

70711 measured reflections 5697 independent reflections

 $R_{\rm int} = 0.051$

4862 reflections with $I > 2\sigma(I)$

CRYSTALLOGRAPHIC

Crystal structure of N-carbamothioyl-2methylbenzamide

Farook Adam,* Nadiah Ameram and Wai Mun Tan

School of Chemical Sciences, Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia. *Correspondence e-mail: farookdr@gmail.com

Received 15 May 2015; accepted 19 May 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

There are two molecules in the asymmetric unit of the title compound, $C_9H_{10}N_2OS$. In one, the dihedral angle between the aromatic ring and the carbamothiovl group is $52.31(7)^{\circ}$ and in the other it is $36.16 (6)^{\circ}$. Each molecule features an intramolecular N-H···O hydrogen bond, which generates an S(6) ring and the O and S atoms have an *anti* disposition. In the crystal, molecules are linked by $N-H \cdots S$ and $N-H \cdots O$ hydrogen bonds, generating separate [130] and $[1\overline{3}0]$ infinite chains. Weak $C-H \cdots O$ and $C-H \cdots S$ interactions are also observed.

Keywords: crystal structure; benzamide; thiourea; hydrogen bonding.

CCDC reference: 1401733

1. Related literature

For related structures, see: Saeed & Flörke (2007); Shoukat et al. (2007); Hassan et al. (2008a,b,c); Ameram et al. (2015).

2. Experimental

2.1. Crystal data

C₉H₁₀N₂OS $M_r = 194.25$ Monoclinic, C2/c a = 22.7886 (12) Åb = 7.1133 (3) Å c = 25.5388 (13) Å $\beta = 113.664 \ (3)^{\circ}$

V = 3791.8 (3) Å³ Z = 16 Mo $K\alpha$ radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 100 K $0.46 \times 0.33 \times 0.10 \ \mathrm{mm}$ 2.2. Data collection

2

OPEN d ACCESS

Bruker APEX DUO CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.814, T_{\rm max} = 0.872$

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.110$	independent and constrained
S = 1.10	refinement
5697 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
261 parameters	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

2) $2.60(2)$	3.3227 (16)	151 2 (18)
\dot{n} 265 \dot{n}	· · · · · · · · · · · · · · · · · · ·	101.2(10)
Z) Z.03 (Z)	3.4780 (14)	172 (2)
2) 2.49(2)	3.2945 (15)	157.8 (19)
2) 1.98 (2)	2.6404 (18)	136 (2)
2) 2.02(2)	2.6515 (19)	133 (2)
2) 2.49(2)	3.3800 (14)	177 (2)
2.45	3.3584 (19)	160
2.80	3.6946 (17)	152
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2) 2.49 (2) 3.2945 (15) 2) 1.98 (2) 2.6404 (18) 2) 2.02 (2) 2.6515 (19) 2) 2.49 (2) 3.3800 (14) 2.45 3.3584 (19) 2.80 3.6946 (17)

 $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iv) $x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Acknowledgements

The authors thank Universiti Sains Malaysia for research grants Nos. PKIMIA846017 and RU-1001/PKIMIA/811269 which partially supported this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7426).

References

- Ameram, N., Adam, F., Fatihah, N. N. & Al-Juaid, S. (2015). Acta Cryst. E71, 0356
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, 01727. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.
- Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.
- Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, 04259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, 03207
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o425 [doi:10.1107/S2056989015009585]

Crystal structure of N-carbamothioyl-2-methylbenzamide

Farook Adam, Nadiah Ameram and Wai Mun Tan

S1. Introduction

In the crystal, molecules are linked by pairs of C=O—H hydrogen bonds with the methyl group from molecule (B) is facing the group from the molecule (A) forming slabs which is parallel to the benzene ring plane (A) as the bond of C6–C7 (A and B) can free to rotate.

S2. Experimental

The title compound (Fig. 1) is a benzoyl thiourea intermediate to a compound recently reported by us (Ameram *et al.*, 2015) and there is no substituent at the end of thioamide group.

S2.1. Synthesis and crystallization

Freshly prepared substituted *o*-benzoyl chloride (13 mmol) was added dropwise to a stirred acetone solution (30 ml) of ammonium thiocyanate (13 mmol). The mixture was stirred for 10 min. A white side product which is ammonium chloride was filtered off. The compound was left at room temperature to crystallize, to yield colourless plates of the title compound.

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H-atoms on the N atoms were located in a difference-Fourier map and were freely refined. All other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(aromatic C)$ or $1.5U_{eq}(methyl C)$.

S3. Results and discussion

Figure 1

A view of the molecular structure of the title compound, showing the atom labellling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

N-Carbamothioyl-2-methylbenzamide

Crystal data C₉H₁₀N₂OS $M_r = 194.25$ Monoclinic, C2/c a = 22.7886 (12) Å b = 7.1133 (3) Å c = 25.5388 (13) Å $\beta = 113.664$ (3)° V = 3791.8 (3) Å³ Z = 16

F(000) = 1632 $D_x = 1.361 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9948 reflections $\theta = 3.0-29.9^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.46 \times 0.33 \times 0.10 \text{ mm}$ Data collection

Bruker APEX DUO CCD	70711 measured reflections
diffractometer	5697 independent reflections
Radiation source: fine-focus sealed tube	4862 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.051$
φ and ω scans	$\theta_{max} = 30.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -32 \rightarrow 32$
(<i>SADABS</i> ; Bruker, 2009)	$k = -10 \rightarrow 10$
$T_{\min} = 0.814, T_{\max} = 0.872$	$l = -36 \rightarrow 36$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.043$	and constrained refinement
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 4.2106P]$
S = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
5697 reflections	$(\Delta/\sigma)_{max} = 0.001$
261 parameters	$\Delta\rho_{max} = 0.45$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.22$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	Fractional atomic coordinates ar	d isotropic o	r equivalent	isotropic	displacement	parameters	(Å	2
--	----------------------------------	---------------	--------------	-----------	--------------	------------	----	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	0.20453 (2)	0.37036 (5)	0.04623 (2)	0.02123 (9)	
OlA	0.05447 (5)	0.09550 (16)	-0.11126 (5)	0.0285 (3)	
N1A	0.15344 (6)	0.12795 (17)	-0.03834 (5)	0.0195 (2)	
N2A	0.08336 (6)	0.3410 (2)	-0.02644 (7)	0.0264 (3)	
C1A	0.12721 (8)	-0.1174 (2)	-0.16760 (7)	0.0255 (3)	
C2A	0.14877 (8)	-0.2742 (2)	-0.18702 (7)	0.0290 (3)	
H2AA	0.1428	-0.2801	-0.2260	0.035*	
C3A	0.17880 (7)	-0.4224 (2)	-0.15103 (7)	0.0257 (3)	
H3AA	0.1925	-0.5289	-0.1656	0.031*	
C4A	0.18880 (7)	-0.4154 (2)	-0.09401 (7)	0.0239 (3)	
H4AA	0.2096	-0.5165	-0.0692	0.029*	
C5A	0.16820 (7)	-0.2595 (2)	-0.07329 (6)	0.0215 (3)	
H5AA	0.1756	-0.2531	-0.0340	0.026*	
C6A	0.13688 (7)	-0.11301 (19)	-0.10979 (6)	0.0190 (3)	
C7A	0.11026 (7)	0.0452 (2)	-0.08773 (6)	0.0202 (3)	
C8A	0.14215 (7)	0.27880 (19)	-0.00939 (6)	0.0186 (3)	
C9A	0.09650 (12)	0.0421 (3)	-0.20800 (9)	0.0462 (5)	
H9AA	0.1169	0.1608	-0.1906	0.069*	
H9AB	0.0507	0.0472	-0.2159	0.069*	
H9AC	0.1019	0.0222	-0.2438	0.069*	
S1B	0.45007 (2)	0.73146 (5)	-0.00298 (2)	0.02408 (10)	

O1B	0.31413 (5)	0.45230 (16)	-0.16642 (5)	0.0258 (2)
N1B	0.40643 (6)	0.47799 (17)	-0.08568 (5)	0.0187 (2)
N2B	0.33660 (6)	0.71847 (19)	-0.08869 (6)	0.0227 (3)
C1B	0.35431 (7)	0.0654 (2)	-0.17791 (6)	0.0199 (3)
C2B	0.38290 (8)	-0.0911 (2)	-0.19102 (6)	0.0240 (3)
H2BA	0.3574	-0.1983	-0.2076	0.029*
C3B	0.44736 (8)	-0.0943 (2)	-0.18057 (7)	0.0278 (3)
H3BA	0.4653	-0.2025	-0.1903	0.033*
C4B	0.48592 (7)	0.0595 (2)	-0.15600 (7)	0.0276 (3)
H4BA	0.5300	0.0586	-0.1496	0.033*
C5B	0.45933 (7)	0.2151 (2)	-0.14083 (6)	0.0231 (3)
H5BA	0.4856	0.3203	-0.1234	0.028*
C6B	0.39425 (7)	0.2184 (2)	-0.15102 (6)	0.0184 (3)
C7B	0.36692 (7)	0.3907 (2)	-0.13618 (6)	0.0190 (3)
C8B	0.39349 (6)	0.64135 (19)	-0.06277 (6)	0.0177 (3)
C9B	0.28310 (7)	0.0629 (2)	-0.19377 (7)	0.0244 (3)
H9BA	0.2741	0.1143	-0.1622	0.037*
H9BB	0.2674	-0.0667	-0.2014	0.037*
H9BC	0.2615	0.1396	-0.2281	0.037*
H1B	0.4428 (11)	0.433 (3)	-0.0664 (9)	0.038 (6)*
H3A	0.0543 (11)	0.291 (3)	-0.0542 (10)	0.039 (6)*
H1A	0.1904 (10)	0.102 (3)	-0.0300 (8)	0.028 (5)*
H3B	0.3275 (10)	0.827 (3)	-0.0763 (9)	0.037 (6)*
H2B	0.3111 (11)	0.667 (3)	-0.1184 (10)	0.039 (6)*
H2A	0.0765 (10)	0.437 (3)	-0.0096 (9)	0.038 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.02084 (16)	0.02238 (18)	0.01948 (17)	0.00473 (13)	0.00704 (13)	-0.00419 (13)
O1A	0.0193 (5)	0.0211 (5)	0.0368 (6)	0.0039 (4)	0.0025 (4)	-0.0060(5)
N1A	0.0165 (5)	0.0181 (6)	0.0231 (6)	0.0031 (4)	0.0070 (5)	-0.0040 (5)
N2A	0.0192 (6)	0.0210 (6)	0.0374 (8)	0.0021 (5)	0.0098 (6)	-0.0096 (6)
C1A	0.0309 (8)	0.0211 (7)	0.0227 (7)	-0.0002 (6)	0.0089 (6)	0.0015 (6)
C2A	0.0364 (8)	0.0294 (8)	0.0220 (7)	0.0000 (7)	0.0127 (6)	-0.0030 (6)
C3A	0.0257 (7)	0.0225 (7)	0.0313 (8)	-0.0003 (6)	0.0140 (6)	-0.0073 (6)
C4A	0.0245 (7)	0.0184 (7)	0.0281 (8)	0.0049 (5)	0.0100 (6)	0.0013 (6)
C5A	0.0232 (7)	0.0197 (7)	0.0211 (7)	0.0037 (5)	0.0085 (5)	0.0004 (5)
C6A	0.0187 (6)	0.0152 (6)	0.0213 (7)	-0.0007(5)	0.0062 (5)	-0.0021 (5)
C7A	0.0203 (6)	0.0143 (6)	0.0242 (7)	-0.0003 (5)	0.0070 (5)	-0.0004 (5)
C8A	0.0198 (6)	0.0153 (6)	0.0225 (7)	0.0004 (5)	0.0104 (5)	-0.0004 (5)
C9A	0.0681 (14)	0.0369 (10)	0.0309 (9)	0.0167 (10)	0.0169 (9)	0.0128 (8)
S1B	0.01921 (17)	0.02226 (18)	0.02552 (19)	0.00457 (13)	0.00349 (14)	-0.00916 (14)
O1B	0.0238 (5)	0.0242 (5)	0.0222 (5)	0.0056 (4)	0.0017 (4)	-0.0022 (4)
N1B	0.0178 (5)	0.0167 (5)	0.0182 (6)	0.0029 (4)	0.0035 (4)	-0.0036 (4)
N2B	0.0201 (6)	0.0209 (6)	0.0231 (6)	0.0052 (5)	0.0044 (5)	-0.0038 (5)
C1B	0.0230 (6)	0.0196 (7)	0.0142 (6)	-0.0007(5)	0.0045 (5)	-0.0002 (5)
C2B	0.0297 (7)	0.0183 (7)	0.0200 (7)	-0.0002 (6)	0.0059 (6)	-0.0032 (5)

supporting information

C3B	0.0304 (8)	0.0240 (7)	0.0248 (7)	0.0073 (6)	0.0068 (6)	-0.0060 (6)
C4B	0.0220 (7)	0.0303 (8)	0.0277 (8)	0.0038 (6)	0.0069 (6)	-0.0079 (6)
C5B	0.0223 (7)	0.0227 (7)	0.0216 (7)	-0.0004 (5)	0.0059 (5)	-0.0056 (6)
C6B	0.0215 (6)	0.0174 (6)	0.0147 (6)	0.0015 (5)	0.0056 (5)	-0.0012 (5)
C7B	0.0207 (6)	0.0171 (6)	0.0179 (6)	-0.0005 (5)	0.0063 (5)	-0.0020 (5)
C8B	0.0188 (6)	0.0155 (6)	0.0195 (6)	0.0015 (5)	0.0083 (5)	-0.0003 (5)
C9B	0.0227 (7)	0.0265 (8)	0.0216 (7)	-0.0043 (6)	0.0063 (6)	-0.0044 (6)

Geometric parameters (Å, °)

S1A—C8A	1.6858 (15)	S1B—C8B	1.6806 (14)
O1A—C7A	1.2215 (17)	O1B—C7B	1.2207 (17)
N1A—C7A	1.3818 (19)	N1B—C8B	1.3850 (18)
N1A—C8A	1.3845 (18)	N1B—C7B	1.3883 (18)
N1A—H1A	0.80(2)	N1B—H1B	0.84 (2)
N2A—C8A	1.3083 (18)	N2B—C8B	1.3156 (18)
N2A—H3A	0.83 (2)	N2B—H3B	0.89 (2)
N2A—H2A	0.86 (2)	N2B—H2B	0.83 (2)
C1A—C2A	1.388 (2)	C1B—C2B	1.397 (2)
C1A—C6A	1.403 (2)	C1B—C6B	1.408 (2)
C1A—C9A	1.504 (2)	C1B—C9B	1.507 (2)
C2A—C3A	1.385 (2)	C2B—C3B	1.384 (2)
C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.381 (2)	C3B—C4B	1.386 (2)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C5A	1.389 (2)	C4B—C5B	1.390 (2)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.389 (2)	C5B—C6B	1.399 (2)
С5А—Н5АА	0.9500	C5B—H5BA	0.9500
C6A—C7A	1.492 (2)	C6B—C7B	1.4909 (19)
С9А—Н9АА	0.9800	С9В—Н9ВА	0.9800
С9А—Н9АВ	0.9800	C9B—H9BB	0.9800
С9А—Н9АС	0.9800	C9B—H9BC	0.9800
C7A N1A C8A	126.02 (12)	COD NID C7D	126.81 (12)
C7A = N1A = H1A	120.92(12) 115.6(14)	$C_{0}B = N_{1}B = C_{1}B$	120.81(12) 113.6(15)
$C_{A} = N_{A} = H_{A}$	115.0(14) 115.7(14)	C7B—N1B—H1B	119.6 (15)
C8A = N2A = H3A	119.7(14) 119.9(16)	C8B-N2B-H3B	120.3 (14)
C8A = N2A = H2A	119.9(10) 118.2(14)	C8B = N2B = H2B	117.4 (16)
$H_{3A} N_{2A} H_{2A}$	110.2(14) 122(2)	$H_{3B} = N_{2B} = H_{2B}$	122 (2)
$C^2A - C^1A - C^6A$	11774(14)	C2B - C1B - C6B	117 41 (13)
$C_2A - C_1A - C_9A$	119.66 (15)	C2B $C1B$ $C9B$	118 81 (13)
C6A - C1A - C9A	122.58 (15)	C6B— $C1B$ — $C9B$	123 77 (13)
C3A - C2A - C1A	121 71 (15)	C3B - C2B - C1B	121.89(14)
C3A - C2A - H2AA	119.1	C3B - C2B - H2BA	119.1
C1A - C2A - H2AA	119.1	C1B-C2B-H2BA	119.1
C4A—C3A—C2A	120.05 (14)	C2B-C3B-C4B	120.35 (14)
С4А—С3А—НЗАА	120.0	C2B—C3B—H3BA	119.8
-		-	

С2А—С3А—НЗАА	120.0	C4B—C3B—H3BA	119.8
C3A—C4A—C5A	119.48 (14)	C3B—C4B—C5B	119.14 (14)
СЗА—С4А—Н4АА	120.3	C3B—C4B—H4BA	120.4
С5А—С4А—Н4АА	120.3	C5B—C4B—H4BA	120.4
C4A—C5A—C6A	120.29 (14)	C4B—C5B—C6B	120.64 (14)
С4А—С5А—Н5АА	119.9	C4B—C5B—H5BA	119.7
С6А—С5А—Н5АА	119.9	C6B—C5B—H5BA	119.7
C5A—C6A—C1A	120.71 (13)	C5B—C6B—C1B	120.48 (13)
C5A—C6A—C7A	119.33 (13)	C5B—C6B—C7B	119.09 (13)
C1A—C6A—C7A	119.88 (13)	C1B—C6B—C7B	120.34 (13)
O1A—C7A—N1A	122.93 (13)	O1B—C7B—N1B	122.28 (13)
O1A—C7A—C6A	122.40 (13)	O1B—C7B—C6B	122.72 (13)
N1A—C7A—C6A	114.67 (12)	N1B—C7B—C6B	115.00 (12)
N2A—C8A—N1A	117.98 (13)	N2B—C8B—N1B	118.11 (13)
N2A—C8A—S1A	123.67 (12)	N2B—C8B—S1B	122.68 (11)
N1A—C8A—S1A	118.34 (10)	N1B—C8B—S1B	119.21 (10)
С1А—С9А—Н9АА	109.5	C1B—C9B—H9BA	109.5
С1А—С9А—Н9АВ	109.5	C1B—C9B—H9BB	109.5
Н9АА—С9А—Н9АВ	109.5	H9BA—C9B—H9BB	109.5
С1А—С9А—Н9АС	109.5	C1B—C9B—H9BC	109.5
Н9АА—С9А—Н9АС	109.5	H9BA—C9B—H9BC	109.5
Н9АВ—С9А—Н9АС	109.5	H9BB—C9B—H9BC	109.5
C6A—C1A—C2A—C3A	0.1 (2)	C6B—C1B—C2B—C3B	-2.8(2)
C9A—C1A—C2A—C3A	178.34 (18)	C9B—C1B—C2B—C3B	176.38 (14)
C1A—C2A—C3A—C4A	-0.9 (3)	C1B—C2B—C3B—C4B	0.5 (2)
C2A—C3A—C4A—C5A	0.4 (2)	C2B—C3B—C4B—C5B	1.4 (3)
C3A—C4A—C5A—C6A	1.0 (2)	C3B—C4B—C5B—C6B	-1.0(2)
C4A—C5A—C6A—C1A	-1.9(2)	C4B-C5B-C6B-C1B	-1.3(2)
C4A—C5A—C6A—C7A	174.80 (13)	C4B—C5B—C6B—C7B	-177.71 (14)
C2A—C1A—C6A—C5A	1.3 (2)	C2B-C1B-C6B-C5B	3.2 (2)
C9A—C1A—C6A—C5A	-176.90 (17)	C9B—C1B—C6B—C5B	-175.98 (14)
C2A—C1A—C6A—C7A	-175.35 (14)	C2B-C1B-C6B-C7B	179.53 (13)
C9A—C1A—C6A—C7A	6.5 (2)	C9B—C1B—C6B—C7B	0.4 (2)
C8A—N1A—C7A—O1A	-2.2(2)	C8B—N1B—C7B—O1B	-0.6(2)
C8A—N1A—C7A—C6A	178.65 (13)	C8B—N1B—C7B—C6B	178.45 (13)
C5A—C6A—C7A—O1A	-126.72 (16)	C5B—C6B—C7B—O1B	139.95 (15)
C1A—C6A—C7A—O1A	50.0 (2)	C1B—C6B—C7B—O1B	-36.5 (2)
C5A—C6A—C7A—N1A	52.41 (18)	C5B—C6B—C7B—N1B	-39.13 (19)
C1A—C6A—C7A—N1A	-130.91 (15)	C1B—C6B—C7B—N1B	144.47 (13)
C7A—N1A—C8A—N2A	7.1 (2)	C7B—N1B—C8B—N2B	4.7 (2)
C7A—N1A—C8A—S1A	-173.59 (12)	C7B—N1B—C8B—S1B	-176.08 (12)
	× /		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1A—H1A····S1A ⁱ	0.80 (2)	2.60 (2)	3.3227 (16)	151.2 (18)
$N1B$ — $H1B$ ···· $S1B^{ii}$	0.84 (2)	2.65 (2)	3.4780 (14)	172 (2)

supporting information

N2A— $H2A$ ···· $S1B$ ⁱⁱⁱ	0.85 (2)	2.49 (2)	3.2945 (15)	157.8 (19)
N2 <i>B</i> —H2 <i>B</i> ···O1 <i>B</i>	0.83 (2)	1.98 (2)	2.6404 (18)	136 (2)
N2 <i>A</i> —H3 <i>A</i> ···O1 <i>A</i>	0.83 (2)	2.02 (2)	2.6515 (19)	133 (2)
$N2B$ — $H3B$ ···· $S1A^{iii}$	0.89 (2)	2.49 (2)	3.3800 (14)	177 (2)
$C5B$ — $H5BA$ ···O $1A^{iv}$	0.95	2.45	3.3584 (19)	160
$C9B$ — $H9BA$ ···S $1A^{i}$	0.98	2.80	3.6946 (17)	152

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+1/2, -*y*+3/2, -*z*; (iv) *x*+1/2, *y*+1/2, *z*.