CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 6 May 2015
Accepted 14 May 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; synchrotron radiation; ethane-1,2-diamine; thiocyanate; transgeometry; chromium(III) complex; hydrogen bonds

CCDC reference: 1400767
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of trans-bis(ethane-1,2-diamine$\kappa^{2} N, N^{\prime}$)bis(thiocyanato- κN)chromium (III) perchlorate from synchrotron data

Dohyun Moon ${ }^{\text {a }}$ and Jong-Ha Choi ${ }^{\text {b* }}$

${ }^{\text {a }}$ Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The structure of the title compound, $\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric $\mathrm{Cr}^{\text {III }}$ complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The $\mathrm{Cr}^{\mathrm{III}}$ ion is coordinated by the four N atoms of two ethane-1,2-diamine (en) ligands in the equatorial plane and two N -bound thiocyanate (NCS^{-}) anions in a trans-axial arrangement, displaying a slightly distorted octahedral geometry with crystallographic inversion symmetry. The $\mathrm{Cr}-\mathrm{N}(\mathrm{en})$ bond lengths are in the range 2.053 (16)-2.09 (2) \AA, while the $\mathrm{Cr}-$ N (thiocyanate) bond length is 1.983 (2) \AA. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each $\mathrm{ClO}_{4}{ }^{-}$anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by intermolecular hydrogen bonds involving the en NH_{2} groups as donors and perchlorate O and thiocyanate S atoms as acceptors.

1. Chemical context

Considerable attention has been focussed for some time on metal complexes containing thiocyanate ligands because of their ability to coordinate through either the N or S atoms. Ethane-1,2-diamine (en) can coordinate to a central metal ion as a bidentate ligand via the two N atoms, forming a fivemembered chelate ring. The $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]^{+}$cation can form either trans or cis geometric isomers. Trans and cis isomers of the complex cation with SCN^{-}or ClO_{4}^{-}counter-anions have been prepared and their IR spectral properties reported (House, 1973; Sandrini et al., 1978; De et al., 1987). IR and electronic spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000; Choi et al., 2004; Choi \& Moon, 2014). However, it should be noted that the geometric assignments based on spectroscopic studies are not always definitive.

In a recent publication, we described the synthesis and crystal structure of trans- $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$ (Moon \&

Figure 1
The molecular structure of (I), drawn with 20% probability displacement ellipsoids. Atoms of the minor disorder components have been omitted for clarity.

Choi, 2015). The asymmetric unit of this complex contained four halves of centrosymmetric $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]^{+}$complex cations and one $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion. To compare and contrast this structure with a complex of this cation with a different counter-anion we report here the structure of trans-[Cr$\left.(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]_{\mathrm{ClO}}^{4} 4$, (I).

2. Structural commentary

Fig. 1 shows an ellipsoid plot of trans $-\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right] \mathrm{ClO}_{4}$, (I), with the atom-numbering scheme. In the structure of (I), there is a centrosymmetric $\mathrm{Cr}^{\text {III }}$ complex cation with two en ligands bound through their N atoms in equatorial sites and the two axial N -bound thiocyanate anions in a trans configuration. The asymmetric unit is composed of half of one complex cation and half a ClO_{4}^{-}anion. The $\mathrm{Cr}^{\mathrm{III}}$ atom is located on a crystallographic centre of symmetry, so this complex cation has molecular C_{i} symmetry, while the the Cl atom of the perchlorate anion lies on a twofold rotation axis. The bidentate en ligand adopts a stable gauche conformation similar to that observed in related compounds (Brenčič \& Leban, 1981; Choi et al., 2010). The $\mathrm{Cr}-\mathrm{N}$ bond lengths for the en ligand range from 2.053 (16) to 2.09 (2) \AA, and these bond lengths are in good agreement with those observed in trans- $\left[\mathrm{CrF}_{2}(\mathrm{en})_{2}\right] \mathrm{ClO}_{4}$ (Brenčič \& Leban, 1981), trans$\left[\mathrm{CrBr}_{2}(\mathrm{en})_{2}\right] \mathrm{ClO}_{4}$ (Choi et al., 2010), trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right]_{2}-$ $\mathrm{ZnCl}_{4}\left(\mathrm{Me}_{2} \mathrm{tn}=2,2\right.$-dimethylpropane-1,3-diamine; Choi et al., 2011) and trans-[$\mathrm{CrF}_{2}(2,2,3-$ tet $\left.)\right] \mathrm{ClO}_{4}$ (2,2,3-tet $=1,4,7,11-$ tetraazaundecane; Choi \& Moon, 2014). The $\mathrm{Cr}-\mathrm{N}$ (thiocyanate) bond length is 1.983 (2) \AA and is similar to the average values of $1.985(2), \quad 1.995(6), 1.983$ (2) and 1.996 (15) \AA found in trans- $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]_{2} \mathrm{ZnCl}_{4}$ (Moon \&

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 A-\mathrm{H} 2 A 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.89	2.45	$3.324(17)$	167
$\mathrm{~N} 2 A-\mathrm{H} 2 A 2 \cdots \mathrm{O} 2 B^{\mathrm{ii}}$	0.89	2.41	$3.187(19)$	146
$\mathrm{~N} 3 A-\mathrm{H} 3 A 1 \cdots \mathrm{O} 1 B^{\mathrm{iii}}$	0.89	2.58	$3.282(16)$	136
$\mathrm{~N} 2 B-\mathrm{H} 2 B 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.89	2.77	$3.459(17)$	135
$\mathrm{~N} 3 B-\mathrm{H} 3 B 1 \cdots \mathrm{O} 2 C^{\mathrm{iii}}$	0.89	2.45	$3.22(2)$	145
$\mathrm{~N} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{~S} 1^{\text {iv }}$	0.89	2.38	$3.255(18)$	166

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y-1, z$; (iii) $x,-y+1, z-\frac{1}{2}$; (iv)
$-x+\frac{1}{2},-y+\frac{3}{2},-z+1$.

Choi, 2015), trans $-\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\text { cyclam })\right]_{2} \mathrm{ZnCl}_{4} \quad$ (cyclam $=$ 1,4,8,11-tetraazacyclotetradecane (Moon et al., 2015), trans$\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right] \mathrm{NCS}$ (Choi \& Lee, 2009) and cis$\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\right.$ cyclam $\left.)\right] \mathrm{NCS}$ (Moon et al., 2013), respectively. The N -coordinated isothiocyanate group is almost linear, with an $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angle of $179.3(3)^{\circ}$. The $\mathrm{ClO}_{4}{ }^{-}$counter-anion lies well outside the coordination sphere of the complex and, because of significant disorder, the tetrahedral geometry of this anion is severely distorted.

3. Supramolecular features

In the crystal, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond links neighbouring cations, while a series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts link the cations to neighbouring anions (Table 1). An extensive array of these contacts generate a three-dimensional network of molecules stacked along the b-axis direction (Fig. 2). These hydrogenbonded networks help to stabilize the crystal structure.

Figure 2
The crystal packing of (I), viewed perpendicular to the $a c$ plane. Dashed lines represent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (red) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ (blue) hydrogen-bonding interactions, respectively. The minor disorder components and C-bound H atoms have been omitted for clarity.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$
$M_{\text {r }}$	387.82
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	260
$a, b, c(\mathrm{~A})$	15.599 (3), 7.4440 (15), 13.792 (3)
β (${ }^{\circ}$)	105.83 (3)
$V\left(\mathrm{~A}^{3}\right)$	1540.8 (6)
Z	4
Radiation type	Synchrotron, $\lambda=0.630 \AA$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.86
Crystal size (mm)	$0.14 \times 0.13 \times 0.13$
Data collection	
Diffractometer	ADSC Q210 CCD area detector
Absorption correction	Empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski \& Minor, 1997)
$T_{\text {min }}, T_{\text {max }}$	0.893, 0.897
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8172, 2121, 2019
$R_{\text {int }}$	0.015
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.696
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.060, 0.178, 1.09
No. of reflections	2121
No. of parameters	140
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.74, -1.12

Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai \& Nielsen, 1983), HKL3000sm (Otwinowski \& Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), DIAMOND (Putz \& Brandenburg, 2014) and publCIF (Westrip, 2010).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom \& Allen, 2014) indicates a total of 13 hits for $\mathrm{Cr}^{\mathrm{III}}$ complexes with a $\left[\mathrm{Cr} L_{2}(\mathrm{en})_{2}\right]^{+}$unit. The crystal structures of trans- $\left[\mathrm{CrCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl} \cdot \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{Ooi}$ et al., 1960), trans-[CrF $\left.\mathrm{Cr}_{2}(\mathrm{en})_{2}\right] X\left(X=\mathrm{ClO}_{4}, \mathrm{Cl}, \mathrm{Br}\right)($ Brenčič \& Leban, 1981), cis-[$\left.\mathrm{CrF}_{2}(\mathrm{en})_{2}\right] \mathrm{ClO}_{4}$ (Brenčič et al., 1987), trans$\left[\mathrm{CrBr}_{2}(\mathrm{en})_{2}\right] \mathrm{ClO}_{4}$ (Choi et al., 2010) have been reported previously. Recently, we have also reported the closely related crystal structure of $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$, in which there are four crystallographically independent $\mathrm{Cr}^{\mathrm{III}}$ complex cations that also adopt a trans configuration. However, a crystal structure of $\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]^{+}$with a ClO_{4} anion has not been reported previously.

5. Synthesis and crystallization

All chemicals were reagent grade materials and were used without further purification. The title compound, trans$\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right] \mathrm{ClO}_{4}$ was prepared according to the literature method (Sandrini et al., 1978). The crude perchlorate salt $(0.33 \mathrm{~g})$ was dissolved in 20 mL of 0.1 M HCl at 333 K . The filtrate was added to 6 mL of $60 \% \mathrm{HClO}_{4}$. The resulting solution was allowed to stand at room temperature for 2 d to
give orange block-like crystals suitable for X-ray structural analysis. IR spectrum ($\mathrm{KBr}, \mathrm{cm}^{-1}$) : 3247 ($v s$), 3208 ($v s$), 3131 $(v s)$ and $3097(v s)(v \mathrm{NH}), 2966(s), 2955(s)$ and $2893(s)(v$ CH), 2077 (vs) ($v_{a} \mathrm{CN}$), 1586 (vs) ($\delta \mathrm{NH}_{2}$), $1459(s)\left(\delta \mathrm{CH}_{2}\right)$, 1365 (m) ($v \mathrm{CN}$), $1326(s)\left(\omega \mathrm{NH}_{2}\right), 1290(v s)\left(\omega \mathrm{CH}_{2}\right), 1146$ (vs) $\left(\gamma \mathrm{NH}_{2}\right), 1117(v s)(v \mathrm{CN}), 1088(v s)\left(v_{a} \mathrm{Cl}-\mathrm{O}\right), 1047(v s)$ $\left(\gamma \mathrm{CH}_{2}\right), 1007(s), 983(s), 873(m)\left(\rho \mathrm{CH}_{2}\right), 849(w)\left(\rho \mathrm{NH}_{2}\right)$, $729(v s), 636(s)$ and $626(v s)(\delta \mathrm{OClO}), 558(v s), 559(s)$ ($\delta \mathrm{CCC}), 501(v s), 478(\mathrm{~s})(\delta \mathrm{NCS}), 444(m)$ and $419(m)(v$ $\mathrm{Cr}-\mathrm{N})$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. In the title compound, the ethane1,2 -diamine group is disordered with atoms $\mathrm{N} 2 A / \mathrm{N} 2 B, \mathrm{C} 2 A /$ $\mathrm{C} 2 B, \mathrm{C} 3 A / \mathrm{C} 3 B$ and $\mathrm{N} 3 A / \mathrm{N} 3 B$ positionally disordered over two sets of sites with a refined occupancy ratio of 0.522 (16):0.478 (16). The half molecules of each distorted perchlorate anion are disordered over two sites of equal occupancy, with atoms $\mathrm{Cl} 1 B / \mathrm{Cl} 1 C$ and $\mathrm{O} 2 B / \mathrm{O} 1 C$ refined using EXYZ/EADP constraints. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 of the parent atoms.

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2DSMC beamline was supported in part by MISP and POSTECH.

References

Arvai, A. J. \& Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
Brenčič, J. V. \& Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.
Brenčič, J. V., Leban, I. \& Polanc, I. (1987). Acta Cryst. C43, 885-887.
Choi, J.-H. (2000). Chem. Phys. 256, 29-35.
Choi, J.-H., Clegg, W., Harrington, R. W. \& Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.
Choi, J.-H., Joshi, T. \& Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.
Choi, J.-H. \& Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.
Choi, J.-H. \& Moon, D. (2014). J. Mol. Struct. 1059, 325-331.
Choi, J.-H., Oh, I. G., Suzuki, T. \& Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.
De, G., Szuki, M. \& Uehara, A. (1987). Bull. Chem. Soc. Jpn, 60, 28712874.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 35, 31033111.

House, D. A. (1973). J. Inorg. Nucl. Chem. 53, 662-671.
Moon, D. \& Choi, J.-H. (2015). Acta Cryst. E71, 100-103.
Moon, D., Choi, J.-H., Ryoo, K. S. \& Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.
Moon, D., Ryoo, K. S. \& Choi, J.-H. (2015). Acta Cryst. E71, 540-543.
Ooi, S., Komiyama, Y. \& Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354-357.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

research communications

Putz, H. \& Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Sandrini, D., Gandolfi, M. T., Moggi, L. \& Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463-1468.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of trans-bis(ethane-1,2-diamine- $\kappa^{2} N, N^{\prime}$)bis(thiocyanatoκN)chromium(III) perchlorate from synchrotron data

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai \& Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski \& Minor, 1997); data reduction: HKL3000sm (Otwinowski \& Minor,1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz \& Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Bis(ethane-1,2-diamine- $\kappa^{2} N, N^{\prime}$)bis(thiocyanato- κN)chromium(III) perchlorate

Crystal data

$\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$ $M_{r}=387.82$
Monoclinic, $C 2 / c$
$a=15.599$ (3) \AA
$b=7.4440$ (15) \AA
$c=13.792$ (3) \AA
$\beta=105.83$ (3) ${ }^{\circ}$
$V=1540.8(6) \AA^{3}$
$Z=4$

Data collection

ADSC Q210 CCD area-detector diffractometer
Radiation source: PLSII 2D bending magnet ω scan
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEAPCK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.893, T_{\text {max }}=0.897$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.178$
$S=1.09$
2121 reflections
140 parameters
0 restraints

$$
\begin{aligned}
& F(000)=796 \\
& D_{\mathrm{x}}=1.672 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Synchrotron radiation, } \lambda=0.630 \AA \\
& \text { Cell parameters from } 46962 \text { reflections } \\
& \theta=0.4-33.6^{\circ} \\
& \mu=0.86 \mathrm{~mm}^{-1} \\
& T=260 \mathrm{~K} \\
& \text { Block, orange } \\
& 0.14 \times 0.13 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

8172 measured reflections
2121 independent reflections
2019 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-21 \rightarrow 21$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1146 P)^{2}+2.4721 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.12 \mathrm{e} \AA^{-3}$

Extinction correction: SHELXL2014/7
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.045 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cr1	0.2500	0.2500	0.5000	0.0273 (3)	
S1	0.21080 (8)	0.77661 (11)	0.67477 (8)	0.0586 (3)	
N1	0.24831 (15)	0.4775 (3)	0.57426 (17)	0.0433 (5)	
C1	0.23290 (16)	0.6026 (3)	0.61573 (17)	0.0363 (5)	
N2A	0.3423 (12)	0.1308 (19)	0.6213 (13)	0.036 (2)	0.522 (16)
H2A1	0.3272	0.1503	0.6781	0.043*	0.522 (16)
H2A2	0.3442	0.0127	0.6118	0.043*	0.522 (16)
N3A	0.3624 (11)	0.337 (2)	0.4641 (10)	0.043 (3)	0.522 (16)
H3A1	0.3553	0.3266	0.3981	0.052*	0.522 (16)
H3A2	0.3722	0.4525	0.4807	0.052*	0.522 (16)
C2A	0.4311 (5)	0.2126 (10)	0.6277 (8)	0.057 (2)	0.522 (16)
H2A3	0.4784	0.1375	0.6678	0.068*	0.522 (16)
H2A4	0.4355	0.3305	0.6587	0.068*	0.522 (16)
C3A	0.4385 (5)	0.2274 (14)	0.5199 (10)	0.066 (3)	0.522 (16)
H3A3	0.4943	0.2842	0.5191	0.079*	0.522 (16)
H3A4	0.4362	0.1092	0.4897	0.079*	0.522 (16)
N2B	0.3570 (13)	0.164 (2)	0.6143 (14)	0.041 (3)	0.478 (16)
H2B1	0.3654	0.2382	0.6667	0.049*	0.478 (16)
H2B2	0.3464	0.0548	0.6342	0.049*	0.478 (16)
N3B	0.3502 (13)	0.341 (3)	0.4378 (9)	0.040 (2)	0.478 (16)
H3B1	0.3527	0.2732	0.3856	0.048*	0.478 (16)
H3B2	0.3396	0.4543	0.4167	0.048*	0.478 (16)
C2B	0.4369 (4)	0.1614 (15)	0.5773 (8)	0.056 (2)	0.478 (16)
H2B3	0.4355	0.0582	0.5339	0.067*	0.478 (16)
H2B4	0.4902	0.1541	0.6334	0.067*	0.478 (16)
C3B	0.4370 (5)	0.3297 (19)	0.5203 (7)	0.060 (3)	0.478 (16)
H3B3	0.4869	0.3303	0.4911	0.072*	0.478 (16)
H3B4	0.4427	0.4322	0.5651	0.072*	0.478 (16)
Cl1B	0.5000	0.7072 (3)	0.7500	0.0989 (7)	0.5
O1B	0.4393 (4)	0.5672 (9)	0.7711 (5)	0.0762 (16)	0.5
O2B	0.4350 (6)	0.7462 (8)	0.6376 (6)	0.159 (3)	0.5
Cl1C	0.5000	0.7072 (3)	0.7500	0.0989 (7)	0.5
O1C	0.4350 (6)	0.7462 (8)	0.6376 (6)	0.159 (3)	0.5
O2C	0.4488 (11)	0.8416 (15)	0.7860 (8)	0.152 (5)	0.5

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	$0.0366(4)$	$0.0229(3)$	$0.0251(3)$	$0.00353(14)$	$0.0128(2)$	$-0.00135(14)$
S1	$0.0988(7)$	$0.0298(4)$	$0.0630(6)$	$0.0072(3)$	$0.0492(5)$	$-0.0070(3)$
N1	$0.0553(12)$	$0.0327(11)$	$0.0427(10)$	$0.0052(9)$	$0.0145(9)$	$-0.0097(8)$
C1	$0.0472(12)$	$0.0289(10)$	$0.0356(10)$	$0.0012(9)$	$0.0163(9)$	$-0.0012(8)$
N2A	$0.050(5)$	$0.024(3)$	$0.034(3)$	$-0.001(2)$	$0.011(3)$	$0.004(2)$
N3A	$0.047(5)$	$0.036(3)$	$0.056(7)$	$0.006(3)$	$0.028(5)$	$0.017(5)$
C2A	$0.048(3)$	$0.044(3)$	$0.065(5)$	$-0.003(2)$	$-0.006(3)$	$-0.001(3)$
C3A	$0.038(3)$	$0.044(4)$	$0.121(8)$	$0.008(3)$	$0.031(4)$	$0.026(5)$
N2B	$0.048(6)$	$0.044(8)$	$0.031(3)$	$0.012(5)$	$0.014(3)$	$0.005(4)$
N3B	$0.050(5)$	$0.043(4)$	$0.031(4)$	$0.005(3)$	$0.019(4)$	$0.002(3)$
C2B	$0.041(3)$	$0.073(5)$	$0.051(5)$	$0.017(3)$	$0.007(3)$	$0.003(4)$
C3B	$0.045(3)$	$0.068(7)$	$0.070(4)$	$-0.014(4)$	$0.023(3)$	$-0.013(4)$
C11B	$0.1112(15)$	$0.0671(10)$	$0.1316(18)$	0.000	$0.0553(13)$	0.000
O1B	$0.074(3)$	$0.073(4)$	$0.083(4)$	$-0.009(3)$	$0.024(3)$	$0.029(3)$
O2B	$0.152(6)$	$0.199(8)$	$0.130(5)$	$0.028(4)$	$0.045(5)$	$0.035(4)$
C11C	$0.1112(15)$	$0.0671(10)$	$0.1316(18)$	0.000	$0.0553(13)$	0.000
O1C	$0.152(6)$	$0.199(8)$	$0.130(5)$	$0.028(4)$	$0.045(5)$	$0.035(4)$
O2C	$0.255(15)$	$0.095(7)$	$0.121(8)$	$-0.038(9)$	$0.076(9)$	$-0.014(6)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

Cr1-N1	1.983 (2)	C3A-H3A3	0.9700
$\mathrm{Cr} 1-\mathrm{N} 1^{\text {i }}$	1.983 (2)	C3A-H3A4	0.9700
Cr1-N3A ${ }^{\text {i }}$	2.053 (16)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	1.471 (18)
$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}$	2.053 (16)	N2B-H2B1	0.8900
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}$	2.06 (2)	N2B-H2B2	0.8900
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}^{\text {i }}$	2.06 (2)	N3B-C3B	1.514 (17)
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}^{\text {i }}$	2.085 (19)	N3B-H3B1	0.8900
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}$	2.085 (19)	N3B-H3B2	0.8900
$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}^{\text {i }}$	2.09 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	1.479 (17)
Cr1-N3B	2.09 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 3$	0.9700
S1-C1	1.617 (3)	C2B-H2B4	0.9700
N1-C1	1.152 (3)	C3B-H3B3	0.9700
N2A-C2A	1.493 (15)	C3B-H3B4	0.9700
N2A-H2A1	0.8900	$\mathrm{Cl1B}-\mathrm{O} 1 \mathrm{~B}^{\mathrm{ii}}$	1.489 (6)
N2A-H2A2	0.8900	C11B-O1B	1.489 (6)
N3A-C3A	1.475 (16)	$\mathrm{Cl1B}-\mathrm{O} 2 \mathrm{~B}{ }^{\text {ii }}$	1.630 (8)
N3A-H3A1	0.8900	C11B-O2B	1.630 (8)
N3A-H3A2	0.8900	$\mathrm{Cl1C-O} 2 \mathrm{Ci}^{\mathrm{ii}}$	1.450 (13)
C2A-C3A	1.527 (17)	$\mathrm{C} 11 \mathrm{C}-\mathrm{O} 2 \mathrm{C}$	1.450 (13)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 3$	0.9700	$\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}^{\mathrm{ii}}$	1.630 (8)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 4$	0.9700	C11C-O1C	1.630 (8)
N1-Cr1-N1 ${ }^{\text {i }}$	180.0	$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 4$	110.4
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}^{\mathrm{i}}$	90.8 (5)	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 4$	110.4

N1- ${ }^{\text {i }}$ Cr1-N3A ${ }^{\text {i }}$	89.2 (5)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}$	89.2 (5)
N1 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}$	90.8 (5)
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}$	180.0
N1-Cr1-N2B	89.5 (5)
N1 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}$	90.5 (5)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}^{\mathrm{i}}$	90.5 (5)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}^{\mathrm{i}}$	89.5 (5)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}^{\mathrm{i}}$	180.0 (9)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	87.0 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	93.0 (5)
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	83.1 (5)
$\mathrm{N} 3 \mathrm{~A}-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	96.9 (5)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}$	93.0 (4)
N1- ${ }^{\text {i }}$ Cr1-N2A	87.0 (4)
N3A ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}$	96.9 (5)
N3A-Cr1-N2A	83.1 (5)
$\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}$	180.0
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}^{\mathrm{i}}$	87.1 (5)
N1 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}^{\mathrm{i}}$	92.9 (5)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}^{\mathrm{i}}$	97.2 (5)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}^{\mathrm{i}}$	82.8 (5)
N1-Cr1-N3B	92.9 (5)
N1- ${ }^{\text {i }}$ Cr1-N3B	87.1 (5)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}$	82.8 (5)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}$	97.2 (5)
N3B ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}$	180.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cr} 1$	168.7 (2)
N1-C1-S1	179.3 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{Cr} 1$	107.5 (7)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	110.2
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	110.2
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	110.2
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	110.2
H2A1-N2A-H2A2	108.5
$\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{Cr} 1$	108.5 (8)
C3A-N3A-H3A1	110.0
$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	110.0
C3A-N3A-H3A2	110.0
$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 2$	110.0
H3A1-N3A-H3A2	108.4
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	106.7 (9)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 3$	110.4
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 3$	110.4
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-42.0 (11)

$\mathrm{H} 2 \mathrm{~A} 3-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 4$	108.6
N3A-C3A-C2A	106.5 (10)
N3A-C3A-H3A3	110.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 3$	110.4
N3A-C3A-H3A4	110.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 4$	110.4
H3A3-C3A-H3A4	108.6
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1$	109.0 (9)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 1$	109.9
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 1$	109.9
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.9
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.9
$\mathrm{H} 2 \mathrm{~B} 1-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	108.3
$\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{Cr} 1$	106.7 (8)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	110.4
Cr1-N3B-H3B1	110.4
$\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	110.4
$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	110.4
$\mathrm{H} 3 \mathrm{~B} 1-\mathrm{N} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.6
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	107.1 (10)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 3$	110.3
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 3$	110.3
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 4$	110.3
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 4$	110.3
$\mathrm{H} 2 \mathrm{~B} 3-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 4$	108.5
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	108.6 (10)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 3$	110.0
N3B-C3B-H3B3	110.0
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 4$	110.0
N3B-C3B-H3B4	110.0
H3B3-C3B-H3B4	108.4
$\mathrm{O} 1 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cl1B}-\mathrm{O} 1 \mathrm{~B}$	91.2 (5)
O1B ${ }^{\text {ii }}-\mathrm{Cl1B}-\mathrm{O} 2 \mathrm{~B}^{\mathrm{ii}}$	92.7 (4)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Cl1B}-\mathrm{O} 2 \mathrm{~B}^{\text {ii }}$	101.7 (3)
$\mathrm{O} 1 \mathrm{~B}^{\mathrm{ii}}-\mathrm{Cl1B}-\mathrm{O} 2 \mathrm{~B}$	101.7 (3)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{Cl1B-O} 2 \mathrm{~B}$	92.7 (4)
$\mathrm{O} 2 \mathrm{~B}{ }^{\mathrm{ii}}-\mathrm{Cl1B}-\mathrm{O} 2 \mathrm{~B}$	159.4 (5)
$\mathrm{O} 2 \mathrm{C}^{\mathrm{ii}}-\mathrm{Cl1C}-\mathrm{O} 2 \mathrm{C}$	92.7 (9)
$\mathrm{O} 2 \mathrm{Ci}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}^{\mathrm{ii}}$	86.8 (6)
$\mathrm{O} 2 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}^{\text {ii }}$	79.0 (6)
$\mathrm{O} 2 \mathrm{C}^{\mathrm{ii}}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	79.0 (6)
$\mathrm{O} 2 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	86.8 (6)
$\mathrm{O} 1 \mathrm{C}^{\text {ii }}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	159.4 (5)
$\mathrm{Cr} 1-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	44.2 (13)

$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-44.8(13)$	$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	$-56.3(15)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	$57.9(14)$	$\mathrm{Cr} 1-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$40.2(12)$

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2,-z+1$; (ii) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 A — \mathrm{H} 2 A 1 \cdots \mathrm{~S} 1^{\mathrm{iii}}$	0.89	2.45	$3.324(17)$	167
$\mathrm{~N} 2 A — \mathrm{H} 2 A 2 \cdots \mathrm{O} 2 B^{\mathrm{iv}}$	0.89	2.41	$3.187(19)$	146
$\mathrm{~N} 3 A — \mathrm{H} 3 A 1 \cdots \mathrm{O} 1 B^{\mathrm{v}}$	0.89	2.58	$3.282(16)$	136
$\mathrm{~N} 2 B-\mathrm{H} 2 B 1 \cdots \mathrm{~S} 1^{\text {iii }}$	0.89	2.77	$3.459(17)$	135
$\mathrm{~N} 3 B-\mathrm{H} 3 B 1 \cdots \mathrm{O} 2 C^{\mathrm{v}}$	0.89	2.45	$3.22(2)$	145
$\mathrm{~N} 3 B — \mathrm{H} 3 B 2 \cdots \mathrm{~S} 1^{\mathrm{vi}}$	0.89	2.38	$3.255(18)$	166

Symmetry codes: (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (iv) $x, y-1, z$; (v) $x,-y+1, z-1 / 2$; (vi) $-x+1 / 2,-y+3 / 2,-z+1$.

