

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of (4Z)-4-[(2E)-1hydroxy-3-(naphthalen-2-yl)prop-2-en-1vlidene]-3-methyl-1-phenyl-1*H*-pyrazol-5(4H)-one

Muhammad Salim,^a Munawar Ali Munawar,^a Muhammad Nawaz Tahir,^b* Muhammad Shahid^a and Khizar Igbal Malik^a

^aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan. *Correspondence e-mail: dmntahir_uos@yahoo.com

Received 4 May 2015; accepted 4 May 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{23}H_{18}N_2O_2$, the pyrazole ring subtends dihedral angles of 2.01 (13) and 1.55 (10) $^{\circ}$ with the pendant benzene ring and the naphthalene ring system, respectively. The molecule is almost planar (r.m.s. deviation for the 27 non-H atoms = 0.025 Å) and intramolecular $O-H \cdots O$ and C- $H \cdots O$ hydrogen bonds both close S(6) loops. In the crystal, very weak aromatic π - π stacking interactions between the benzene and the pyrazole rings, with centroid-centroid distances of 3.8913 (14) and 3.9285 (15) Å, are observed.

Keywords: crystal structure; pyrazole; intramolecular hydrogen bonding; $\pi - \pi$ stacking.

CCDC reference: 1062997

1. Related literature

For related structures, see: Chaudhry et al. (2012); Holzer et al. (1999); Malik et al. (2009).

2. Experimental

2.1. Crystal data

C23H18N2O2

 $M_r = 354.39$

Monoclinic, $P2_1/n$ a = 6.7067 (8) Å b = 17.525 (2) Å c = 15.784 (2) Å $\beta = 101.152$ (6)° V = 1820.1 (4) Å ³	Z = 4 Mo K α radiation μ = 0.08 mm ⁻¹ T = 296 K 0.40 × 0.16 × 0.14 mm
2.2. Data collection	
Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.968, T_{max} = 0.986$	13979 measured reflections 3574 independent reflections 1855 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$
2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.056$	246 parameters

$R[F^2 > 2\sigma(F^2)] = 0.056$	246 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
3574 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2A····O1	0.82	1.80	2.555 (2)	153
C6−H6····O1	0.93	2.30	2.940 (3)	126

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7418).

References

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.
- Malik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o381 [doi:10.1107/S205698901500866X]

Crystal structure of (4*Z*)-4-[(2*E*)-1-hydroxy-3-(naphthalen-2-yl)prop-2-en-1-yl-idene]-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one

Muhammad Salim, Munawar Ali Munawar, Muhammad Nawaz Tahir, Muhammad Shahid and Khizar Iqbal Malik

S1. Comment

The crystal structures of 5-methyl-2-phenyl-4-((*E*)-3-phenyl-2-hydroxy- prop-2-enylidene)-1,2-dihydro-3*H*-pyrazol-3one (Holzer *et al.*, 1999), (4*Z*)-4-((2*E*)-1-hydroxy-3-(4-methoxyphenyl)prop-2-en-1-ylidene)-3-methyl-1-phenyl-1*H*pyrazol-5(4*H*)-one (Malik *et al.*, 2009) and (4*Z*)-4-((2*E*)-1-hydroxy-3-(3-nitrophenyl)prop- 2-en-1-ylidene)-3methyl-1-(4-methylphenyl)-1*H*-pyrazol-5(4*H*)-one (Chaudhry, *et al.*, 2012) have been published which are related to the title compound (I, Fig. 1). (I) is synthesized for the biological studies as well as for the preparation of different metal complexes.

In (I), the benzene ring A (C1–C6) and the (4*Z*)-4-[(2*E*)-1- hydroxy-3-(naphthalen-2-yl)prop-2-en-1-ylidene]-5methyl-2,4-dihydro-3*H* -pyrazol-3-one moiety *B* (C7–C23/N1/N2/O1/O2) are almost planar with r.m.s. deviations of 0.0022 and 0.0179 Å, respectively. The dihedral angle between A/B is 2.30 (13)°. There exist intramolecular H-bonding of O—H···O type completing *S* (6) loop. There exist π - π interactions at a distance of 3.9285 (15) Å between the centroids of Cg1—Cg2ⁱ and Cg2— Cg1ⁱⁱ [i = 1 + x, y, z and ii = -1 + x, y, z], where Cg1 and Cg2 are the centroids of heterocyclic ring *C* (N1/N2/C7/C8/C9) and benzene ring *A* (Fig. 2). Similarly, there exist π - π interactions at a distance of 3.8913 (14) Å between the centroids of Cg3—Cg1ⁱ and Cg1— Cg3ⁱⁱ [i = 1 + x, y, z and ii = -1 + x, y, z], where Cg3 is the centroids of ring *D* (C14/C15/C16/C17/C22/C23).

S2. Experimental

4-Acetyl-3-methyl-1-phenyl-5-hydroxy pyrazole (0.218 g, 1 mmol), 2-naphthaldehyde (0.234 g, 1.5 mmol) in glacial acetic acid (10 ml) and concentrated sulfuric acid (0.2 ml) was stirred at 353-360 K for 8 h. The reaction mixture was diluted with distilled water (50 ml). The precipitate was filtered, washed with methanol and dried. The crude product was purified by column chromatography using n-hexane and ethyl acetate mixtures as eluents. The product was recrystallized form n-hexane solution to afford purple needle. Yield = 56%, m.p. = 491 K

S3. Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å, O—H= 0.82 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, O)$, where x = 1.5 for methyl and hydroxy and x = 1.2 for other H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The partial packing, showing π - π interactions.

(4Z)-4-[(2E)-1-Hydroxy-3-(naphthalen-2-yl)prop-2-en-1-ylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Crystal data

5	
$C_{23}H_{18}N_2O_2$	$V = 1820.1 (4) Å^3$
$M_r = 354.39$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 744
a = 6.7067 (8) Å	$D_{\rm x} = 1.293 {\rm ~Mg} {\rm ~m}^{-3}$
b = 17.525 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 15.784 (2) Å	Cell parameters from 1855 reflections
$\beta = 101.152 \ (6)^{\circ}$	$\theta = 2.6 - 26.0^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker Kappa APEXII CCD diffractometer	13979 measured reflections 3574 independent reflections
Radiation source: fine-focus sealed tube	1855 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.055$
Detector resolution: 7.80 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.6^\circ$
ω scans	$h = -8 \rightarrow 5$
Absorption correction: multi-scan	$k = -21 \rightarrow 21$
(SADABS; Bruker, 2005)	$l = -19 \rightarrow 19$
$T_{\min} = 0.968, \ T_{\max} = 0.986$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 0.99	H-atom parameters constrained
3574 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2]$
246 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.13 \text{ e} \text{\AA}^{-3}$

Needle, purple

 $0.40 \times 0.16 \times 0.14 \text{ mm}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1673 (2)	0.54343 (9)	0.17724 (11)	0.0684 (5)	
O2	0.4599 (3)	0.49546 (9)	0.10912 (11)	0.0672 (5)	
H2A	0.3651	0.5215	0.1186	0.101*	
N1	0.1223 (3)	0.46669 (10)	0.29460 (12)	0.0527 (5)	
N2	0.2155 (3)	0.40098 (11)	0.33743 (12)	0.0593 (6)	
C1	-0.0446 (3)	0.49941 (13)	0.32414 (15)	0.0510 (6)	
C2	-0.1094 (4)	0.46827 (15)	0.39423 (17)	0.0714 (8)	
H2	-0.0430	0.4260	0.4221	0.086*	
C3	-0.2734 (4)	0.49985 (18)	0.42332 (19)	0.0851 (9)	
Н3	-0.3152	0.4788	0.4711	0.102*	
C4	-0.3740 (4)	0.56112 (17)	0.3831 (2)	0.0800 (8)	
H4	-0.4843	0.5818	0.4028	0.096*	
C5	-0.3108 (4)	0.59203 (15)	0.3130 (2)	0.0764 (8)	

115	-0.3704	0.6330	0.2851	0.002*
115 C6	0.3/94 -0.1450 (4)	0.0339	0.2001	0.092°
	-0.1439(4)	0.50100 (14)	0.2252	0.0039(7)
	-0.1040	0.3833 0.48752 (12)	0.2333	0.077°
C7	0.2133(3)	0.48755(12) 0.42280(12)	0.22704(15) 0.22720(14)	0.0508 (6)
	0.3725 (3)	0.43280 (12)	0.22720 (14)	0.0462 (6)
C9	0.3620 (3)	0.38203(12)	0.29/14 (15)	0.0533 (6)
C10	0.4899 (4)	0.31336 (14)	0.32827 (16)	0.0743 (8)
H10A	0.4788	0.2767	0.2824	0.111*
H10B	0.4434	0.2910	0.3764	0.111*
H10C	0.6293	0.3286	0.3458	0.111*
C11	0.4960 (3)	0.43911 (13)	0.16670 (15)	0.0503 (6)
C12	0.6639 (3)	0.38941 (12)	0.15888 (15)	0.0535 (6)
H12	0.6932	0.3489	0.1974	0.064*
C13	0.7796 (3)	0.39858 (13)	0.09910 (15)	0.0532 (6)
H13	0.7481	0.4397	0.0617	0.064*
C14	0.9479 (3)	0.35123 (12)	0.08677 (15)	0.0490 (6)
C15	1.0124 (4)	0.28705 (13)	0.13931 (16)	0.0590 (7)
H15	0.9461	0.2750	0.1841	0.071*
C16	1.1694 (4)	0.24273 (13)	0.12549 (17)	0.0607 (7)
H16	1.2071	0.2005	0.1606	0.073*
C17	1.2762 (3)	0.25934 (13)	0.05903 (16)	0.0519 (6)
C18	1.4400 (4)	0.21453 (14)	0.04322 (18)	0.0667 (7)
H18	1.4792	0.1716	0.0771	0.080*
C19	1.5422 (4)	0.23311 (16)	-0.02099 (19)	0.0730 (8)
H19	1.6492	0.2028	-0.0308	0.088*
C20	1.4857 (4)	0.29768 (17)	-0.07192 (18)	0.0735 (8)
H20	1.5571	0.3104	-0.1149	0.088*
C21	1.3268 (4)	0.34231 (15)	-0.05928 (16)	0.0632 (7)
H21	1.2905	0.3849	-0.0939	0.076*
C22	1.2170 (3)	0.32398 (13)	0.00630 (14)	0.0491 (6)
C23	1.0518 (3)	0.36872 (13)	0.02178 (14)	0.0518 (6)
H23	1.0121	0.4111	-0.0128	0.062*
			0.0120	0.002

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0733 (12)	0.0593 (11)	0.0730 (12)	0.0127 (9)	0.0152 (9)	0.0219 (9)
O2	0.0714 (14)	0.0630 (12)	0.0694 (12)	0.0042 (9)	0.0190 (9)	0.0172 (10)
N1	0.0513 (13)	0.0557 (12)	0.0505 (12)	0.0075 (10)	0.0082 (10)	0.0075 (10)
N2	0.0575 (14)	0.0632 (13)	0.0577 (13)	0.0130 (11)	0.0125 (10)	0.0150 (11)
C1	0.0440 (16)	0.0540 (15)	0.0523 (15)	0.0045 (12)	0.0028 (11)	-0.0076 (12)
C2	0.066 (2)	0.0815 (19)	0.0692 (19)	0.0154 (16)	0.0189 (15)	0.0112 (16)
C3	0.079 (2)	0.103 (2)	0.079 (2)	0.0145 (19)	0.0293 (17)	0.0075 (18)
C4	0.067 (2)	0.086 (2)	0.089 (2)	0.0127 (18)	0.0177 (17)	-0.0186 (19)
C5	0.073 (2)	0.0635 (18)	0.088 (2)	0.0187 (15)	0.0044 (16)	-0.0115 (17)
C6	0.0651 (18)	0.0612 (16)	0.0645 (17)	0.0099 (14)	0.0105 (13)	-0.0034 (14)
C7	0.0488 (16)	0.0475 (14)	0.0535 (15)	-0.0038 (12)	0.0029 (12)	0.0040 (12)
C8	0.0389 (14)	0.0490 (14)	0.0491 (14)	-0.0021 (12)	0.0051 (11)	0.0045 (11)

C9	0.0494 (16)	0.0521 (14)	0.0568 (15)	0.0034 (12)	0.0065 (12)	0.0079 (13)
C10	0.0706 (19)	0.0756 (18)	0.0787 (19)	0.0235 (15)	0.0194 (14)	0.0298 (15)
C11	0.0480 (16)	0.0451 (14)	0.0533 (15)	-0.0085 (12)	-0.0013 (12)	0.0003 (12)
C12	0.0501 (16)	0.0504 (14)	0.0584 (16)	-0.0051 (13)	0.0064 (12)	0.0034 (12)
C13	0.0521 (16)	0.0483 (14)	0.0581 (16)	-0.0096 (12)	0.0081 (12)	0.0002 (12)
C14	0.0445 (15)	0.0464 (14)	0.0552 (15)	-0.0089 (12)	0.0076 (12)	-0.0017 (12)
C15	0.0578 (17)	0.0536 (15)	0.0682 (17)	-0.0082 (13)	0.0185 (13)	0.0080 (13)
C16	0.0576 (17)	0.0504 (15)	0.0726 (18)	-0.0062 (14)	0.0088 (13)	0.0127 (13)
C17	0.0431 (15)	0.0480 (14)	0.0632 (17)	-0.0093 (12)	0.0070 (12)	-0.0082 (12)
C18	0.0623 (19)	0.0541 (16)	0.082 (2)	-0.0060 (14)	0.0104 (15)	-0.0042 (14)
C19	0.0643 (19)	0.0697 (19)	0.087 (2)	-0.0030 (15)	0.0187 (16)	-0.0200 (17)
C20	0.070 (2)	0.089 (2)	0.0660 (19)	-0.0130 (17)	0.0261 (15)	-0.0147 (17)
C21	0.0609 (18)	0.0693 (17)	0.0593 (17)	-0.0065 (15)	0.0113 (13)	-0.0028 (14)
C22	0.0466 (16)	0.0519 (15)	0.0475 (14)	-0.0113 (13)	0.0057 (11)	-0.0056 (12)
C23	0.0496 (16)	0.0482 (14)	0.0554 (16)	-0.0064 (12)	0.0042 (12)	0.0039 (12)

Geometric parameters (Å, °)

01—C7	1.262 (2)	C10—H10C	0.9600	
O2—C11	1.332 (2)	C11—C12	1.447 (3)	
O2—H2A	0.8200	C12—C13	1.342 (3)	
N1—C7	1.368 (3)	C12—H12	0.9300	
N1—C1	1.415 (3)	C13—C14	1.444 (3)	
N1—N2	1.418 (2)	C13—H13	0.9300	
N2—C9	1.312 (3)	C14—C23	1.381 (3)	
C1—C2	1.377 (3)	C14—C15	1.414 (3)	
C1—C6	1.383 (3)	C15—C16	1.360 (3)	
C2—C3	1.387 (3)	C15—H15	0.9300	
С2—Н2	0.9300	C16—C17	1.410 (3)	
C3—C4	1.359 (4)	C16—H16	0.9300	
С3—Н3	0.9300	C17—C18	1.412 (3)	
C4—C5	1.371 (4)	C17—C22	1.416 (3)	
C4—H4	0.9300	C18—C19	1.368 (3)	
C5—C6	1.390 (3)	C18—H18	0.9300	
С5—Н5	0.9300	C19—C20	1.397 (3)	
С6—Н6	0.9300	C19—H19	0.9300	
С7—С8	1.436 (3)	C20—C21	1.368 (3)	
C8—C11	1.385 (3)	C20—H20	0.9300	
С8—С9	1.430 (3)	C21—C22	1.418 (3)	
C9—C10	1.504 (3)	C21—H21	0.9300	
C10—H10A	0.9600	C22—C23	1.417 (3)	
C10—H10B	0.9600	С23—Н23	0.9300	
C11—O2—H2A	109.5	O2—C11—C12	115.5 (2)	
C7—N1—C1	130.2 (2)	C8—C11—C12	126.1 (2)	
C7—N1—N2	111.32 (18)	C13—C12—C11	123.6 (2)	
C1—N1—N2	118.43 (19)	C13—C12—H12	118.2	
C9—N2—N1	106.08 (18)	C11—C12—H12	118.2	

C2—C1—C6	119.4 (2)	C12—C13—C14	126.8 (2)
C2-C1-N1	119.8 (2)	C12—C13—H13	116.6
C6—C1—N1	120.8 (2)	C14—C13—H13	116.6
C1—C2—C3	120.1 (3)	C23—C14—C15	118.1 (2)
C1—C2—H2	119.9	C23—C14—C13	119.5 (2)
С3—С2—Н2	119.9	C15—C14—C13	122.4 (2)
C4—C3—C2	121.0 (3)	C16—C15—C14	121.2 (2)
С4—С3—Н3	119.5	С16—С15—Н15	119.4
С2—С3—Н3	119.5	C14—C15—H15	119.4
$C_{3}-C_{4}-C_{5}$	119.1 (3)	C15—C16—C17	121.5 (2)
C3—C4—H4	120.4	C15—C16—H16	1193
C5—C4—H4	120.4	C17—C16—H16	119.3
C4-C5-C6	120.1	C_{16} C_{17} C_{18}	117.5 122.8(2)
C4 - C5 - H5	119.4	$C_{16} - C_{17} - C_{22}$	122.0(2) 118 5 (2)
C6 C5 H5	110 /	$C_{10} = C_{17} = C_{22}$	118.7(2)
C_{0}	119.4	$C_{10} = C_{17} = C_{22}$	110.7(2) 121.1(3)
$C_1 = C_0 = C_3$	119.5 (5)	$C_{19} = C_{18} = C_{17}$	121.1 (5)
$C_1 = C_0 = H_0$	120.3	C17 C18 H18	119.4
C_{3} C_{7} N_{1}	120.5	C17 - C10 - H18	119.4
$OI = C7 = C^2$	127.1(2)	C18 - C19 - C20	120.0 (3)
01 - 07 - 08	127.3(2)	C18—C19—H19	120.0
NI - C / - C8	105.57 (19)	C20—C19—H19	120.0
	135.0 (2)	$C_{21} = C_{20} = C_{19}$	120.8 (3)
	119.6 (2)	C21—C20—H20	119.6
C9—C8—C7	105.3 (2)	С19—С20—Н20	119.6
N2—C9—C8	111.71 (19)	C20—C21—C22	120.4 (2)
N2—C9—C10	118.5 (2)	C20—C21—H21	119.8
C8—C9—C10	129.8 (2)	C22—C21—H21	119.8
C9—C10—H10A	109.5	C17—C22—C23	118.8 (2)
C9—C10—H10B	109.5	C17—C22—C21	118.9 (2)
H10A—C10—H10B	109.5	C23—C22—C21	122.3 (2)
C9—C10—H10C	109.5	C14—C23—C22	121.9 (2)
H10A—C10—H10C	109.5	C14—C23—H23	119.0
H10B-C10-H10C	109.5	С22—С23—Н23	119.0
O2—C11—C8	118.4 (2)		
C7—N1—N2—C9	0.1 (2)	C7—C8—C11—O2	-1.4 (3)
C1—N1—N2—C9	179.18 (19)	C9—C8—C11—C12	0.3 (4)
C7—N1—C1—C2	-179.6 (2)	C7—C8—C11—C12	178.99 (19)
N2—N1—C1—C2	1.5 (3)	O2-C11-C12-C13	0.8 (3)
C7-N1-C1-C6	1.2 (4)	C8-C11-C12-C13	-179.6(2)
N_{2} N1 C1 C6	-177.66(19)	$C_{11} - C_{12} - C_{13} - C_{14}$	-179.44(19)
$C_{6}-C_{1}-C_{2}-C_{3}$	-0.6(4)	C12 - C13 - C14 - C23	-1800(2)
$N_1 - C_1 - C_2 - C_3$	-1797(2)	C_{12} C_{13} C_{14} C_{15}	-0.2(4)
C1 - C2 - C3 - C4	07(4)	C^{23} C^{14} C^{15} C^{16}	-13(3)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}	-03(4)	C_{13} C_{14} C_{15} C_{16}	1.5(3) 1790(2)
$C_2 = C_3 = C_4 = C_5 = C_6$	-0.2(4)	C14 - C15 - C16 - C17	0.8(4)
$C_{2} = C_{1} = C_{2} = C_{1}$	0.2(7)	$C_{1+} - C_{15} - C_{10} - C_{17} - C_{17}$	$170 \times (2)$
12 - 01 - 00 - 03	170.2(2)	C_{13} C_{10} C_{17} C_{10} C_{17} C_{22}	1/7.0(2)
NI-UI-U0-U3	1/9.3 (2)	U13 - U10 - U17 - U22	0.2 (3)

C4—C5—C6—C1	0.3 (4)	C16—C17—C18—C19	-178.9 (2)
C1—N1—C7—O1	1.4 (4)	C22—C17—C18—C19	0.7 (3)
N2-N1-C7-01	-179.63 (19)	C17—C18—C19—C20	0.4 (4)
C1—N1—C7—C8	-178.9 (2)	C18—C19—C20—C21	-1.0 (4)
N2—N1—C7—C8	0.0 (2)	C19—C20—C21—C22	0.4 (4)
O1—C7—C8—C11	0.5 (3)	C16—C17—C22—C23	-0.7 (3)
N1-C7-C8-C11	-179.13 (19)	C18—C17—C22—C23	179.63 (19)
O1—C7—C8—C9	179.5 (2)	C16—C17—C22—C21	178.4 (2)
N1—C7—C8—C9	-0.1 (2)	C18—C17—C22—C21	-1.3 (3)
N1—N2—C9—C8	-0.2 (2)	C20—C21—C22—C17	0.7 (3)
N1—N2—C9—C10	-179.94 (18)	C20—C21—C22—C23	179.8 (2)
C11—C8—C9—N2	179.0 (2)	C15—C14—C23—C22	0.7 (3)
C7—C8—C9—N2	0.2 (3)	C13—C14—C23—C22	-179.51 (18)
C11—C8—C9—C10	-1.3 (4)	C17—C22—C23—C14	0.2 (3)
C7—C8—C9—C10	179.9 (2)	C21—C22—C23—C14	-178.8 (2)
C9—C8—C11—O2	179.9 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
02—H2A…O1	0.82	1.80	2.555 (2)	153
С6—Н6…О1	0.93	2.30	2.940 (3)	126