organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o387-o388

Crystal structure of 2-(4-chloro-3-fluoro­phen­yl)-1H-benzimidazole

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 April 2015; accepted 5 May 2015; online 9 May 2015)

In the title compound, C13H8ClFN2, the dihedral angle between the plane of the benzimidazole ring system (r.m.s. deviation = 0.022 Å) and the benzene ring is 26.90 (8)°. The F atom at the meta position of the benzene ring is disordered over two sites in a 0.843 (4):0.157 (4) ratio. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming infinite C(4) chains propagating along [010]. In addition, weak C—H⋯π and ππ inter­actions [shortest centroid–centroid separation = 3.6838 (12) Å] are observed, which link the chains into a three-dimensional network.

1. Related literature

For therapeutic and medicinal properties of benzimidazole derivatives, see: Ozden et al. (2004[Ozden, S., Karatas, H., Yildiz, S. & Goker, H. (2004). Arch. Pharm. 337, 556-562.]); Easmon et al. (2001[Easmon, J., Puerstinger, G., Roth, T., Fiebig, H. H., Jenny, M., Jaeger, W., Heinisch, G. & Hofmann, J. (2001). Int. J. Cancer, 94, 89-96.]); Thakurdesai et al. (2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacol. Online, 1, 314-329.]); Ansari & Lal (2009[Ansari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 4028-4033.]). For the bioactivity of fluorine-containing compounds, see: Ulrich (2004[Ulrich, H. (2004). US Patent No. 2 004 033 897.]). For related structures, see: Fathima et al. (2013[Fathima, N., Krishnamurthy, M. S. & Begum, N. S. (2013). Acta Cryst. E69, o264.]); Jian et al. (2006[Jian, F.-F., Yu, H.-Q., Qiao, Y.-B., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o5194-o5195.]); Krishnamurthy & Begum (2014[Krishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o760.]); Krishnamurthy et al. (2013[Krishnamurthy, M. S., Fathima, N., Nagarajaiah, H. & Begum, N. S. (2013). Acta Cryst. E69, o1689.]); Rashid et al. 2007[Rashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402-o1403.]); Jayamoorthy et al. (2012[Jayamoorthy, K., Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J. & Butcher, R. J. (2012). Acta Cryst. E68, o2708.]); Yoon et al. (2012[Yoon, Y. K., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2715-o2716.]). Positional disorder is common in many organic compounds containing fluorine in either the ortho or meta position, see: Chopra & Guru Row (2008[Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.]); Nayak et al. (2011[Nayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591-605.]). For normal C—F bond lengths, see: Zhang et al. (1998[Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A. & Kim, S. H. (1998). Nature, 392, 677-684.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H8ClFN2

  • Mr = 246.66

  • Orthorhombic, P b c a

  • a = 9.2302 (4) Å

  • b = 9.8500 (4) Å

  • c = 23.1347 (9) Å

  • V = 2103.35 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.940, Tmax = 0.946

  • 23308 measured reflections

  • 1844 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 0.95

  • 1844 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/C5/C6/N2/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 2.06 2.924 (1) 166
C3—H3⋯Cgii 0.95 2.92 3.700 (3) 140
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Benzimidazole and their derivatives are known to exhibit a wide variety of pharmacological properties. Benzimidazole is an important pharmacophore and a privileged structure in medicinal chemistry encompassing a diverse range of biological activities such as antibacterial (Ozden et al., 2004), anticancer (Easmon et al., 2001), anti-HIV and anti-inflammatory (Ansari & Lal 2009; Thakurdesai et al., 2007). Benzimidazole and its derivatives can also be used as ligands in the field of coordination Chemistry. In addition, compounds which contain fluorine have special bioactivity (Ulrich, 2004). Herein, we report the crystal structure of the title compound. The molecular structure of the title compound C13H8ClFN2 is shown in Fig. 1. It is the fluoro-analogue of our previously reported compounds (Fathima et al., 2013; Krishnamurthy et al., 2013; Krishnamurthy & Begum., 2014). The benzimidazole system is essentially planar, with a dihedral angle of 2.251 (6)° between the planes of the benzene ring and its fused imidazole ring. The whole molecule is nonplanar; the dihedral angle between the benzimidazole ring and the benzene ring is 26.898 (1)°. This value is slightly lower than that observed in related compounds (Jian et al., 2006; Krishnamurthy & Begum, 2014). It was observed that the fluorine atom at the meta position is disordered over two sites, the major occupancy refining to 0.843 (4) and minor occupancy is 0.157 (4). In fact, the C—F bond length associated with the major occupancy fluorine is almost close to the standard C—F bond length (1.345 Å) while the minor occupancy fluorine has a bond length lying between normal value of C—H and C—F bond (Zhang et al., 1998). This type of positional disorder is common in many organic compounds containing fluorine in either the ortho or meta position (Chopra et al., 2008; Nayak et al., 2011). In the crystal structure, the molecules are linked by intermolecular N2—H2···N1 hydrogen bonds to form infinite chains parallel to [010] (Table. 1; Fig. 2). In addition, a weak C—H···π interaction of the type C3—H3···Cg (Cg being the centroid of the benzimidazole ring) link chains into layers parallel to [001] and ππ stacking interactions with a centroid—centroid distance of 3.684 (10) Å connect these layers into a three-dimensional network (Fig. 3).

Related literature top

For therapeutic and medicinal properties of benzimidazole derivatives, see: Ozden et al. (2004); Easmon et al. (2001); Thakurdesai et al. (2007); Ansari & Lal (2009). For the bioactivity of fluorine-containing compounds, see: Ulrich (2004). For related structures, see: Fathima et al. (2013); Jian et al. (2006); Krishnamurthy & Begum (2014); Krishnamurthy et al. (2013); Rashid et al. 2007); Jayamoorthy et al. (2012); Yoon et al. (2012). Positional disorder is common in many organic compounds containing fluorine in either the ortho or meta position, see: Chopra & Guru Row (2008); Nayak et al. (2011). For normal C—F bond lengths, see: Zhang et al. (1998).

Experimental top

The title compound was synthesized by refluxing 3-fluoro, 4-chlorobenzaldehyde (20 mmol, 0.28 g) and o-phenyldiamine (20 mmol, 0.22 g) in benzene (3.0 ml) for 6 hrs on a water bath. The reaction mixture was cooled. The solid separated, was filtered and dried (yield = 0.36 g (76%) and M.P. = 526 K). Yellow blocks were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

The H atoms were placed in calculated positions and refined in a riding model approximation with C—H= 0.93 Å, N—H=0.86 Å and with Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing N—H···N interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
[Figure 3] Fig. 3. Unit cell packing showing C—H···π and ππ interactions with dotted lines.
2-(4-Chloro-3-fluorophenyl)-1H-benzimidazole top
Crystal data top
C13H8ClFN2F(000) = 1008
Mr = 246.66Dx = 1.558 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1844 reflections
a = 9.2302 (4) Åθ = 2.8–25.0°
b = 9.8500 (4) ŵ = 0.35 mm1
c = 23.1347 (9) ÅT = 100 K
V = 2103.35 (15) Å3Block, yellow
Z = 80.18 × 0.16 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1844 independent reflections
Radiation source: fine-focus sealed tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.940, Tmax = 0.946k = 1111
23308 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0597P)2 + 2.5255P]
where P = (Fo2 + 2Fc2)/3
1844 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H8ClFN2V = 2103.35 (15) Å3
Mr = 246.66Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.2302 (4) ŵ = 0.35 mm1
b = 9.8500 (4) ÅT = 100 K
c = 23.1347 (9) Å0.18 × 0.16 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1844 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1606 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.946Rint = 0.043
23308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.95Δρmax = 0.56 e Å3
1844 reflectionsΔρmin = 0.32 e Å3
164 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.83007 (18)0.08322 (16)0.36167 (7)0.0175 (4)
N20.78338 (17)0.13986 (16)0.35704 (7)0.0175 (4)
H20.73710.21720.36160.021*
Cl10.14851 (5)0.07660 (6)0.47297 (3)0.0291 (2)
C11.0106 (2)0.2127 (2)0.30462 (9)0.0198 (5)
H10.99100.30730.30340.024*
C21.1337 (2)0.1595 (2)0.28016 (9)0.0213 (5)
H2A1.19940.21830.26090.026*
C31.1646 (2)0.0202 (2)0.28307 (9)0.0222 (5)
H31.25090.01320.26590.027*
C41.0721 (2)0.0692 (2)0.31040 (9)0.0207 (5)
H41.09450.16320.31280.025*
C50.9449 (2)0.01777 (19)0.33442 (8)0.0168 (4)
C60.9160 (2)0.1225 (2)0.33116 (8)0.0172 (4)
C70.7367 (2)0.01515 (19)0.37430 (8)0.0161 (4)
C80.5944 (2)0.0055 (2)0.40055 (9)0.0175 (4)
C90.5678 (2)0.1165 (2)0.43598 (9)0.0182 (4)
H90.64350.17790.44540.022*
C110.3186 (2)0.0478 (2)0.44523 (9)0.0214 (5)
C130.4824 (2)0.0846 (2)0.38887 (9)0.0223 (5)
H130.50080.16170.36530.027*
C120.3456 (2)0.0646 (2)0.41073 (9)0.0234 (5)
H120.27010.12720.40230.028*0.843 (4)
F1A0.2476 (9)0.1424 (8)0.4043 (4)0.031 (3)0.157 (4)
C100.4302 (2)0.13632 (19)0.45723 (9)0.0187 (4)
H100.41160.21330.48090.022*0.157 (4)
F10.40066 (15)0.24197 (14)0.49152 (6)0.0258 (5)0.843 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0168 (8)0.0154 (9)0.0204 (9)0.0005 (7)0.0003 (7)0.0003 (7)
N20.0177 (9)0.0122 (8)0.0227 (9)0.0010 (7)0.0020 (7)0.0006 (7)
Cl10.0184 (3)0.0294 (3)0.0395 (4)0.0006 (2)0.0088 (2)0.0051 (2)
C10.0235 (11)0.0152 (10)0.0208 (10)0.0036 (8)0.0000 (9)0.0009 (8)
C20.0229 (11)0.0212 (11)0.0199 (11)0.0070 (9)0.0007 (9)0.0001 (9)
C30.0184 (10)0.0242 (11)0.0239 (11)0.0005 (9)0.0029 (9)0.0024 (9)
C40.0194 (10)0.0162 (10)0.0265 (11)0.0016 (8)0.0000 (9)0.0013 (8)
C50.0175 (10)0.0159 (10)0.0168 (10)0.0026 (8)0.0007 (8)0.0008 (8)
C60.0176 (10)0.0182 (10)0.0157 (10)0.0018 (8)0.0011 (8)0.0013 (8)
C70.0178 (10)0.0146 (10)0.0158 (10)0.0026 (8)0.0043 (8)0.0017 (8)
C80.0190 (10)0.0154 (9)0.0180 (10)0.0016 (8)0.0000 (8)0.0018 (8)
C90.0184 (10)0.0157 (9)0.0206 (10)0.0002 (8)0.0002 (8)0.0023 (8)
C110.0189 (10)0.0229 (11)0.0226 (11)0.0019 (9)0.0030 (9)0.0037 (9)
C130.0226 (11)0.0185 (10)0.0257 (12)0.0003 (9)0.0011 (9)0.0034 (8)
C120.0202 (11)0.0227 (11)0.0273 (12)0.0027 (9)0.0005 (9)0.0022 (9)
F1A0.025 (4)0.029 (5)0.037 (5)0.006 (4)0.001 (4)0.008 (4)
C100.0234 (11)0.0135 (9)0.0193 (10)0.0039 (8)0.0016 (8)0.0010 (8)
F10.0204 (8)0.0207 (8)0.0364 (9)0.0002 (6)0.0054 (6)0.0126 (6)
Geometric parameters (Å, º) top
N1—C71.329 (3)C5—C61.409 (3)
N1—C51.392 (3)C7—C81.461 (3)
N2—C71.362 (3)C8—C91.388 (3)
N2—C61.374 (3)C8—C131.389 (3)
N2—H20.8800C9—C101.376 (3)
Cl1—C111.719 (2)C9—H90.9500
C1—C21.373 (3)C11—C101.378 (3)
C1—C61.389 (3)C11—C121.387 (3)
C1—H10.9500C13—C121.375 (3)
C2—C31.403 (3)C13—H130.9500
C2—H2A0.9500C12—F1A1.195 (8)
C3—C41.380 (3)C12—H120.9500
C3—H30.9500C10—F11.337 (2)
C4—C51.394 (3)C10—H100.9500
C4—H40.9500
C7—N1—C5104.82 (16)N2—C7—C8122.16 (18)
C7—N2—C6107.33 (16)C9—C8—C13119.13 (19)
C7—N2—H2126.3C9—C8—C7120.94 (18)
C6—N2—H2126.3C13—C8—C7119.91 (18)
C2—C1—C6117.30 (19)C10—C9—C8119.06 (19)
C2—C1—H1121.4C10—C9—H9120.5
C6—C1—H1121.4C8—C9—H9120.5
C1—C2—C3121.41 (19)C10—C11—C12119.13 (19)
C1—C2—H2A119.3C10—C11—Cl1120.18 (16)
C3—C2—H2A119.3C12—C11—Cl1120.69 (17)
C4—C3—C2121.40 (19)C12—C13—C8121.35 (19)
C4—C3—H3119.3C12—C13—H13119.3
C2—C3—H3119.3C8—C13—H13119.3
C3—C4—C5118.11 (19)F1A—C12—C13123.9 (4)
C3—C4—H4120.9F1A—C12—C11116.6 (4)
C5—C4—H4120.9C13—C12—C11119.4 (2)
N1—C5—C4130.80 (18)C13—C12—H12120.3
N1—C5—C6109.54 (17)C11—C12—H12120.3
C4—C5—C6119.63 (18)F1—C10—C9120.70 (18)
N2—C6—C1132.36 (19)F1—C10—C11117.39 (18)
N2—C6—C5105.50 (17)C9—C10—C11121.90 (19)
C1—C6—C5122.12 (18)C9—C10—H10119.0
N1—C7—N2112.82 (17)C11—C10—H10119.0
N1—C7—C8124.92 (17)
C6—C1—C2—C31.5 (3)N2—C7—C8—C9156.49 (19)
C1—C2—C3—C40.3 (3)N1—C7—C8—C13150.8 (2)
C2—C3—C4—C51.1 (3)N2—C7—C8—C1325.3 (3)
C7—N1—C5—C4178.2 (2)C13—C8—C9—C101.8 (3)
C7—N1—C5—C60.2 (2)C7—C8—C9—C10176.41 (18)
C3—C4—C5—N1176.6 (2)C9—C8—C13—C121.3 (3)
C3—C4—C5—C61.2 (3)C7—C8—C13—C12176.97 (19)
C7—N2—C6—C1178.1 (2)C8—C13—C12—F1A176.2 (5)
C7—N2—C6—C50.3 (2)C8—C13—C12—C110.1 (3)
C2—C1—C6—N2176.80 (19)C10—C11—C12—F1A175.8 (5)
C2—C1—C6—C51.4 (3)Cl1—C11—C12—F1A4.0 (5)
N1—C5—C6—N20.3 (2)C10—C11—C12—C130.6 (3)
C4—C5—C6—N2178.58 (17)Cl1—C11—C12—C13179.62 (17)
N1—C5—C6—C1178.26 (18)C8—C9—C10—F1179.91 (18)
C4—C5—C6—C10.0 (3)C8—C9—C10—C111.2 (3)
C5—N1—C7—N20.0 (2)C12—C11—C10—F1178.73 (18)
C5—N1—C7—C8176.36 (18)Cl1—C11—C10—F11.1 (3)
C6—N2—C7—N10.2 (2)C12—C11—C10—C90.0 (3)
C6—N2—C7—C8176.25 (17)Cl1—C11—C10—C9179.80 (16)
N1—C7—C8—C927.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C5/C6/N2/C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.062.924 (1)166
C3—H3···Cgii0.952.923.700 (3)140
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C5/C6/N2/C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.0612.924 (1)166
C3—H3···Cgii0.952.9243.700 (3)140
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

MSK is thankful to the University Grants Commission (UGC), India, for the UGC–BSR meritorious fellowship.

References

First citationAnsari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 4028–4033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationEasmon, J., Puerstinger, G., Roth, T., Fiebig, H. H., Jenny, M., Jaeger, W., Heinisch, G. & Hofmann, J. (2001). Int. J. Cancer, 94, 89–96.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFathima, N., Krishnamurthy, M. S. & Begum, N. S. (2013). Acta Cryst. E69, o264.  CSD CrossRef IUCr Journals Google Scholar
First citationJayamoorthy, K., Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J. & Butcher, R. J. (2012). Acta Cryst. E68, o2708.  CSD CrossRef IUCr Journals Google Scholar
First citationJian, F.-F., Yu, H.-Q., Qiao, Y.-B., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o5194–o5195.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o760.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamurthy, M. S., Fathima, N., Nagarajaiah, H. & Begum, N. S. (2013). Acta Cryst. E69, o1689.  CSD CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationOzden, S., Karatas, H., Yildiz, S. & Goker, H. (2004). Arch. Pharm. 337, 556–562.  Google Scholar
First citationRashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402–o1403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacol. Online, 1, 314–329.  Google Scholar
First citationUlrich, H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2715–o2716.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A. & Kim, S. H. (1998). Nature, 392, 677–684.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o387-o388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds