data reports

open 👌 access

Crystal structure of 5-(4-methylphenyl)-3-[(*E*)-2-(4-methylphenyl)ethenyl]cyclohex-2-en-1-one

Joel T. Mague,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Antar A. Abdelhamid^e and Mustafa R. Albayati^f*

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 9 April 2015; accepted 28 April 2015

Edited by M. Lopez-Rodriguez, Universidad de La Laguna, Tenerife

In the title compound, $C_{22}H_{22}O$, the dihedral angle between the planes of the benzene rings is 53.55 (7)°. Weak $C-H \cdot \cdot O$ interactions help to direct the packing, forming sheets lying parallel to (020).

Keywords: crystal structure; cyclohexenenones; α , β -unsaturated ketones; C—H···O interactions.

CCDC reference: 1062089

1. Related literature

For the synthesis of cyclohexenones and their use as synthons, see: Mayekar *et al.* (2010); Suwito *et al.* (2014); Tabba *et al.* (1995); Bella *et al.* (2012); Xing *et al.* (2010); Martin & Prasad (2006). For various biological activities of cyclohexenone derivatives, see: Prasad *et al.* (2006); Kumar *et al.* (2003); Tatsuzaki *et al.* (2006); Yun *et al.* (2006); Kim *et al.* (2008); Yoon *et al.* (2007); Tanaka *et al.* (1997); Vyas *et al.* (2009). For the use of cyclohexenones as intermediates in synthesis, see: Mayekar *et al.* (2010); Bella *et al.* (2012); Xing *et al.* (2010); Martin & Prasad (2006). For the bioactivity of dehydrozingerone, chalcone and isoeugenol derivatives, see: Tatsuzaki *et al.* (2006).

2. Experimental

2.1. Crystal data

 $C_{22}H_{22}O$ $M_r = 302.39$ Monoclinic, $P2_1/c$ a = 4.9614 (1) Å b = 30.7302 (6) Å c = 11.0726 (2) Å $\beta = 93.268$ (1)°

2.2. Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{min} = 0.84, T_{max} = 0.96$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.131$ S = 1.053247 reflections T = 150 K $0.31 \times 0.11 \times 0.08 \text{ mm}$

V = 1685.44 (6) Å³

Cu $K\alpha$ radiation

 $\mu = 0.55 \text{ mm}^-$

Z = 4

12558 measured reflections 3247 independent reflections 2529 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$

 $\begin{array}{l} 210 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$C6 - H6A \cdots O1^{i}$ 0.99 $C8 - H8 \cdots O1^{ii}$ 0.95	2.60	3 515 (2)	154
$C14-H14\cdotsO1^n$ 0.95	2.47	3.353 (2)	155
	2.55	3.410 (2)	151

Symmetry codes: (i) x + 1, y, z; (ii) $x + 1, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT*; program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LR2135).

References

- Bella, M., Schultz, M. & Milata, V. (2012). Arkivoc, iv, 242-251.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kim, B.-T. O. K.-J., Chun, J.-C. & Hwang, K.-J. (2008). Bull. Korean Chem. Soc. 29, 1125–1130.
- Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815.
- Martin, A. E. & Prasad, K. J. (2006). Acta Pharm. 56, 79-86.
- Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). *Int. J. Chem. (Can.)*, **2**, 114–123.

- Prasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). *Eur. J. Chem.* **3**, 236–241.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Suwito, H., Mustofa, J., Kristanti, A. N. & Puspaningsih, N. N. T. (2014). J. Chem. Pharm. Res. 6, 1076–1088.
- Tabba, H. D., Yousef, N. M. & Al-Arab, M. M. (1995). Collect. Czech. Chem. Commun. 60, 594–604.
- Tanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871–7872.
- Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449.
- Vyas, D. H., Tala, S. D., Akbari, J. D., Dhaduk, M. F. & Joshi, H. S. (2009). Indian J. Chem. Sect B, 48, 1405–1410.
- Xing, R. G., Li, Y. N., Liu, Q., Meng, Q., Li, J., Shen, X., Liu, Z., Zhou, B., Yao, X. & Liu, Z. (2010). *Eur. J. Org. Chem.* pp. 6627–6632.
- Yoon, G., Kang, B. Y. & Cheon, S. H. (2007). Arch. Pharm. Res. 30, 313–316.
 Yun, J.-M., Kweon, M.-H., Kwon, H., Hwang, J.-K. & Mukhtar, H. (2006). Carcinogenesis, 27, 1454–1464.

supporting information

Acta Cryst. (2015). E71, o436-o437 [doi:10.1107/S2056989015008324]

Crystal structure of 5-(4-methylphenyl)-3-[(*E*)-2-(4-methylphenyl)ethenyl]cyclohex-2-en-1-one

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Antar A. Abdelhamid and Mustafa R. Albayati

S1. Structural commentary

From a chemical point of view, the most commonly used method for preparation of polyfunctionalized cyclohexenones is the Michael addition of carbanions to α,β -unsaturated ketones in presence of basic catalysts (Mayekar *et al.*, 2010; Suwito *et al.*, 2014; Tabba *et al.*, 1995). Cyclohexenones have been considered as efficient synthons in building spiranic compounds (Mayekar *et al.*, 2010) or intermediates in the synthesis of fused heterocycles such as benzoselenadiazoles and benzothiazoles (Bella *et al.*, 2012), benzopyrazoles (Xing *et al.*, 2010) or carbazole derivatives (Martin & Prasad, 2006). The existence of the α,β -unsaturated ketone moiety is a common feature of a large number of biologically active compounds which exhibit diverse pharmacological effects such as anti-microbial (Prasad *et al.*, 2006), anti-tumor (Kumar *et al.*, 2003), anti-cancer (Tatsuzaki *et al.*, 2006; Yun *et al.*, 2006) and radical scavenger activities (Kim *et al.*, 2008) as well as being inhibitors of topoisomerase I (Yoon *et al.*, 2007). Cyclohexenone derivatives, in particular, are well known lead molecules for the treatment of inflammation and autoimmune diseases (Tanaka *et al.*, 1997). Several reports have pointed out the importance of cyclohexenones for anti-microbial and anti-tubercular activity (Vyas *et al.*, 2009).

In the title compound (Fig. 1), the dihedral angle between the phenyl rings is 53.55 (7)°. Weak C6—H6A···O1ⁱ (i: x + 1, y, z) interactions help to direct the packing (Fig. 2 and Table 1).

S2. Synthesis and crystallization

In 30 ml of methanol, a mixture of 1 mmol (262 mg) of (1*Z*,4E)-1,5-bis(4-methylphenyl)penta-1,4-dien-3-one and 1 mmol (100 mg) of acetylacetone was refluxed for 5 h in the presence of 10 mg of sodium methoxide. The resulting solid product was collected, filtered under vacuum, washed with cold ethanol and recrystallized from ethanol to afford colourless columns which were suitable for X-ray diffraction. Mp. 371 K.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The 020 reflection was omitted from the final refinement as it was partially obscured by the beamstop.

Figure 1

The title molecule with labeling scheme and 50% probability ellipsoids.

Figure 2

Packing viewed towards the $(10\overline{2})$ plane. Weak C—H···O interactions are shown as dotted lines.

5-(4-Methylphenyl)-3-[(*E*)-2-(4-methylphenyl)ethenyl]cyclohex-2-en-1-one

Crystal data	
$C_{22}H_{22}O$	F(000) = 648
$M_r = 302.39$	$D_{\rm x} = 1.192 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
a = 4.9614(1) Å	Cell parameters from 7504 reflections
b = 30.7302 (6) Å	$\theta = 2.9 - 72.6^{\circ}$
c = 11.0726 (2) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\beta = 93.268 (1)^{\circ}$	T = 150 K
V = 1685.44 (6) Å ³	Column, colourless
Z = 4	$0.31 \times 0.11 \times 0.08 \text{ mm}$

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer	$T_{\min} = 0.84, T_{\max} = 0.96$ 12558 measured reflections
Radiation source: INCOATEC IµS micro-focus	3247 independent reflections
source	2529 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.042$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\rm max} = 72.4^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$
ω scans	$h = -5 \rightarrow 6$
Absorption correction: multi-scan	$k = -38 \rightarrow 36$
(SADABS; Bruker, 2014)	$l = -11 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
3247 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0579P)^2 + 0.6292P]$
210 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

Primary atom site location: structure-invariant

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.2370 (3)	0.78680 (4)	0.50574 (12)	0.0422 (3)
C1	-0.0733 (4)	0.77848 (6)	0.42988 (16)	0.0324 (4)
C2	-0.0376 (4)	0.73445 (6)	0.38590 (16)	0.0320 (4)
H2	-0.1435	0.7119	0.4177	0.038*
C3	0.1391 (3)	0.72401 (5)	0.30189 (15)	0.0280 (4)
C4	0.2939 (4)	0.75888 (5)	0.23953 (15)	0.0298 (4)
H4A	0.2923	0.7521	0.1521	0.036*
H4B	0.4841	0.7583	0.2718	0.036*
C5	0.1810 (4)	0.80493 (6)	0.25518 (16)	0.0331 (4)
Н5	0.0083	0.8068	0.2043	0.040*
C6	0.1127 (4)	0.81281 (6)	0.38459 (17)	0.0369 (4)
H6A	0.2814	0.8132	0.4368	0.044*

H6B	0.0257	0.8417	0.3905	0.044*
C7	0.1933 (4)	0.67865 (6)	0.27681 (16)	0.0313 (4)
H7	0.0800	0.6575	0.3107	0.038*
C8	0.3907 (4)	0.66425 (5)	0.20954 (15)	0.0295 (4)
H8	0.4884	0.6858	0.1686	0.035*
С9	0.4725 (3)	0.61914 (6)	0.19209 (15)	0.0296 (4)
C10	0.3664 (4)	0.58378 (6)	0.25307 (18)	0.0389 (4)
H10	0.2265	0.5885	0.3067	0.047*
C11	0.4619 (4)	0.54214 (6)	0.23644 (18)	0.0392 (4)
H11	0.3877	0.5188	0.2800	0.047*
C12	0.6632 (4)	0.53343 (6)	0.15784 (17)	0.0355 (4)
C13	0.7678 (4)	0.56848 (6)	0.09696 (17)	0.0394 (5)
H13	0.9057	0.5635	0.0424	0.047*
C14	0.6762 (4)	0.61052 (6)	0.11375 (16)	0.0341 (4)
H14	0.7534	0.6338	0.0712	0.041*
C15	0.7656 (5)	0.48793 (6)	0.1393 (2)	0.0466 (5)
H15A	0.7277	0.4700	0.2095	0.070*
H15B	0.9608	0.4888	0.1300	0.070*
H15C	0.6750	0.4754	0.0664	0.070*
C16	0.3727 (4)	0.83857 (5)	0.20647 (15)	0.0310 (4)
C17	0.4337 (4)	0.83682 (6)	0.08492 (16)	0.0348 (4)
H17	0.3555	0.8146	0.0345	0.042*
C18	0.6061 (4)	0.86683 (6)	0.03656 (16)	0.0357 (4)
H18	0.6431	0.8648	-0.0465	0.043*
C19	0.7260 (4)	0.89973 (6)	0.10667 (17)	0.0339 (4)
C20	0.6674 (4)	0.90135 (6)	0.22736 (18)	0.0394 (4)
H20	0.7471	0.9234	0.2777	0.047*
C21	0.4943 (4)	0.87140 (6)	0.27656 (17)	0.0378 (4)
H21	0.4585	0.8734	0.3597	0.045*
C22	0.9152 (4)	0.93214 (7)	0.0529 (2)	0.0450 (5)
H22A	1.1003	0.9209	0.0606	0.068*
H22B	0.9060	0.9599	0.0960	0.068*
H22C	0.8619	0.9366	-0.0328	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0419 (8)	0.0429 (7)	0.0440 (8)	0.0040 (6)	0.0210 (6)	-0.0051 (6)
C1	0.0284 (9)	0.0378 (10)	0.0315 (9)	0.0061 (7)	0.0061 (7)	0.0004 (7)
C2	0.0292 (9)	0.0332 (9)	0.0344 (9)	0.0010 (7)	0.0078 (7)	0.0028 (7)
C3	0.0261 (8)	0.0302 (9)	0.0277 (9)	0.0019 (7)	0.0017 (6)	0.0011 (6)
C4	0.0315 (9)	0.0296 (9)	0.0287 (9)	0.0011 (7)	0.0067 (7)	-0.0015 (6)
C5	0.0362 (9)	0.0314 (9)	0.0323 (9)	0.0015 (7)	0.0074 (7)	-0.0021 (7)
C6	0.0390 (10)	0.0312 (9)	0.0417 (10)	0.0040 (8)	0.0116 (8)	-0.0033 (7)
C7	0.0325 (9)	0.0292 (9)	0.0329 (9)	-0.0021 (7)	0.0076 (7)	0.0017 (7)
C8	0.0340 (9)	0.0285 (8)	0.0263 (8)	-0.0009 (7)	0.0051 (7)	0.0002 (6)
C9	0.0326 (9)	0.0289 (9)	0.0276 (9)	-0.0004 (7)	0.0038 (7)	-0.0006 (6)
C10	0.0439 (11)	0.0328 (9)	0.0417 (10)	-0.0010 (8)	0.0176 (8)	-0.0004 (8)

C11	0.0471 (11)	0.0299 (9)	0.0415 (11)	-0.0027 (8)	0.0109 (8)	0.0032 (7)	
C12	0.0420 (10)	0.0287 (9)	0.0354 (10)	0.0038 (8)	-0.0006 (8)	-0.0027 (7)	
C13	0.0438 (11)	0.0358 (10)	0.0401 (10)	0.0053 (8)	0.0150 (8)	-0.0029 (8)	
C14	0.0402 (10)	0.0306 (9)	0.0326 (9)	-0.0001 (7)	0.0115 (8)	0.0010 (7)	
C15	0.0545 (13)	0.0334 (10)	0.0522 (13)	0.0081 (9)	0.0064 (10)	-0.0006 (9)	
C16	0.0358 (9)	0.0267 (8)	0.0309 (9)	0.0027 (7)	0.0069 (7)	-0.0011 (7)	
C17	0.0418 (10)	0.0309 (9)	0.0321 (9)	-0.0019 (8)	0.0058 (7)	-0.0044 (7)	
C18	0.0418 (10)	0.0350 (10)	0.0312 (9)	0.0033 (8)	0.0102 (8)	0.0012 (7)	
C19	0.0322 (9)	0.0305 (9)	0.0396 (10)	0.0032 (7)	0.0077 (7)	0.0023 (7)	
C20	0.0435 (11)	0.0352 (10)	0.0399 (11)	-0.0067 (8)	0.0064 (8)	-0.0068 (8)	
C21	0.0468 (11)	0.0361 (10)	0.0315 (10)	-0.0041 (8)	0.0099 (8)	-0.0056 (7)	
C22	0.0444 (12)	0.0414 (11)	0.0506 (12)	-0.0057 (9)	0.0143 (9)	0.0013 (9)	

Geometric parameters (Å, °)

01—C1	1.228 (2)	C11—H11	0.9500	
C1—C2	1.452 (2)	C12—C13	1.387 (3)	
C1—C6	1.506 (3)	C12—C15	1.506 (2)	
С2—С3	1.352 (2)	C13—C14	1.386 (2)	
С2—Н2	0.9500	C13—H13	0.9500	
С3—С7	1.450 (2)	C14—H14	0.9500	
C3—C4	1.508 (2)	C15—H15A	0.9800	
C4—C5	1.535 (2)	C15—H15B	0.9800	
C4—H4A	0.9900	C15—H15C	0.9800	
C4—H4B	0.9900	C16—C21	1.390 (3)	
C5—C6	1.511 (2)	C16—C17	1.397 (2)	
C5—C16	1.524 (2)	C17—C18	1.386 (3)	
С5—Н5	1.0000	C17—H17	0.9500	
С6—Н6А	0.9900	C18—C19	1.388 (3)	
C6—H6B	0.9900	C18—H18	0.9500	
С7—С8	1.339 (2)	C19—C20	1.385 (3)	
С7—Н7	0.9500	C19—C22	1.514 (3)	
С8—С9	1.460 (2)	C20—C21	1.391 (3)	
С8—Н8	0.9500	C20—H20	0.9500	
C9—C14	1.394 (2)	C21—H21	0.9500	
C9—C10	1.398 (2)	C22—H22A	0.9800	
C10—C11	1.381 (3)	C22—H22B	0.9800	
C10—H10	0.9500	C22—H22C	0.9800	
C11—C12	1.388 (3)			
01—C1—C2	121.44 (16)	C12—C11—H11	119.1	
01—C1—C6	121.55 (16)	C13—C12—C11	117.25 (16)	
C2-C1-C6	116.89 (15)	C13—C12—C15	121.09 (17)	
C3—C2—C1	123.22 (16)	C11—C12—C15	121.66 (17)	
С3—С2—Н2	118.4	C14—C13—C12	121.60 (17)	
C1—C2—H2	118.4	C14—C13—H13	119.2	
C2—C3—C7	119.64 (15)	C12—C13—H13	119.2	
C2—C3—C4	120.88 (15)	C13—C14—C9	121.04 (16)	

C7—C3—C4	119.37 (14)	C13—C14—H14	119.5
C3—C4—C5	113.86 (14)	C9—C14—H14	119.5
C3—C4—H4A	108.8	C12—C15—H15A	109.5
C5—C4—H4A	108.8	C12—C15—H15B	109.5
C3—C4—H4B	108.8	H15A—C15—H15B	109.5
C5—C4—H4B	108.8	C12—C15—H15C	109.5
H4A—C4—H4B	107.7	H15A—C15—H15C	109.5
C6-C5-C16	113.91 (15)	H15B-C15-H15C	109.5
C6-C5-C4	110.97 (14)	C_{21} C_{16} C_{17}	117 07 (16)
$C_{16} - C_{5} - C_{4}$	110.25 (14)	$C_{21} - C_{16} - C_{5}$	123 69 (16)
C6-C5-H5	107.1	C_{17} C_{16} C_{5}	119 24 (16)
C_{16} C_{5} H_{5}	107.1	C18 - C17 - C16	117.24(10) 121.24(17)
$C_{10} = C_{5} = H_{5}$	107.1	$C_{18} = C_{17} = C_{10}$	121.24(17)
$C_4 = C_5 = C_5$	107.1	$C_{16} - C_{17} - H_{17}$	119.4
C1 = C0 = C3	112.25 (15)	C10 - C17 - H17	119.4
	109.2	C17 - C18 - C19	121.53 (17)
С5—С6—Н6А	109.2	С17—С18—Н18	119.2
C1—C6—H6B	109.2	C19—C18—H18	119.2
С5—С6—Н6В	109.2	C20—C19—C18	117.33 (17)
H6A—C6—H6B	107.9	C20—C19—C22	121.69 (17)
C8—C7—C3	125.02 (16)	C18—C19—C22	120.98 (17)
С8—С7—Н7	117.5	C19—C20—C21	121.51 (17)
С3—С7—Н7	117.5	С19—С20—Н20	119.2
С7—С8—С9	127.22 (16)	C21—C20—H20	119.2
С7—С8—Н8	116.4	C16—C21—C20	121.32 (17)
С9—С8—Н8	116.4	C16—C21—H21	119.3
C14—C9—C10	117.34 (16)	C20—C21—H21	119.3
C14—C9—C8	118.65 (15)	С19—С22—Н22А	109.5
C10—C9—C8	123.97 (16)	C19—C22—H22B	109.5
C11—C10—C9	120.96 (17)	H22A—C22—H22B	109.5
C11—C10—H10	119.5	C19—C22—H22C	109.5
C9-C10-H10	119.5	$H_{22}^{2} = H_{22}^{2} = H_{22}^{2}$	109.5
C_{10} C_{11} C_{12}	121.80 (17)	H22R C22 H22C	109.5
$C_{10} = C_{11} = C_{12}$	121.00 (17)	1122 D —C22—1122C	109.5
	117.1		
$O_1 C_1 C_2 C_3$	170.54(19)	C10 C11 C12 C15	170.6(2)
01 - 01 - 02 - 03	1/9.34 (18)	C10-C12-C13	-1/9.0(2)
$C_{0} - C_{1} - C_{2} - C_{3}$	-4.5(5)	C11 - C12 - C13 - C14	0.1(3)
C1 = C2 = C3 = C7	1/0.34 (16)	C15 - C12 - C13 - C14	-1/9.66 (19)
C1—C2—C3—C4	-5.8 (3)	C12—C13—C14—C9	-0.6 (3)
$C_2 - C_3 - C_4 - C_5$	-14.9 (2)	C10—C9—C14—C13	0.3 (3)
C7—C3—C4—C5	169.05 (15)	C8—C9—C14—C13	177.83 (17)
C3—C4—C5—C6	44.1 (2)	C6—C5—C16—C21	5.5 (3)
C3—C4—C5—C16	171.31 (15)	C4—C5—C16—C21	-120.04 (19)
O1—C1—C6—C5	-149.12 (18)	C6-C5-C16-C17	-174.85 (17)
C2-C1-C6-C5	34.9 (2)	C4—C5—C16—C17	59.6 (2)
C16—C5—C6—C1	-179.03 (15)	C21—C16—C17—C18	-0.6 (3)
C4—C5—C6—C1	-53.9 (2)	C5-C16-C17-C18	179.74 (17)
C2—C3—C7—C8	-169.72 (18)	C16—C17—C18—C19	0.2 (3)
C4—C3—C7—C8	6.4 (3)	C17—C18—C19—C20	0.2 (3)

supporting information

C3—C7—C8—C9	172.86 (17)	C17—C18—C19—C22	179.64 (18)
C7—C8—C9—C14	177.15 (18)	C18—C19—C20—C21	-0.3 (3)
C7—C8—C9—C10	-5.5 (3)	C22-C19-C20-C21	-179.72 (19)
C14—C9—C10—C11	0.4 (3)	C17—C16—C21—C20	0.5 (3)
C8—C9—C10—C11	-176.95 (18)	C5-C16-C21-C20	-179.83 (18)
C9—C10—C11—C12	-0.9 (3)	C19—C20—C21—C16	0.0 (3)
C10-C11-C12-C13	0.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D··· A	D—H···A
C6—H6A···O1 ⁱ	0.99	2.60	3.515 (2)	154
C8—H8…O1 ⁱⁱ	0.95	2.47	3.353 (2)	155
C14—H14…O1 ⁱⁱ	0.95	2.55	3.410 (2)	151

Symmetry codes: (i) x+1, y, z; (ii) x+1, -y+3/2, z-1/2.