 (2)   | 0.0192 (13)                 |            |
| H3A  | 0.2875       | 0.6855       | 0.1735       | 0.023*                      |            |
| H3B  | 0.2114       | 0.5849       | 0.1598       | 0.023*                      |            |
| N4   | 0.9412 (5)   | 0.7729 (5)   | 0.2348 (2)   | 0.0218 (13)                 |            |
| H4A  | 0.9849       | 0.8373       | 0.2425       | 0.026*                      |            |
| H4B  | 0.9402       | 0.7276       | 0.2632       | 0.026*                      |            |
| N5   | 0.2588 (5)   | 0.7619 (5)   | 0.3864 (2)   | 0.0222 (14)                 |            |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

| H5A         | 0.3409                 | 0.7607                | 0.3967                 | 0.027*                   |                        |
|-------------|------------------------|-----------------------|------------------------|--------------------------|------------------------|
| H5B         | 0.2396                 | 0.6934                | 0.3721                 | 0.027*                   |                        |
| C1          | 0.7208 (6)             | 0.4304 (5)            | 0.3402 (2)             | 0.0171 (14)              |                        |
| C2          | 0.8318 (6)             | 0.4551 (5)            | 0.3680 (2)             | 0.0174 (14)              |                        |
| H2          | 0.8996                 | 0.4219                | 0.3519                 | 0.021*                   |                        |
| C3A         | 0.8275 (8)             | 0.4183 (7)            | 0.4196 (3)             | 0.035 (2)                | 0.481 (12)             |
| H3A1        | 0.8986                 | 0.3795                | 0.4285                 | 0.042*                   | 0.481 (12)             |
| H3A2        | 0.7586                 | 0.3742                | 0.4258                 | 0.042*                   | 0.481 (12)             |
| C4A         | 0.8195 (15)            | 0.5273(13)            | 0.4458 (6)             | 0.0263(10)*              | 0.481 (12)             |
| H4A1        | 0.7378                 | 0.5509                | 0 4479                 | 0.032*                   | 0.481(12)              |
| H4A2        | 0.8516                 | 0.5221                | 0.4782                 | 0.032*                   | 0.481(12)              |
| C5A         | 0.8904 (16)            | 0.6024(14)            | 0.4161 (6)             | 0.022<br>0.0263 (10)*    | 0.481(12)              |
| H5A1        | 0.8710                 | 0.6763                | 0.4229                 | 0.032*                   | 0.481(12)              |
| H5A2        | 0.9748                 | 0.5912                | 0.4201                 | 0.032*                   | 0.481(12)              |
| C3B         | 0.8275 (8)             | 0.3912<br>0.4183 (7)  | 0.1201<br>0.4196(3)    | 0.032                    | 0.101(12)<br>0.519(12) |
| H3B1        | 0.8275 (8)             | 0.4191                | 0.4313                 | 0.055 (2)                | 0.519(12)<br>0.519(12) |
| H3B7        | 0.8577                 | 0.3460                | 0.4221                 | 0.042*                   | 0.519(12)<br>0.519(12) |
| C/B         | 0.8080(14)             | 0.3400                | 0.4221<br>0.4475(5)    | 0.042<br>0.0263 (10)*    | 0.519(12)              |
| H4B1        | 0.0907                 | 0.4784                | 0.4418                 | 0.0203 (10)              | 0.519(12)<br>0.519(12) |
|             | 0.8823                 | 0.4838                | 0.4413                 | 0.032*                   | 0.519(12)<br>0.519(12) |
| C5B         | 0.8623                 | 0.4858<br>0.5022 (14) | 0.4317<br>0.4260 (5)   | 0.032                    | 0.519(12)<br>0.519(12) |
| UJD<br>H5B1 | 0.0304 (13)            | 0.5722 (14)           | 0.4209 (5)             | 0.0203 (10)              | 0.519(12)<br>0.519(12) |
| H5B2        | 0.7788                 | 0.6103                | 0.4394                 | 0.032                    | 0.519(12)<br>0.519(12) |
| 115D2<br>C6 | 0.7788                 | 0.0103                | 0.777(2)               | 0.052                    | 0.519(12)              |
| C0<br>C7    | 0.4137(0)<br>0.2721(7) | 0.4818(3)             | 0.3747(2)<br>0.4222(2) | 0.0133(13)<br>0.0235(16) |                        |
| U7          | 0.3731(7)<br>0.2052    | 0.4438 (0)            | 0.4233 (2)             | 0.0233 (10)              |                        |
| П/<br>С9    | 0.3933                 | 0.3710                | 0.4203                 | $0.028^{\circ}$          |                        |
|             | 0.2421 (7)             | 0.4384 (7)            | 0.4310(3)              | 0.0323 (19)              |                        |
|             | 0.1990                 | 0.5970                | 0.4188                 | 0.039*                   |                        |
|             | 0.2120                 | 0.3224                | 0.4134                 | $0.039^{\circ}$          |                        |
|             | 0.2318 (8)             | 0.4003 (7)            | 0.4830 (3)             | 0.033 (2)                |                        |
| H9A         | 0.1578                 | 0.3001                | 0.4942                 | 0.042*                   |                        |
| H9B<br>C10  | 0.2362                 | 0.3965                | 0.4999                 | 0.042*                   |                        |
|             | 0.3337 (8)             | 0.5329 (6)            | 0.4991 (3)             | 0.0308 (19)              |                        |
| HIUA        | 0.3620                 | 0.5130                | 0.5309                 | 0.037*                   |                        |
| HIUB        | 0.3121                 | 0.6078                | 0.4995                 | 0.03/*                   |                        |
| CII         | 0.4304 (6)             | 0.5976 (5)            | 0.2230 (2)             | 0.0145 (13)              |                        |
| C12         | 0.3/83 (6)             | 0.5474 (5)            | 0.1796 (2)             | 0.01/4(14)               |                        |
| HI2         | 0.3422                 | 0.4790                | 0.1883                 | 0.021*                   | 0.700 (10)             |
| CI3A        | 0.46/8 (/)             | 0.5310(7)             | 0.1402 (3)             | 0.0322 (19)              | 0.730 (12)             |
| HI3C        | 0.5022                 | 0.4601                | 0.1418                 | 0.039*                   | 0.730 (12)             |
| HI3D        | 0.5305                 | 0.5837                | 0.1419                 | 0.039*                   | 0.730 (12)             |
| CI4A        | 0.3950 (10)            | 0.5447 (8)            | 0.0946 (4)             | 0.0263 (10)*             | 0.730 (12)             |
| H14A        | 0.4451                 | 0.5608                | 0.0672                 | 0.032*                   | 0.730 (12)             |
| HI4B        | 0.3492                 | 0.4810                | 0.0877                 | 0.032*                   | 0.730 (12)             |
| C15A        | 0.3196 (8)             | 0.6325 (6)            | 0.1059 (3)             | 0.0274 (18)              | 0.730 (12)             |
| H15A        | 0.2491                 | 0.6316                | 0.0859                 | 0.033*                   | 0.730 (12)             |
| H15B        | 0.3605                 | 0.6998                | 0.1011                 | 0.033*                   | 0.730 (12)             |
| C13B        | 0.4678 (7)             | 0.5310(7)             | 0.1402 (3)             | 0.0322 (19)              | 0.270(12)              |

| H13E | 0.4528      | 0.4647     | 0.1231      | 0.039*       | 0.270 (12) |
|------|-------------|------------|-------------|--------------|------------|
| H13F | 0.5474      | 0.5290     | 0.1533      | 0.039*       | 0.270 (12) |
| C14B | 0.452 (3)   | 0.627 (2)  | 0.1061 (10) | 0.0263 (10)* | 0.270 (12) |
| H14C | 0.4877      | 0.6916     | 0.1193      | 0.032*       | 0.270 (12) |
| H14D | 0.4844      | 0.6134     | 0.0743      | 0.032*       | 0.270 (12) |
| C15B | 0.3196 (8)  | 0.6325 (6) | 0.1059 (3)  | 0.0274 (18)  | 0.270 (12) |
| H15C | 0.2921      | 0.7012     | 0.0943      | 0.033*       | 0.270 (12) |
| H15D | 0.2860      | 0.5765     | 0.0860      | 0.033*       | 0.270 (12) |
| C16  | 0.7340 (6)  | 0.7567 (5) | 0.2558 (2)  | 0.0162 (14)  |            |
| C17A | 0.8181 (6)  | 0.8005 (6) | 0.2205 (2)  | 0.0214 (15)  | 0.782 (12) |
| H17A | 0.8082      | 0.8777     | 0.2167      | 0.026*       | 0.782 (12) |
| C18A | 0.8031 (10) | 0.7417 (9) | 0.1718 (4)  | 0.0263 (10)* | 0.782 (12) |
| H18A | 0.7791      | 0.6682     | 0.1766      | 0.032*       | 0.782 (12) |
| H18B | 0.7451      | 0.7772     | 0.1515      | 0.032*       | 0.782 (12) |
| C19A | 0.9234 (8)  | 0.7480 (8) | 0.1502 (3)  | 0.0263 (10)* | 0.782 (12) |
| H19A | 0.9417      | 0.8193     | 0.1389      | 0.032*       | 0.782 (12) |
| H19B | 0.9335      | 0.6974     | 0.1241      | 0.032*       | 0.782 (12) |
| C20A | 0.9976 (7)  | 0.7173 (7) | 0.1949 (3)  | 0.0341 (18)  | 0.782 (12) |
| H20A | 0.9963      | 0.6407     | 0.2000      | 0.041*       | 0.782 (12) |
| H20B | 1.0791      | 0.7403     | 0.1911      | 0.041*       | 0.782 (12) |
| C17B | 0.8181 (6)  | 0.8005 (6) | 0.2205 (2)  | 0.0214 (15)  | 0.218 (12) |
| H17B | 0.8127      | 0.8781     | 0.2242      | 0.026*       | 0.218 (12) |
| C18B | 0.812 (3)   | 0.784 (3)  | 0.1740 (13) | 0.0263 (10)* | 0.218 (12) |
| H18C | 0.8451      | 0.8431     | 0.1561      | 0.032*       | 0.218 (12) |
| H18D | 0.7305      | 0.7729     | 0.1639      | 0.032*       | 0.218 (12) |
| C19B | 0.884 (3)   | 0.684 (3)  | 0.1670 (12) | 0.0263 (10)* | 0.218 (12) |
| H19C | 0.9006      | 0.6698     | 0.1332      | 0.032*       | 0.218 (12) |
| H19D | 0.8468      | 0.6217     | 0.1814      | 0.032*       | 0.218 (12) |
| C20B | 0.9976 (7)  | 0.7173 (7) | 0.1949 (3)  | 0.0341 (18)  | 0.218 (12) |
| H20C | 1.0432      | 0.6561     | 0.2057      | 0.041*       | 0.218 (12) |
| H20D | 1.0477      | 0.7643     | 0.1760      | 0.041*       | 0.218 (12) |
| C21  | 0.3319 (6)  | 0.8491 (5) | 0.3143 (2)  | 0.0142 (13)  |            |
| C22  | 0.2389 (6)  | 0.8479 (5) | 0.3520 (2)  | 0.0178 (14)  |            |
| H22  | 0.1625      | 0.8356     | 0.3362      | 0.021*       |            |
| C23  | 0.2274 (7)  | 0.9435 (6) | 0.3836 (3)  | 0.033 (2)    |            |
| H23A | 0.1725      | 0.9946     | 0.3698      | 0.040*       |            |
| H23B | 0.3036      | 0.9780     | 0.3880      | 0.040*       |            |
| C24  | 0.1817 (8)  | 0.9015 (9) | 0.4305 (3)  | 0.046 (3)    |            |
| H24A | 0.2325      | 0.9242     | 0.4568      | 0.055*       |            |
| H24B | 0.1024      | 0.9282     | 0.4365      | 0.055*       |            |
| C25  | 0.1804 (7)  | 0.7848 (8) | 0.4272 (3)  | 0.039 (2)    |            |
| H25A | 0.2100      | 0.7526     | 0.4566      | 0.047*       |            |
| H25B | 0.1010      | 0.7586     | 0.4211      | 0.047*       |            |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | U <sup>22</sup> | $U^{33}$     | $U^{12}$   | $U^{13}$    | <i>U</i> <sup>23</sup> |
|----|------------|-----------------|--------------|------------|-------------|------------------------|
| I1 | 0.0253 (2) | 0.0261 (2)      | 0.01717 (19) | 0.0004 (2) | -0.0012 (2) | -0.00403 (18)          |

| I2       | 0.0162 (2)           | 0.0236 (2)           | 0.0327 (2)           | -0.0018(2)           | -0.0035(2)  | 0.0007 (2)  |
|----------|----------------------|----------------------|----------------------|----------------------|-------------|-------------|
| I3       | 0.0306 (3)           | 0.0202 (2)           | 0.0547 (3)           | 0.0013 (2)           | -0.0197 (3) | -0.0077 (2) |
| I4A      | 0.0449 (7)           | 0.0271 (5)           | 0.0421 (4)           | 0.0087 (4)           | -0.0073 (4) | 0.0069 (3)  |
| Cal      | 0.0131 (7)           | 0.0115 (6)           | 0.0148 (6)           | -0.0007 (5)          | -0.0016 (5) | -0.0011 (5) |
| Ca2      | 0.0152 (7)           | 0.0120 (6)           | 0.0143 (6)           | -0.0013 (5)          | 0.0007 (5)  | 0.0003 (5)  |
| 01       | 0.020 (3)            | 0.014 (2)            | 0.021 (2)            | -0.003(2)            | -0.006(2)   | 0.0020 (19) |
| 02       | 0.028(3)             | 0.013 (2)            | 0.030 (3)            | -0.003(2)            | -0.009(2)   | -0.002(2)   |
| 03       | 0.031 (3)            | 0.024 (3)            | 0.020 (2)            | -0.010(2)            | 0.010 (2)   | -0.008(2)   |
| 04       | 0.032(3)             | 0.023 (3)            | 0.016 (2)            | -0.005(2)            | 0.005 (2)   | 0.001 (2)   |
| 05       | 0.019(3)             | 0.019(2)             | 0.016 (2)            | 0.000(2)             | -0.007(2)   | 0.0007 (18) |
| 06       | 0.031(3)             | 0.011(2)             | 0.025(3)             | 0.000(2)             | -0.009(2)   | -0.0040(19) |
| 07       | 0.037(3)             | 0.017(2)             | 0.022(2)             | 0.001(2)             | 0.009(2)    | 0.0052(19)  |
| 08       | 0.009(2)             | 0.017(2)<br>0.028(3) | 0.022(2)             | 0.002(2)             | -0.0005(19) | 0.010(2)    |
| 09       | 0.009(2)<br>0.014(3) | 0.020(3)             | 0.021(2)<br>0.028(3) | 0.002(2)<br>0.003(2) | 0.00002(1)  | -0.001(2)   |
| 010      | 0.021(3)             | 0.022(3)             | 0.020(3)             | -0.003(2)            | 0.002(2)    | 0.001(2)    |
| 010      | 0.021(3)             | 0.025(3)             | 0.020(2)<br>0.024(3) | -0.009(2)            | 0.002(2)    | -0.001(2)   |
| 012      | 0.010(3)             | 0.020(3)             | 0.024(3)             | 0.007(2)             | -0.007(2)   | 0.005(2)    |
| 012      | 0.020(3)             | 0.055(3)             | 0.057 (8)            | 0.002(5)             | 0.002 (2)   | 0.003(5)    |
| N1       | 0.034(7)             | 0.033(7)             | 0.007(3)             | -0.007(3)            | -0.013(3)   | 0.022(0)    |
| N2       | 0.029(4)             | 0.022(4)             | 0.030(4)             | 0.007(3)             | 0.013(3)    | -0.002(2)   |
| N2       | 0.040(4)             | 0.015(3)             | 0.018(3)             | 0.000(3)             | -0.010(2)   | -0.002(2)   |
| NJ<br>NJ | 0.013(3)             | 0.010(3)             | 0.020(3)             | -0.000(2)            | 0.010(2)    | 0.001(2)    |
| N5       | 0.014(3)             | 0.027(3)             | 0.023(3)             | -0.002(3)            | -0.003(2)   | 0.001(3)    |
| NJ<br>C1 | 0.019(3)             | 0.029(4)             | 0.019(3)             | -0.004(3)            | -0.002(2)   | 0.001(3)    |
| Cl       | 0.017(3)             | 0.017(4)             | 0.017(3)             | -0.003(3)            | -0.001(3)   | -0.002(3)   |
| C2       | 0.019(4)             | 0.010(3)             | 0.025(3)             | 0.003(3)             | -0.010(3)   | 0.000(3)    |
| COA      | 0.042(3)             | 0.039(3)             | 0.026(4)             | -0.009(4)            | -0.009(4)   | 0.007 (4)   |
| C3B      | 0.042(5)             | 0.039(3)             | 0.026(4)             | -0.009(4)            | -0.009(4)   | 0.007(4)    |
| C0<br>C7 | 0.021(4)             | 0.020(3)             | 0.018(3)             | -0.001(3)            | 0.001(3)    | -0.003(3)   |
| C?       | 0.034(5)             | 0.021(4)             | 0.016(3)             | -0.008(3)            | 0.002(3)    | -0.004(3)   |
|          | 0.028 (5)            | 0.047 (5)            | 0.023(4)             | -0.009(4)            | 0.006(3)    | 0.001(4)    |
| C9       | 0.041 (5)            | 0.039 (5)            | 0.026 (4)            | -0.014(4)            | 0.017 (4)   | 0.003 (4)   |
| C10      | 0.045 (5)            | 0.031 (4)            | 0.016 (4)            | 0.001 (4)            | 0.011(3)    | -0.003(3)   |
| CII      | 0.015 (3)            | 0.014 (3)            | 0.014 (3)            | 0.000 (3)            | 0.001 (2)   | 0.003 (3)   |
| C12      | 0.022 (4)            | 0.013 (3)            | 0.017 (3)            | 0.003 (3)            | -0.008(3)   | 0.001 (2)   |
| CI3A     | 0.029 (5)            | 0.046 (5)            | 0.021 (4)            | 0.015 (4)            | -0.002 (3)  | -0.002(3)   |
| C15A     | 0.039 (5)            | 0.020 (4)            | 0.023 (4)            | 0.004 (3)            | -0.011 (3)  | 0.001 (3)   |
| C13B     | 0.029 (5)            | 0.046 (5)            | 0.021 (4)            | 0.015 (4)            | -0.002 (3)  | -0.002 (3)  |
| C15B     | 0.039 (5)            | 0.020 (4)            | 0.023 (4)            | 0.004 (3)            | -0.011 (3)  | 0.001 (3)   |
| C16      | 0.015 (4)            | 0.016 (3)            | 0.018 (3)            | -0.003 (3)           | 0.000 (3)   | 0.001 (3)   |
| C17A     | 0.012 (3)            | 0.025 (4)            | 0.027 (4)            | 0.003 (3)            | 0.005 (3)   | 0.010 (3)   |
| C20A     | 0.022 (4)            | 0.046 (5)            | 0.034 (4)            | 0.010 (4)            | 0.010 (4)   | -0.004(4)   |
| C17B     | 0.012 (3)            | 0.025 (4)            | 0.027 (4)            | 0.003 (3)            | 0.005 (3)   | 0.010 (3)   |
| C20B     | 0.022 (4)            | 0.046 (5)            | 0.034 (4)            | 0.010 (4)            | 0.010 (4)   | -0.004 (4)  |
| C21      | 0.012 (3)            | 0.013 (3)            | 0.018 (3)            | -0.002(3)            | 0.000 (3)   | -0.006(3)   |
| C22      | 0.016 (3)            | 0.018 (3)            | 0.020 (3)            | 0.004 (3)            | 0.006 (3)   | 0.001 (3)   |
| C23      | 0.024 (4)            | 0.028 (4)            | 0.047 (5)            | -0.006 (3)           | 0.018 (4)   | -0.015 (4)  |
| C24      | 0.036 (5)            | 0.077 (7)            | 0.024 (4)            | 0.021 (5)            | -0.004 (4)  | -0.024 (5)  |
| C25      | 0.022 (4)            | 0.076 (7)            | 0.019 (4)            | -0.005 (5)           | 0.008 (3)   | -0.001 (4)  |

Geometric parameters (Å, °)

| Ca1—O3                | 2.319 (5)   | C3A—H3A1  | 0.9900     |
|-----------------------|-------------|-----------|------------|
| Cal—O5                | 2.326 (5)   | СЗА—НЗА2  | 0.9900     |
| Ca1—O6 <sup>i</sup>   | 2.353 (5)   | C4A—C5A   | 1.51 (2)   |
| Ca1—O8 <sup>i</sup>   | 2.358 (5)   | C4A—H4A1  | 0.9900     |
| Ca1—O10 <sup>i</sup>  | 2.393 (5)   | C4A—H4A2  | 0.9900     |
| Ca1—O2                | 2.477 (5)   | C5A—H5A1  | 0.9900     |
| Ca1—O1                | 2.617 (5)   | C5A—H5A2  | 0.9900     |
| Ca1—Ca2               | 3.8144 (18) | C4B—C5B   | 1.52 (2)   |
| Ca1—Ca2 <sup>i</sup>  | 3.8315 (18) | C4B—H4B1  | 0.9900     |
| Ca2—O9                | 2.337 (5)   | C4B—H4B2  | 0.9900     |
| Ca2—O4                | 2.368 (5)   | C5B—H5B1  | 0.9900     |
| Ca2—O11               | 2.378 (5)   | C5B—H5B2  | 0.9900     |
| Ca2—O1                | 2.378 (5)   | C6—C7     | 1.531 (9)  |
| Ca2—O5                | 2.442 (5)   | С7—С8     | 1.534 (11) |
| Ca2—O8                | 2.501 (5)   | С7—Н7     | 1.0000     |
| Ca2—O7                | 2.572 (5)   | C8—C9     | 1.536 (11) |
| Ca2—O6                | 2.820 (5)   | C8—H8A    | 0.9900     |
| Ca1—C1                | 2.871 (7)   | C8—H8B    | 0.9900     |
| Ca1—C21 <sup>i</sup>  | 3.049 (7)   | C9—C10    | 1.504 (12) |
| Ca2—C11               | 2.976 (6)   | С9—Н9А    | 0.9900     |
| 01—C1                 | 1.249 (8)   | С9—Н9В    | 0.9900     |
| O2—C1                 | 1.245 (8)   | C10—H10A  | 0.9900     |
| O3—C6                 | 1.254 (8)   | C10—H10B  | 0.9900     |
| O4—C6                 | 1.258 (8)   | C11—C12   | 1.510 (9)  |
| O5—C11                | 1.267 (8)   | C12—C13A  | 1.534 (10) |
| O6—C11                | 1.229 (8)   | C12—H12   | 1.0000     |
| O6—Ca1 <sup>ii</sup>  | 2.353 (5)   | C13A—C14A | 1.547 (13) |
| O7—C16                | 1.245 (8)   | C13A—H13C | 0.9900     |
| O8—C16                | 1.278 (8)   | C13A—H13D | 0.9900     |
| O8—Ca1 <sup>ii</sup>  | 2.358 (5)   | C14A—C15A | 1.455 (12) |
| O9—C21                | 1.262 (8)   | C14A—H14A | 0.9900     |
| O9—Ca1 <sup>ii</sup>  | 3.040 (5)   | C14A—H14B | 0.9900     |
| O10—C21               | 1.240 (8)   | C15A—H15A | 0.9900     |
| O10—Ca1 <sup>ii</sup> | 2.393 (5)   | C15A—H15B | 0.9900     |
| O11—H11B              | 0.83 (3)    | C14B—H14C | 0.9900     |
| 011—H11A              | 0.84 (3)    | C14B—H14D | 0.9900     |
| O12—H12A              | 0.84 (3)    | C16—C17A  | 1.501 (9)  |
| O12—H12B              | 0.84 (2)    | C17A—C18A | 1.579 (13) |
| O13—H13B              | 0.84 (3)    | C17A—H17A | 1.0000     |
| O13—H13A              | 0.84 (3)    | C18A—C19A | 1.517 (15) |
| N1—C5A                | 1.406 (18)  | C18A—H18A | 0.9900     |
| N1—C2                 | 1.502 (9)   | C18A—H18B | 0.9900     |
| N1—C5B                | 1.599 (17)  | C19A—C20A | 1.575 (12) |
| N1—H1A                | 0.9900      | C19A—H19A | 0.9900     |
| N1—H1B                | 0.9900      | C19A—H19B | 0.9900     |
| N2—C7                 | 1.511 (9)   | C20A—H20A | 0.9900     |

| N2—C10                         | 1.514 (9)   | C20A—H20B                             | 0.9900     |
|--------------------------------|-------------|---------------------------------------|------------|
| N2—H2A                         | 0.9900      | C18B—C19B                             | 1.54 (5)   |
| N2—H2B                         | 0.9900      | C18B—H18C                             | 0.9900     |
| N3—C12                         | 1.501 (8)   | C18B—H18D                             | 0.9900     |
| N3—C15A                        | 1.505 (9)   | С19В—Н19С                             | 0.9900     |
| N3—H3A                         | 0.9900      | C19B—H19D                             | 0.9900     |
| N3—H3B                         | 0.9900      | C21—C22                               | 1.512 (9)  |
| N4—C20A                        | 1.485 (9)   | C21—Ca1 <sup>ii</sup>                 | 3.049 (7)  |
| N4—C17A                        | 1.517 (9)   | C22—C23                               | 1.522 (10) |
| N4—H4A                         | 0.9900      | C22—H22                               | 1.0000     |
| N4—H4B                         | 0.9900      | C23—C24                               | 1.526 (12) |
| N5—C22                         | 1.487 (9)   | C23—H23A                              | 0.9900     |
| N5—C25                         | 1.495 (9)   | C23—H23B                              | 0.9900     |
| N5—H5A                         | 0.9900      | C24—C25                               | 1.496 (14) |
| N5—H5B                         | 0.9900      | C24—H24A                              | 0.9900     |
| C1—C2                          | 1.535 (9)   | C24—H24B                              | 0.9900     |
| C2—C3A                         | 1.533 (10)  | C25—H25A                              | 0.9900     |
| C2—H2                          | 1.0000      | C25—H25B                              | 0.9900     |
| C3A - C4A                      | 1.582 (18)  |                                       | 0.9900     |
|                                | (10)        |                                       |            |
| O3—Ca1—O5                      | 85.58 (18)  | C20A—N4—C17A                          | 108.5 (6)  |
| 03—Ca1—O6 <sup>i</sup>         | 112.99 (18) | C20A—N4—H4A                           | 110.0      |
| 05—Ca1—O6 <sup>i</sup>         | 156.43 (17) | C17A—N4—H4A                           | 110.0      |
| 03—Ca1—O8 <sup>i</sup>         | 87.92 (17)  | C20A—N4—H4B                           | 110.0      |
| $05$ —Ca1— $08^{i}$            | 92.09 (18)  | C17A—N4—H4B                           | 110.0      |
| $O6^{i}$ —Ca1—O8 <sup>i</sup>  | 74.98 (18)  | H4A—N4—H4B                            | 108.4      |
| $O_3$ — $C_a1$ — $O_10^i$      | 154.78 (18) | C22—N5—C25                            | 105.5 (6)  |
| $05-Ca1-010^{i}$               | 79.57 (18)  | C22—N5—H5A                            | 110.6      |
| $O6^{i}$ —Ca1—O10 <sup>i</sup> | 87.28 (18)  | C25—N5—H5A                            | 110.6      |
| $O8^{i}$ —Ca1—O10 <sup>i</sup> | 112.72 (17) | C22—N5—H5B                            | 110.6      |
| O3—Ca1—O2                      | 88.79 (18)  | C25—N5—H5B                            | 110.6      |
| O5—Ca1—O2                      | 124.01 (17) | H5A—N5—H5B                            | 108.8      |
| O6 <sup>i</sup> —Ca1—O2        | 72.86 (17)  | O2—C1—O1                              | 124.5 (6)  |
| $O8^{i}$ —Ca1—O2               | 143.35 (18) | 02—C1—C2                              | 117.2 (6)  |
| $010^{i}$ —Ca1—O2              | 82.90 (18)  | 01-C1-C2                              | 118.3 (6)  |
| 03—Ca1—O1                      | 74.61 (17)  | O2—C1—Ca1                             | 59.2 (4)   |
| 05—Ca1—O1                      | 73.69 (16)  | O1—C1—Ca1                             | 65.7 (4)   |
| O6 <sup>i</sup> —Ca1—O1        | 123.88 (17) | C2—C1—Ca1                             | 171.9 (5)  |
| O8 <sup>i</sup> —Ca1—O1        | 158.03 (17) | N1—C2—C3A                             | 104.6 (6)  |
| $O10^{i}$ —Ca1—O1              | 81.68 (17)  | N1—C2—C1                              | 111.0 (5)  |
| O2—Ca1—O1                      | 51.27 (15)  | C3A - C2 - C1                         | 113.4 (6)  |
| $O_3$ — $C_a1$ — $C_1$         | 82.51 (19)  | N1—C2—H2                              | 109.2      |
| 05—Ca1—C1                      | 98.66 (18)  | C3A - C2 - H2                         | 109.2      |
| $O6^{i}$ —Ca1—C1               | 98.12 (19)  | C1—C2—H2                              | 109.2      |
| $O8^{i}$ —Ca1—C1               | 164.98 (19) | C2—C3A—C4A                            | 100.2 (8)  |
| $O10^{i}$ —Ca1—C1              | 79.75 (18)  | C2-C3A-H3A1                           | 111.7      |
| O2—Ca1—C1                      | 25.59 (17)  | C4A—C3A—H3A1                          | 111.7      |
| O1-Ca1-C1                      | 25 78 (16)  | $C^2$ — $C^3$ A— $H^3$ A <sup>2</sup> | 111 7      |
| 01 041 01                      |             | 02 0011 110112                        |            |

| O3—Ca1—O9 <sup>i</sup>                 | 155.05 (17) | С4А—С3А—Н3А2  | 111.7      |
|----------------------------------------|-------------|---------------|------------|
| O5—Ca1—O9 <sup>i</sup>                 | 90.62 (15)  | НЗА1—СЗА—НЗА2 | 109.5      |
| O6 <sup>i</sup> —Ca1—O9 <sup>i</sup>   | 66.36 (15)  | C5A—C4A—C3A   | 105.5 (12) |
| O8 <sup>i</sup> —Ca1—O9 <sup>i</sup>   | 67.56 (14)  | C5A—C4A—H4A1  | 110.6      |
| O10 <sup>i</sup> —Ca1—O9 <sup>i</sup>  | 46.25 (15)  | C3A—C4A—H4A1  | 110.6      |
| O2-Ca1-O9 <sup>i</sup>                 | 113.43 (16) | C5A—C4A—H4A2  | 110.6      |
| O1—Ca1—O9 <sup>i</sup>                 | 127.79 (15) | C3A—C4A—H4A2  | 110.6      |
| C1—Ca1—O9 <sup>i</sup>                 | 122.43 (17) | H4A1—C4A—H4A2 | 108.8      |
| O3—Ca1—C21 <sup>i</sup>                | 171.73 (18) | N1—C5A—C4A    | 98.5 (13)  |
| O5—Ca1—C21 <sup>i</sup>                | 86.23 (17)  | N1—C5A—H5A1   | 112.1      |
| O6 <sup>i</sup> —Ca1—C21 <sup>i</sup>  | 74.66 (17)  | C4A—C5A—H5A1  | 112.1      |
| O8 <sup>i</sup> —Ca1—C21 <sup>i</sup>  | 91.22 (17)  | N1—C5A—H5A2   | 112.1      |
| O10 <sup>i</sup> —Ca1—C21 <sup>i</sup> | 22.46 (17)  | C4A—C5A—H5A2  | 112.1      |
| O2—Ca1—C21 <sup>i</sup>                | 96.76 (18)  | H5A1—C5A—H5A2 | 109.7      |
| O1—Ca1—C21 <sup>i</sup>                | 104.14 (17) | C5B—C4B—H4B1  | 112.0      |
| C1—Ca1—C21 <sup>i</sup>                | 99.89 (19)  | C5B—C4B—H4B2  | 112.0      |
| O9 <sup>i</sup> —Ca1—C21 <sup>i</sup>  | 23.91 (15)  | H4B1—C4B—H4B2 | 109.7      |
| O3—Ca1—Ca2                             | 67.96 (13)  | C4B—C5B—N1    | 104.0 (12) |
| O5—Ca1—Ca2                             | 37.94 (11)  | C4B-C5B-H5B1  | 110.9      |
| O6 <sup>i</sup> —Ca1—Ca2               | 161.81 (13) | N1—C5B—H5B1   | 110.9      |
| O8 <sup>i</sup> —Ca1—Ca2               | 122.92 (13) | C4B—C5B—H5B2  | 110.9      |
| O10 <sup>i</sup> —Ca1—Ca2              | 88.06 (13)  | N1—C5B—H5B2   | 110.9      |
| O2—Ca1—Ca2                             | 89.12 (12)  | H5B1—C5B—H5B2 | 109.0      |
| O1—Ca1—Ca2                             | 37.96 (11)  | O3—C6—O4      | 126.7 (6)  |
| C1—Ca1—Ca2                             | 63.74 (14)  | O3—C6—C7      | 115.4 (6)  |
| O9 <sup>i</sup> —Ca1—Ca2               | 121.02 (10) | O4—C6—C7      | 117.9 (6)  |
| C21 <sup>i</sup> —Ca1—Ca2              | 105.87 (13) | N2—C7—C6      | 110.7 (6)  |
| O3—Ca1—Ca2 <sup>i</sup>                | 122.34 (13) | N2—C7—C8      | 103.5 (6)  |
| O5—Ca1—Ca2 <sup>i</sup>                | 111.14 (12) | C6—C7—C8      | 114.3 (6)  |
| O6 <sup>i</sup> —Ca1—Ca2 <sup>i</sup>  | 47.13 (12)  | N2—C7—H7      | 109.4      |
| O8 <sup>i</sup> —Ca1—Ca2 <sup>i</sup>  | 39.30 (12)  | С6—С7—Н7      | 109.4      |
| O10 <sup>i</sup> —Ca1—Ca2 <sup>i</sup> | 82.27 (13)  | С8—С7—Н7      | 109.4      |
| O2—Ca1—Ca2 <sup>i</sup>                | 118.50 (12) | C7—C8—C9      | 102.9 (7)  |
| O1—Ca1—Ca2 <sup>i</sup>                | 162.03 (12) | С7—С8—Н8А     | 111.2      |
| C1—Ca1—Ca2 <sup>i</sup>                | 141.53 (14) | С9—С8—Н8А     | 111.2      |
| O9 <sup>i</sup> —Ca1—Ca2 <sup>i</sup>  | 37.58 (9)   | C7—C8—H8B     | 111.2      |
| C21 <sup>i</sup> —Ca1—Ca2 <sup>i</sup> | 60.03 (13)  | C9—C8—H8B     | 111.2      |
| Ca2—Ca1—Ca2 <sup>i</sup>               | 149.04 (4)  | H8A—C8—H8B    | 109.1      |
| O9—Ca2—O4                              | 83.70 (18)  | C10—C9—C8     | 104.0 (6)  |
| O9—Ca2—O11                             | 86.60 (18)  | С10—С9—Н9А    | 111.0      |
| O4—Ca2—O11                             | 89.47 (17)  | С8—С9—Н9А     | 111.0      |
| O9—Ca2—O1                              | 158.70 (18) | С10—С9—Н9В    | 111.0      |
| O4—Ca2—O1                              | 76.51 (17)  | С8—С9—Н9В     | 111.0      |
| O11—Ca2—O1                             | 85.43 (18)  | H9A—C9—H9B    | 109.0      |
| O9—Ca2—O5                              | 112.25 (17) | C9—C10—N2     | 105.3 (6)  |
| O4—Ca2—O5                              | 90.55 (16)  | C9—C10—H10A   | 110.7      |
| O11—Ca2—O5                             | 161.04 (19) | N2—C10—H10A   | 110.7      |
| O1—Ca2—O5                              | 76.15 (16)  | C9—C10—H10B   | 110.7      |
|                                        |             |               |            |

| O9—Ca2—O8                 | 78.20 (17)  | N2-C10-H10B    | 110.7     |
|---------------------------|-------------|----------------|-----------|
| O4—Ca2—O8                 | 161.84 (18) | H10A—C10—H10B  | 108.8     |
| O11—Ca2—O8                | 87.91 (17)  | O6-C11-O5      | 124.1 (6) |
| O1—Ca2—O8                 | 121.14 (17) | O6—C11—C12     | 119.0 (6) |
| O5—Ca2—O8                 | 97.70 (16)  | O5-C11-C12     | 116.8 (6) |
| O9—Ca2—O7                 | 124.82 (17) | O6—C11—Ca2     | 70.7 (4)  |
| O4—Ca2—O7                 | 142.96 (17) | O5—C11—Ca2     | 53.4 (3)  |
| O11—Ca2—O7                | 71.41 (17)  | C12—C11—Ca2    | 170.1 (5) |
| O1—Ca2—O7                 | 70.74 (16)  | N3—C12—C11     | 111.4 (5) |
| O5—Ca2—O7                 | 97.83 (17)  | N3—C12—C13A    | 103.5 (5) |
| O8—Ca2—O7                 | 51.90 (15)  | C11—C12—C13A   | 112.5 (6) |
| O9—Ca2—O6                 | 70.63 (15)  | N3—C12—H12     | 109.8     |
| O4—Ca2—O6                 | 110.47 (17) | C11—C12—H12    | 109.8     |
| O11—Ca2—O6                | 147.10 (17) | C13A—C12—H12   | 109.8     |
| O1—Ca2—O6                 | 123.75 (15) | C12—C13A—C14A  | 103.0(7)  |
| O5—Ca2—O6                 | 48.91 (14)  | C12—C13A—H13C  | 111.2     |
| O8—Ca2—O6                 | 64.88 (15)  | C14A—C13A—H13C | 111.2     |
| O7—Ca2—O6                 | 101.97 (16) | C12—C13A—H13D  | 111.2     |
| O9—Ca2—C16                | 102.41 (19) | C14A—C13A—H13D | 111.2     |
| O4—Ca2—C16                | 166.73 (19) | H13C—C13A—H13D | 109.1     |
| O11—Ca2—C16               | 79.26 (19)  | C15A—C14A—C13A | 103.3 (7) |
| O1—Ca2—C16                | 95.45 (19)  | C15A—C14A—H14A | 111.1     |
| O5—Ca2—C16                | 97.83 (18)  | C13A—C14A—H14A | 111.1     |
| O8—Ca2—C16                | 26.30 (17)  | C15A—C14A—H14B | 111.1     |
| O7—Ca2—C16                | 25.62 (16)  | C13A—C14A—H14B | 111.1     |
| O6—Ca2—C16                | 82.76 (17)  | H14A—C14A—H14B | 109.1     |
| O9—Ca2—C11                | 91.29 (18)  | C14A—C15A—N3   | 104.4 (6) |
| O4—Ca2—C11                | 101.37 (18) | C14A—C15A—H15A | 110.9     |
| O11—Ca2—C11               | 168.68 (18) | N3—C15A—H15A   | 110.9     |
| O1—Ca2—C11                | 100.18 (18) | C14A—C15A—H15B | 110.9     |
| O5—Ca2—C11                | 24.62 (17)  | N3—C15A—H15B   | 110.9     |
| O8—Ca2—C11                | 80.77 (17)  | H15A—C15A—H15B | 108.9     |
| O7—Ca2—C11                | 100.99 (16) | H14C—C14B—H14D | 109.7     |
| O6—Ca2—C11                | 24.29 (15)  | O7—C16—O8      | 123.4 (6) |
| C16—Ca2—C11               | 90.36 (18)  | O7—C16—C17A    | 119.8 (6) |
| O9—Ca2—Ca1                | 137.14 (13) | O8—C16—C17A    | 116.6 (6) |
| O4—Ca2—Ca1                | 72.60 (12)  | O7—C16—Ca2     | 63.3 (4)  |
| O11—Ca2—Ca1               | 127.19 (14) | O8—C16—Ca2     | 60.2 (3)  |
| O1—Ca2—Ca1                | 42.59 (11)  | C17A—C16—Ca2   | 171.1 (5) |
| O5—Ca2—Ca1                | 35.85 (11)  | C16—C17A—N4    | 109.8 (6) |
| O8—Ca2—Ca1                | 122.59 (13) | C16—C17A—C18A  | 109.4 (7) |
| O7—Ca2—Ca1                | 93.67 (11)  | N4—C17A—C18A   | 103.0 (6) |
| O6—Ca2—Ca1                | 84.68 (10)  | C16—C17A—H17A  | 111.4     |
| C16—Ca2—Ca1               | 108.72 (14) | N4—C17A—H17A   | 111.4     |
| C11—Ca2—Ca1               | 60.42 (13)  | C18A—C17A—H17A | 111.4     |
| O9—Ca2—Ca1 <sup>ii</sup>  | 52.50 (12)  | C19A—C18A—C17A | 103.0 (8) |
| O4—Ca2—Ca1 <sup>ii</sup>  | 129.19 (14) | C19A—C18A—H18A | 111.2     |
| O11—Ca2—Ca1 <sup>ii</sup> | 109.46 (14) | C17A—C18A—H18A | 111.2     |
|                           |             |                |           |

| O1—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148.63 (13)            | C19A—C18A—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.2                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| O5—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84.99 (11)             | C17A—C18A—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.2                |
| O8—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.66 (11)             | H18A—C18A—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.1                |
| O7—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.60 (11)             | C18A—C19A—C20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.3 (8)             |
| O6—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.70 (10)             | C18A—C19A—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.9                |
| C16—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.21 (14)             | C20A—C19A—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.9                |
| C11—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.01 (13)             | C18A—C19A—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.9                |
| Ca1—Ca2—Ca1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.49 (4)             | C20A—C19A—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.9                |
| C1 - O1 - Ca2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171.9 (4)              | H19A—C19A—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.6                |
| C1 - O1 - Ca1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.5 (4)               | N4—C20A—C19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104.6 (6)            |
| Ca2-O1-Ca1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.45 (17)             | N4—C20A—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.8                |
| C1 = O2 = Ca1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.2 (4)               | C19A - C20A - H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.8                |
| C6-03-Ca1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1385(5)                | N4—C20A—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.8                |
| $C6-04-Ca^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129.8(4)               | C19A - C20A - H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.8                |
| $C_{11} = 05 = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129.0(1)<br>151 4 (4)  | $H_{20A}$ $C_{20A}$ $H_{20B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.9                |
| $C_{11} = 05 = C_{a1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101.4(4)<br>102 0 (4)  | C19B - C18B - H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111 1                |
| $C_{21} = 05 = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.0(4)<br>106.21(18) | C19B-C18B-H18D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.1                |
| $C_{11} = 05 = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160.21(10)             | $H_{18}C - C_{18}B - H_{18}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 1                |
| $C_{11} = 06 = C_{a1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 850(4)                 | C18B - C19B - H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.0                |
| $C_{a1i} = 06 = C_{a2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.17(16)              | C18B $C19B$ $H19D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.0                |
| $C_{16}^{-07} - C_{22}^{-07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.1 (10)<br>91.1 (4)  | $H_{19}C_{-}C_{19}B_{-}H_{19}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.6                |
| $C_{16} = 08 = C_{21}^{ii}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155.6(4)               | 010-021-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.6 (6)            |
| $C_{16}^{-08} - C_{22}^{-02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 935(4)                 | 010 - 021 - 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124.0(0)<br>118.0(6) |
| $C_{21}^{ii}$ O8 $C_{22}^{ii}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $104\ 04\ (17)$        | $O_{10} = C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.3 (6)            |
| $C_{a1} = 0_{0} = C_{a2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.04(17)<br>153.0(4) | $0^{-0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.5(0)             |
| $C_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{21} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78 5 (4)               | 010-021-0a1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.6(4)              |
| $C_{21} = O_{21} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.5 (4)<br>80.02 (15) | $C^{22}$ $C^{21}$ $C^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 164.5 (5)            |
| $C_{a2} = 0.0 = C_{a1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.1(4)               | N5 C22 C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.3(3)             |
| $C_{22} = 0.10 - Cal$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.1(+)               | $N_{5} = C_{22} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.1(5)<br>102.0(6) |
| $C_{a2} = 011 = H11A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117 (5)                | $N_{3} = C_{22} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.9(0)<br>117.0(6) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113(0)                 | N5 C22 H22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.2                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111(6)<br>02(3)        | $N_{3} = C_{22} = H_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.2                |
| H12R 012 H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92(3)                  | $C_{21} - C_{22} - H_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.2                |
| 1113D - 013 - 1113A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91(4)                  | $C_{23} = C_{22} = C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.2<br>105.0(7)    |
| $C_{2} N_{1} C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112.3(9)<br>103.4(8)   | $C_{22} = C_{23} = C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.0(7)             |
| $C_2 = N_1 = C_3 B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103.4 (8)              | $C_{22}$ $C_{23}$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.7                |
| $C_{3}$ NI HIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.1                  | $C_{24} - C_{23} - H_{23}R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.7                |
| $C_2$ NI HID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.1                  | C22 - C23 - H23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.7                |
| $C_{2}$ N1 H1P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.1                  | $C_{24}$ $C_{23}$ $H_{23}B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.8                |
| $U_1 A = V_1 = U_1 B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.8                  | $C_{25} C_{24} C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.8                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.8                  | $C_{25} = C_{24} = C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.4 (0)            |
| $C_{1} = N_{2} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108.0 (0)              | $C_{23}$ $C_{24}$ $H_{24A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.2                |
| $C_1 = N_2 = H_2 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.0                  | $C_{23}$ $C_{24}$ $H_{24}$ $H_{24}$ $C_{25}$ $C_{24}$ $H_{24}$ $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.2                |
| C10 N2 H2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.0                  | $C_{23} = C_{24} = H_{24}B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.2                |
| $C_1 = 1N2 = \Pi 2D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.0                  | $U_{23} = U_{24} = \Pi_{24} \square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.2                |
| $U_1 U_1 V_2 U_1 Z_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                   | $\Pi_{24} \Pi_{-} U_{24} - \Pi_{24} D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.3<br>102.9(7)    |
| $\frac{112}{112} = \frac{112}{112} = $ | 100.3                  | N5 C25 U25 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103.0(7)             |
| C12 = N3 = C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.0 (3)              | $\frac{1}{1} \frac{1}{2} \frac{1}$ | 111.0                |
| $U12$ —IN3— $\Pi$ 3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.9                  | U24—U23—H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.0                |

| C15A—N3—H3A | 109.9 | N5—C25—H25B   | 111.0 |
|-------------|-------|---------------|-------|
| C12—N3—H3B  | 109.9 | C24—C25—H25B  | 111.0 |
| C15A—N3—H3B | 109.9 | H25A—C25—H25B | 109.0 |
| H3A—N3—H3B  | 108.3 |               |       |

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2.

### Hydrogen-bond geometry (Å, °)

| D—H···A                               | D—H       | H···A     | $D \cdots A$ | D—H···A  |
|---------------------------------------|-----------|-----------|--------------|----------|
| N1—H1A····I3 <sup>iii</sup>           | 0.99      | 2.60      | 3.526 (7)    | 155      |
| N1—H1 <i>B</i> …O11                   | 0.99      | 2.10      | 2.996 (9)    | 150      |
| N2—H2A…I1                             | 0.99      | 2.75      | 3.603 (5)    | 145      |
| N2—H2 <i>B</i> …I4 <i>A</i>           | 0.99      | 2.53      | 3.400 (6)    | 146      |
| N3—H3A····O2 <sup>ii</sup>            | 0.99      | 1.94      | 2.829 (7)    | 147      |
| N3—H3 <i>B</i> …I2                    | 0.99      | 2.61      | 3.447 (5)    | 143      |
| N4—H4 <i>A</i> …O12                   | 0.99      | 1.80      | 2.750 (8)    | 159      |
| N4—H4 <i>B</i> …I3 <sup>iii</sup>     | 0.99      | 2.92      | 3.674 (6)    | 133      |
| N5—H5 <i>A</i> …I1                    | 0.99      | 2.74      | 3.627 (6)    | 149      |
| N5—H5 <i>B</i> …I3                    | 0.99      | 2.62      | 3.478 (6)    | 146      |
| O11—H11A…I1                           | 0.84 (6)  | 2.56 (6)  | 3.389 (5)    | 171 (7)  |
| O11—H11 <i>B</i> ····I2 <sup>ii</sup> | 0.83 (7)  | 2.71 (7)  | 3.524 (6)    | 168 (5)  |
| O12—H12A···O10 <sup>iii</sup>         | 0.83 (4)  | 2.06 (5)  | 2.732 (7)    | 137 (4)  |
| O12—H12 <i>B</i> ····O2 <sup>iv</sup> | 0.83 (3)  | 2.54 (4)  | 3.339 (8)    | 162 (7)  |
| O13—H13 $A$ ····I4 $A$ <sup>ii</sup>  | 0.85 (11) | 2.90 (11) | 3.703 (11)   | 159 (10) |
| O13—H13 $B$ ···I4 $A^{\vee}$          | 0.85 (8)  | 2.76 (8)  | 3.598 (11)   | 172 (10) |

Symmetry codes: (ii) -x+1, y+1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+2, y+1/2, -z+1/2; (v) -x+3/2, -y+1, z-1/2.

### (2) catena-Poly[[diaquadi-m2-DL-proline-calcium] diiodide]

| Crystal data                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Ca(C_5H_9NO_2)_2(H_2O)_2]I_2$ $M_r = 560.17$ Triclinic, <i>P</i> 1 $a = 7.958 (7) Å$ $b = 9.080 (8) Å$ $c = 13.591 (11) Å$ $a = 105.757 (10)^{\circ}$ $\beta = 104.501 (11)^{\circ}$ $\gamma = 97.911 (12)^{\circ}$ $V = 892.5 (13) Å^3$ Data collection | Z = 2<br>F(000) = 540<br>$D_x = 2.084 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 1555 reflections<br>$\theta = 2.4-23.8^{\circ}$<br>$\mu = 3.84 \text{ mm}^{-1}$<br>T = 100 K<br>Plate, yellow<br>$0.22 \times 0.13 \times 0.05 \text{ mm}$ |
| Bruker D8 with APEX CCD area detector and<br>Incoatec microsource<br>diffractometer<br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008)<br>$T_{min} = 0.447, T_{max} = 0.745$<br>8805 measured reflections           | 3533 independent reflections<br>2603 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.079$<br>$\theta_{max} = 26.1^{\circ}, \ \theta_{min} = 2.4^{\circ}$<br>$h = -9 \rightarrow 9$<br>$k = -11 \rightarrow 11$<br>$l = -16 \rightarrow 16$                                                          |

### Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                              |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent                |
| $R[F^2 > 2\sigma(F^2)] = 0.047$ | and constrained refinement                                 |
| $wR(F^2) = 0.116$               | $w = 1/[\sigma^2(F_o^2) + (0.020P)^2]$                     |
| S = 1.02                        | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 3533 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 214 parameters                  | $\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$  |
| 29 restraints                   | $\Delta \rho_{\rm min} = -2.20 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|     | x           | у            | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |  |
|-----|-------------|--------------|--------------|-------------------------------|--|
| Cal | 0.7566 (2)  | 0.11114 (16) | 0.03989 (10) | 0.0214 (3)                    |  |
| 01  | 0.4901 (7)  | 0.0237 (6)   | 0.1072 (4)   | 0.0294 (12)                   |  |
| 02  | 0.7073 (7)  | 0.2219 (6)   | 0.2165 (4)   | 0.0302 (12)                   |  |
| 05  | 0.6524 (7)  | 0.3423 (6)   | 0.0331 (4)   | 0.0248 (12)                   |  |
| H1W | 0.576 (8)   | 0.367 (9)    | 0.063 (6)    | 0.030*                        |  |
| H2W | 0.625 (10)  | 0.331 (9)    | -0.032(2)    | 0.030*                        |  |
| 06  | 1.0260 (8)  | 0.2610 (7)   | 0.1713 (4)   | 0.0360 (14)                   |  |
| H3W | 1.125 (6)   | 0.313 (7)    | 0.169 (6)    | 0.043*                        |  |
| H4W | 1.028 (12)  | 0.256 (10)   | 0.232 (3)    | 0.043*                        |  |
| 03  | 0.8632 (7)  | -0.1067 (6)  | 0.0374 (4)   | 0.0303 (13)                   |  |
| O4  | 1.0911 (7)  | -0.2226 (6)  | 0.0632 (4)   | 0.0305 (13)                   |  |
| N2  | 0.9542 (9)  | -0.4002 (8)  | 0.1626 (5)   | 0.0257 (15)                   |  |
| H2A | 1.053 (7)   | -0.415 (9)   | 0.153 (6)    | 0.031*                        |  |
| H2B | 0.896 (10)  | -0.491 (6)   | 0.120 (5)    | 0.031*                        |  |
| N1  | 0.5637 (9)  | 0.2912 (7)   | 0.3744 (5)   | 0.0250 (14)                   |  |
| H1A | 0.480 (8)   | 0.329 (9)    | 0.393 (6)    | 0.030*                        |  |
| H1B | 0.625 (9)   | 0.362 (7)    | 0.358 (6)    | 0.030*                        |  |
| C10 | 0.8593 (11) | -0.1694 (9)  | 0.2437 (6)   | 0.0308 (18)                   |  |
| H8  | 0.8894      | -0.0586      | 0.2463       | 0.037*                        |  |
| H9  | 0.7423      | -0.1900      | 0.2563       | 0.037*                        |  |
| C9  | 1.0000 (12) | -0.2034 (10) | 0.3254 (6)   | 0.038 (2)                     |  |
| H10 | 0.9776      | -0.1760      | 0.3959       | 0.045*                        |  |
| H11 | 1.1193      | -0.1437      | 0.3336       | 0.045*                        |  |
| C8  | 0.9858 (11) | -0.3790 (9)  | 0.2807 (5)   | 0.0312 (19)                   |  |
| H12 | 1.0970      | -0.4091      | 0.3119       | 0.037*                        |  |
| H13 | 0.8848      | -0.4402      | 0.2933       | 0.037*                        |  |
| C7  | 0.8560 (10) | -0.2808 (8)  | 0.1353 (5)   | 0.0246 (16)                   |  |
| H14 | 0.7302      | -0.3332      | 0.0914       | 0.030*                        |  |
| C6  | 0.9462 (10) | -0.1969 (8)  | 0.0726 (5)   | 0.0240 (16)                   |  |
| C5  | 0.4773 (11) | 0.0135 (9)   | 0.3293 (6)   | 0.0292 (18)                   |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H1 | 0.3804      | -0.0009     | 0.3617      | 0.035*       |  |
|----|-------------|-------------|-------------|--------------|--|
| H2 | 0.4713      | -0.0866     | 0.2749      | 0.035*       |  |
| C4 | 0.6589 (12) | 0.0713 (9)  | 0.4148 (6)  | 0.034 (2)    |  |
| Н3 | 0.6670      | 0.0152      | 0.4683      | 0.041*       |  |
| H4 | 0.7560      | 0.0567      | 0.3821      | 0.041*       |  |
| C3 | 0.6678 (11) | 0.2433 (9)  | 0.4655 (5)  | 0.0287 (18)  |  |
| Н5 | 0.7926      | 0.3041      | 0.4943      | 0.034*       |  |
| H6 | 0.6129      | 0.2594      | 0.5243      | 0.034*       |  |
| C2 | 0.4668 (11) | 0.1463 (8)  | 0.2801 (5)  | 0.0251 (15)  |  |
| H7 | 0.3402      | 0.1509      | 0.2497      | 0.030*       |  |
| C1 | 0.5620 (10) | 0.1303 (8)  | 0.1964 (5)  | 0.0211 (12)  |  |
| I1 | 0.40641 (6) | 0.52553 (5) | 0.18903 (3) | 0.02488 (16) |  |
| I2 | 0.18089 (7) | 0.31320 (6) | 0.44926 (3) | 0.02940 (17) |  |
|    |             |             |             |              |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|------------|------------|-------------|-------------|--------------|--------------|
| Cal | 0.0248 (8) | 0.0207 (7) | 0.0185 (6)  | 0.0044 (6)  | 0.0025 (6)   | 0.0100 (5)   |
| 01  | 0.034 (3)  | 0.032 (2)  | 0.0183 (17) | 0.007 (2)   | 0.0011 (17)  | 0.0083 (16)  |
| O2  | 0.029 (2)  | 0.034 (3)  | 0.025 (2)   | 0.0015 (19) | 0.0045 (18)  | 0.0125 (19)  |
| 05  | 0.033 (3)  | 0.025 (3)  | 0.019 (2)   | 0.010(2)    | 0.008 (2)    | 0.011 (2)    |
| O6  | 0.034 (4)  | 0.046 (4)  | 0.023 (2)   | -0.003 (3)  | 0.006 (2)    | 0.011 (2)    |
| O3  | 0.037 (3)  | 0.026 (3)  | 0.034 (3)   | 0.014 (3)   | 0.009 (2)    | 0.018 (2)    |
| O4  | 0.032 (3)  | 0.040 (3)  | 0.032 (3)   | 0.013 (3)   | 0.013 (2)    | 0.023 (2)    |
| N2  | 0.032 (4)  | 0.026 (3)  | 0.020 (3)   | 0.012 (3)   | 0.005 (3)    | 0.009 (2)    |
| N1  | 0.032 (4)  | 0.022 (3)  | 0.023 (3)   | 0.007 (3)   | 0.008 (3)    | 0.010 (2)    |
| C10 | 0.041 (5)  | 0.026 (4)  | 0.032 (4)   | 0.010 (4)   | 0.017 (4)    | 0.012 (3)    |
| C9  | 0.039 (5)  | 0.048 (5)  | 0.018 (3)   | 0.001 (4)   | 0.002 (3)    | 0.010 (3)    |
| C8  | 0.038 (5)  | 0.034 (4)  | 0.025 (3)   | 0.011 (4)   | 0.008 (3)    | 0.016 (3)    |
| C7  | 0.027 (4)  | 0.024 (4)  | 0.026 (3)   | 0.007 (3)   | 0.006 (3)    | 0.014 (3)    |
| C6  | 0.026 (4)  | 0.020 (4)  | 0.021 (3)   | 0.004 (3)   | 0.005 (3)    | 0.002 (3)    |
| C5  | 0.031 (5)  | 0.027 (4)  | 0.028 (4)   | -0.002 (4)  | 0.010 (3)    | 0.009 (3)    |
| C4  | 0.042 (5)  | 0.035 (5)  | 0.028 (4)   | 0.009 (4)   | 0.006 (3)    | 0.017 (3)    |
| C3  | 0.030 (5)  | 0.038 (5)  | 0.019 (3)   | 0.012 (4)   | 0.005 (3)    | 0.011 (3)    |
| C2  | 0.033 (4)  | 0.018 (4)  | 0.024 (2)   | 0.002 (3)   | 0.008 (3)    | 0.008 (2)    |
| C1  | 0.025 (2)  | 0.023 (3)  | 0.0176 (18) | 0.0091 (18) | 0.0015 (16)  | 0.0138 (16)  |
| I1  | 0.0270 (3) | 0.0256 (3) | 0.0244 (2)  | 0.0070 (2)  | 0.00549 (19) | 0.01326 (19) |
| I2  | 0.0328 (3) | 0.0318 (3) | 0.0246 (2)  | 0.0078 (2)  | 0.0083 (2)   | 0.0107 (2)   |

Geometric parameters (Å, °)

| Ca1—O1               | 2.621 (6) | N1—C3  | 1.512 (8)  |
|----------------------|-----------|--------|------------|
| Ca1—O2               | 2.489 (6) | N1—H1A | 0.86 (4)   |
| Ca1—O4 <sup>i</sup>  | 2.396 (5) | N1—H1B | 0.86 (4)   |
| Ca1—O5               | 2.376 (5) | C10—C9 | 1.496 (10) |
| Ca1—O6               | 2.365 (6) | C10—C7 | 1.536 (10) |
| Ca1—O1 <sup>ii</sup> | 2.323 (5) | C10—H8 | 0.9900     |
| Ca1—O3               | 2.252 (5) | С10—Н9 | 0.9900     |
|                      |           |        |            |

| Ca1—Ca1 <sup>i</sup>         | 4.829 (4)                | С9—С8                                                | 1.521 (11)           |
|------------------------------|--------------------------|------------------------------------------------------|----------------------|
| Ca1—Ca1 <sup>ii</sup>        | 4.032 (4)                | C9—H10                                               | 0.9900               |
| Cal—Cl                       | 2.911 (8)                | C9—H11                                               | 0.9900               |
| Ca1—C6 <sup>i</sup>          | 3.238 (8)                | C8—H12                                               | 0.9900               |
| 01—C1                        | 1.263 (8)                | C8—H13                                               | 0.9900               |
| O1—Ca1 <sup>ii</sup>         | 2.323 (5)                | C7—C6                                                | 1.527 (10)           |
| O2—C1                        | 1.248 (9)                | C7—H14                                               | 1.0000               |
| O5—H1W                       | 0.83 (2)                 | C6—Ca1 <sup>i</sup>                                  | 3,238 (8)            |
| O5—H2W                       | 0.83(2)                  | C5—C4                                                | 1.527 (10)           |
| O6—H3W                       | 0.876(17)                | C5—C2                                                | 1.531 (10)           |
| O6—H4W                       | 0.84(2)                  | C5—H1                                                | 0.9900               |
| 03-C6                        | 1.241(8)                 | C5—H2                                                | 0.9900               |
| 04-C6                        | 1 237 (9)                | C4-C3                                                | 1.510(11)            |
| 04—Cal <sup>i</sup>          | 2 396 (5)                | C4—H3                                                | 0.9900               |
| N2—C7                        | 1 493 (9)                | C4—H4                                                | 0.9900               |
| N2-C8                        | 1.515 (9)                | C3—H5                                                | 0.9900               |
| N2—H2A                       | 0.85(4)                  | C3—H6                                                | 0.9900               |
| N2H2B                        | 0.85(4)                  | $C_2 - C_1$                                          | 1 505 (10)           |
| N1 C2                        | 1.500(9)                 | C2 H7                                                | 1.0000               |
| NI-C2                        | 1.509 (9)                | C2—II7                                               | 1.0000               |
| 03-Ca1-01 <sup>ii</sup>      | 92 68 (19)               | $H3W_06_H4W$                                         | 114 (8)              |
| $03-C_{21}-06$               | 88 9 (2)                 | $C_{6}$                                              | 1582(5)              |
| 03 - Ca1 - 00                | 171.4(2)                 | $C6-04-Cal^{i}$                                      | 130.2(3)<br>122.8(4) |
| $03-C_{2}1-05$               | 171.7(2)                 | $C7_{N2}$                                            | 108.4 (6)            |
| 03 - Ca1 - 03                | 86 60 (18)               | $C7 N2 H2\Lambda$                                    | 100.4(0)             |
| $06 C_{21} O_{5}$            | 01.2(2)                  | $C_{1} = N_{2} = M_{2} + M_{2}$                      | 127(0)<br>103(5)     |
| $O_{2}^{3}$ Cal $O_{1}^{4}$  | 91.2(2)<br>102.3(2)      | $C_{0}$ $N_{2}$ $H_{2}$ $H_{2}$                      | 103(5)               |
| $O_{3}$ $C_{a1}$ $O_{4}^{i}$ | 102.3(2)<br>03 50(10)    | $C_{1} = N_{2} = H_{2}B$                             | 109(3)               |
| $O_1 = Ca_1 = O_4$           | 77.04(19)                | $C_0 = N_2 = H_2 D$                                  | 113(3)               |
| 00-ca1-04                    | 77.94 (19)               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 94(7)                |
| $O_{3} = C_{a1} = O_{4}$     | 100.19(19)               | $C_2 = N_1 = C_3$                                    | 109.3(3)             |
| 03 - Ca1 - 02                | 109.10(10)<br>118.14(10) | $C_2 = N_1 = H_1 A$                                  | 104(3)               |
| 06 - Ca1 - 02                | (19)                     | $C_2 N_1 = H_1 R_2$                                  | 108(3)               |
| 00-Ca1-02                    | 09.1(2)                  | $C_2 = N_1 = H_1 D_2$                                | 114(3)               |
| 03-Ca1-02                    | 74.40(17)                | C3—NI—HIB                                            | 114(5)               |
| 04 - 02                      | 155.12 (19)              | HIA—NI—HIB                                           | 107(7)               |
| 03— $Ca1$ — $01$             | 94.58 (19)               | $C_{0} = C_{10} = C_{10}$                            | 105.1 (6)            |
| O[-Ca] = O[                  | 70.85 (19)               | $C_{2}$                                              | 110.7                |
| 06-Cal-01                    | 11/.43(18)               | $C_{1} = C_{10} = H_{8}$                             | 110.7                |
| 03-Cal-01                    | 88.80 (18)               | C9_C10_H9                                            | 110.7                |
| 04                           | 157.57 (16)              | C/C10H9                                              | 110.7                |
| 02—Cal—Ol                    | 50.92 (16)               | H8—C10—H9                                            | 108.8                |
|                              | 103.14 (19)              | C10 - C9 - C8                                        | 104.3 (6)            |
| $OI^{-}$ $Cal$ $Cl$          | 94.8 (2)                 | C10—C9—H10                                           | 110.9                |
| $U_0 - C_1 - C_1$            | 93.0 (2)                 | C8-C9-H10                                            | 110.9                |
| US—Cal—Cl                    | 80.70 (18)               | C10—C9—H11                                           | 110.9                |
| U4 <sup></sup> C1            | 152.77 (19)              |                                                      | 110.9                |
| O2—Cal—Cl                    | 25.20 (17)               | H10—C9—H11                                           | 108.9                |
| OI—Cal—Cl                    | 25.71 (17)               | N2-C8-C9                                             | 101.0 (6)            |

| O3—Ca1—C6 <sup>i</sup>                  | 85.3 (2)    | N2—C8—H12              | 111.6     |
|-----------------------------------------|-------------|------------------------|-----------|
| O1 <sup>ii</sup> —Ca1—C6 <sup>i</sup>   | 102.18 (19) | C9—C8—H12              | 111.6     |
| O6—Ca1—C6 <sup>i</sup>                  | 69.55 (19)  | N2—C8—H13              | 111.6     |
| O5—Ca1—C6 <sup>i</sup>                  | 91.14 (19)  | C9—C8—H13              | 111.6     |
| O4 <sup>i</sup> —Ca1—C6 <sup>i</sup>    | 18.73 (16)  | H12—C8—H13             | 109.4     |
| O2—Ca1—C6 <sup>i</sup>                  | 135.61 (18) | N2—C7—C6               | 110.1 (6) |
| O1—Ca1—C6 <sup>i</sup>                  | 173.02 (16) | N2C7C10                | 105.0 (5) |
| C1—Ca1—C6 <sup>i</sup>                  | 160.72 (19) | C6—C7—C10              | 112.6 (6) |
| O3—Ca1—Ca1 <sup>ii</sup>                | 94.52 (16)  | N2—C7—H14              | 109.7     |
| O1 <sup>ii</sup> —Ca1—Ca1 <sup>ii</sup> | 37.88 (14)  | C6—C7—H14              | 109.7     |
| O6—Ca1—Ca1 <sup>ii</sup>                | 150.35 (15) | C10—C7—H14             | 109.7     |
| O5—Ca1—Ca1 <sup>ii</sup>                | 87.31 (15)  | O4—C6—O3               | 127.2 (7) |
| O4 <sup>i</sup> —Ca1—Ca1 <sup>ii</sup>  | 129.49 (14) | O4—C6—C7               | 118.5 (6) |
| O2—Ca1—Ca1 <sup>ii</sup>                | 82.06 (14)  | O3—C6—C7               | 114.2 (7) |
| O1—Ca1—Ca1 <sup>ii</sup>                | 32.97 (10)  | O4—C6—Ca1 <sup>i</sup> | 38.4 (3)  |
| C1—Ca1—Ca1 <sup>ii</sup>                | 57.49 (15)  | O3—C6—Ca1 <sup>i</sup> | 88.8 (5)  |
| C6 <sup>i</sup> —Ca1—Ca1 <sup>ii</sup>  | 140.06 (13) | C7—C6—Ca1 <sup>i</sup> | 156.9 (5) |
| O3—Ca1—H2W                              | 159.2 (9)   | C4—C5—C2               | 102.8 (6) |
| O1 <sup>ii</sup> —Ca1—H2W               | 74.4 (14)   | C4—C5—H1               | 111.2     |
| O6—Ca1—H2W                              | 101.6 (15)  | C2—C5—H1               | 111.2     |
| O5—Ca1—H2W                              | 17.6 (9)    | C4—C5—H2               | 111.2     |
| O4 <sup>i</sup> —Ca1—H2W                | 63.2 (15)   | C2—C5—H2               | 111.2     |
| O2-Ca1-H2W                              | 91.5 (10)   | H1—C5—H2               | 109.1     |
| O1—Ca1—H2W                              | 96.4 (16)   | C3—C4—C5               | 103.7 (6) |
| C1—Ca1—H2W                              | 94.3 (13)   | C3—C4—H3               | 111.0     |
| $C6^{i}$ —Ca1—H2W                       | 81.7 (15)   | C5—C4—H3               | 111.0     |
| Ca1 <sup>ii</sup> —Ca1—H2W              | 85.2 (17)   | C3—C4—H4               | 111.0     |
| O3-Ca1-H4W                              | 85.8 (18)   | C5—C4—H4               | 111.0     |
| $O1^{ii}$ —Ca1—H4W                      | 172.4 (12)  | H3—C4—H4               | 109.0     |
| O6—Ca1—H4W                              | 16.2(12)    | C4-C3-N1               | 103.9 (5) |
| O5—Ca1—H4W                              | 95.3 (18)   | C4—C3—H5               | 111.0     |
| O4 <sup>i</sup> —Ca1—H4W                | 94.1 (12)   | N1—C3—H5               | 111.0     |
| O2—Ca1—H4W                              | 55.7 (15)   | С4—С3—Н6               | 111.0     |
| O1-Ca1-H4W                              | 101.8 (12)  | N1—C3—H6               | 111.0     |
| C1—Ca1—H4W                              | 78.3 (13)   | H5—C3—H6               | 109.0     |
| C6 <sup>i</sup> —Ca1—H4W                | 85.2 (12)   | C1—C2—N1               | 109.3 (6) |
| Cal <sup>ii</sup> —Cal—H4W              | 134.7(12)   | C1 - C2 - C5           | 111.5 (6) |
| H2W—Ca1—H4W                             | 109 (2)     | N1 - C2 - C5           | 103.2(5)  |
| $C1 - O1 - Ca1^{ii}$                    | 150.9 (5)   | C1—C2—H7               | 110.9     |
| C1-O1-Ca1                               | 90.1 (5)    | N1—C2—H7               | 110.9     |
| $Ca1^{ii}$ — $O1$ — $Ca1$               | 109.15 (19) | C5—C2—H7               | 110.9     |
| C1-O2-Ca1                               | 96.7 (4)    | 02 - C1 - 01           | 122.3 (7) |
| Ca1 - 05 - H1W                          | 120 (6)     | 02 - C1 - C2           | 119.6 (6) |
| Ca1—05—H2W                              | 102(5)      | 01 - C1 - C2           | 118.1 (7) |
| H1W—O5—H2W                              | 115 (8)     | O2-C1-Ca1              | 58.1 (4)  |
|                                         | x - /       |                        |           |

## supporting information

| Ca1—O6—H3W | 134 (5) | O1—C1—Ca1 | 64.2 (4)  |
|------------|---------|-----------|-----------|
| Ca1—O6—H4W | 112 (6) | C2—C1—Ca1 | 177.7 (5) |

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z.

### Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H      | H···A    | D··· $A$  | D—H···A |
|--------------------------------------|----------|----------|-----------|---------|
| N1—H1A…I2                            | 0.85 (7) | 2.67 (7) | 3.459 (8) | 154 (7) |
| N1—H1 <i>B</i> …I1                   | 0.86(7)  | 3.33 (7) | 3.809(7)  | 118 (6) |
| N1—H1 <i>B</i> ····I2 <sup>iii</sup> | 0.86 (7) | 3.24 (7) | 3.695 (7) | 116 (5) |
| N2—H2A····I1 <sup>iv</sup>           | 0.85 (6) | 2.88 (6) | 3.700 (8) | 161 (7) |
| N2—H2 $B$ )····O5 <sup>v</sup>       | 0.86 (6) | 2.13 (7) | 2.904 (9) | 151 (7) |
| O5—H1 <i>W</i> …I1                   | 0.84 (7) | 2.68 (7) | 3.486 (6) | 163 (6) |
| O5— $H2W$ ···I1 <sup>vi</sup>        | 0.83 (3) | 2.77 (6) | 3.491 (6) | 147 (7) |
| O6—H3 <i>W</i> ····I1 <sup>vii</sup> | 0.87 (6) | 2.65 (6) | 3.509 (7) | 167 (5) |
| O6—H4 <i>W</i> ···I2 <sup>vii</sup>  | 0.84 (5) | 2.77 (4) | 3.543 (6) | 155 (7) |

Symmetry codes: (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*+1, *y*-1, *z*; (v) *x*, *y*-1, *z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) *x*+1, *y*, *z*.