COMMUNICATIONS

ISSN 2056-9890

Received 20 April 2015
Accepted 28 April 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland
\neq Thomson Reuters ResearcherID: A-50852009.
§ Additional correspondence author, e-mail: hfun.c@ksu.edu.sa. Thomson Reuters
ResearcherID: A-3561-2009.

Keywords: crystal structure; azastilbene; antibacterial; anti-oxidant; hydrogen bonding

CCDC reference: 1062128
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (E)-2-hydroxy-4'-methoxyazastilbene

Suchada Chantrapromma, ${ }^{\text {a }} \ddagger$ Narissara Kaewmanee, ${ }^{\text {a }}$ Nawong Boonnak, ${ }^{\text {b }}$ Kan Chantrapromma, ${ }^{\text {c }}$ Hazem A. Ghabbour ${ }^{\text {d }}$ and Hoong-Kun Fun ${ }^{\text {d,e }} \S$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Thaksin University, Phapayom, Phatthalung 93110, Thailand, ${ }^{\text {c }}$ Faculty of Science and Technology, Hatyai University, Hat-Yai, Songkhla 90110, Thailand, ${ }^{\text {d Department of Pharmaceutical }}$ Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia, and ${ }^{\mathbf{e} X \text {-ray }}$ Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: suchada.c@psu.ac.th

The title azastilbene derivative, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$ \{systematic name: (E)-2-[(4methoxybenzylidene) amino]phenol\}, is a product of the condensation reaction between 4-methoxybenzaldehyde and 2-aminophenol. The molecule adopts an E conformation with respect to the azomethine $\mathrm{C}=\mathrm{N}$ bond and is almost planar, the dihedral angle between the two substituted benzene rings being $3.29(4)^{\circ}$. The methoxy group is coplanar with the benzene ring to which it is attached, the $\mathrm{C}_{\text {methyl }}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angle being $-1.14(12)^{\circ}$. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond generating an $S(5)$ ring motif. In the crystal, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming zigzag chains along [10 $\overline{1}]$. The chains are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a threedimensional structure.

1. Chemical context

Azastilbenes have been reported to possess various biological activities such as antibacterial (Tamizh et al., 2012), antioxidant (Cheng et al., 2010; Lu et al., 2012), antifungal (da Silva et al., 2011) and antiproliferative (Fujita et al., 2012) including lipoxygenase inhibitor (Aslam et al., 2012b) activities. $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Ru}^{\mathrm{III}}$ complexes of azastilbenes have been synthesized and some have shown potent antibacterial activity (Briel et al., 1998; Prabhakaran et al., 2008; Puthilibai et al., 2009). The interesting biological activities of azastilbenes have attracted us to synthesis a series of azastilbenes, including the title compound, and to study their antibacterial and antioxidant activities (Kaewmanee et al., 2013, 2014). The antibacterial assay for the title compound indicated that it possesses moderate to weak antibacterial activity against B. subtilis, S. aureus, P. aeruginosa, S. typhi and S. sonnei with the MIC values in the range of 37.5 to $150 \mu \mathrm{~g} / \mathrm{ml}$. In addition, it also shows interesting antioxidant activity by DPPH assay with the IC_{50} value of $0.080 \pm 0.0004 \mu \mathrm{~g} / \mathrm{ml}$. Herein, we report on the synthesis, spectroscopic and crystallographic characterization of the title compound.

Figure 1
The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 60% probability level. The intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is shown as a dashed line (see Table 1).

2. Structural commentary

The title azastilbene compound (Fig. 1) has an E conformation about the azomethine $\mathrm{C} 7=\mathrm{N} 1$ double bond $[1.2825$ (10) \AA A], the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$ torsion angle being $-178.67(8)^{\circ}$. The molecule is almost planar with a dihedral angle of $3.29(4)^{\circ}$ between the two substituted benzene rings. The methoxy group is co-planar with the benzene ring to which it is attached, the $\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$ torsion angle being $-1.14(12)^{\circ}$. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Fig. 1 and Table 1) that generates an $S(5)$ ring motif. The bond lengths are comparable with those found for some closely related structures (Habibi et al., 2013; Aslam et al., 2012a; Kaewmanee et al., 2013, 2014; Sun et al., 2011).

3. Supramolecular features

In the crystal, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming zigzag chains along [101] (Fig. 2 and Table 1). The chains are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Fig. 3 and Table 1), forming a three-dimensional structure.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom \& Allen, 2014) for azastilbenes gave over 2800 hits. A search for 2-(benzylideneamino) phenols gave 78 hits, and for 2-[(4-methoxybenzylidene)amino]phenols there were five hits. In the compound that most closely resembles the title compound, namely 5 -\{[(2-hydroxyphenyl)imino]-methyl\}-2-methoxyphenol (Habibi et al., 2013), the two aromatic rings are inclined to one another by ca 16.9°.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of rings C1-C6 and C8-C13, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 O 2 \cdots \mathrm{~N} 1$	$0.774(18)$	$2.078(17)$	$2.6315(11)$	$128.7(17)$
$\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.71	$3.2876(12)$	119
$\mathrm{C} 2-\mathrm{H} 2 A \cdots C g 2^{\text {ii }}$	0.93	2.93	$3.5662(9)$	127
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.93	2.76	$3.4671(9)$	134

Symmetry codes: (i) $x-1,-y+1, z-\frac{1}{2}$; (ii) $x,-y+1, z-\frac{1}{2}$; (iii) $x,-y, z+\frac{1}{2}$.

Figure 2
A view along the b axis of the crystal packing of the title compound. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (see Table 1 for details).

5. Synthesis and crystallization

A solution of 4-methoxybenzaldehyde ($2.5 \mathrm{mmol}, 0.37 \mathrm{~g}$) in water (20 ml) and 2 -aminophenol ($2.5 \mathrm{mmol}, 0.25 \mathrm{~g}$) in water $(20 \mathrm{ml})$ were mixed and stirred at room temperature for around 8 h until a white precipitate appeared. The resulting white solid was filtered, washed several times with cold ethanol and then dried in vacuo overnight to yield the desired azastilbene ($430 \mathrm{mg}, 76 \%$ yield). Colourless block-shaped crystals, suitable for X-ray structure analysis, were obtained by recrystallization from methanol by slow evaporation at room temperature after several days (m.p. 388-390 K).

UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\log \varepsilon): 275(1.93), 340(0.61) \mathrm{nm}$; FT-IR (KBr) $v: 3337,1595,1510,1248,1027 \mathrm{~cm}^{-1} . ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$, p.p.m.: $8.87(s, 1 \mathrm{H}), 8.61(s, 1 \mathrm{H}), 7.98$ $(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(d d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(d, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(t d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(t d, J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(d d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84\left(s,-\mathrm{OCH}_{3}\right)$. The UV-Vis spectroscopic data showed absorption bands of an azastilbene (275 and 340 nm) while the FT-IR spectrum

Figure 3
A view of the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) in the crystal of the title compound (see Table 1 for details; ring centroids are shown as coloured spheres).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
$M_{\text {r }}$	227.25
Crystal system, space group	Monoclinic, Pc
Temperature (K)	100
$a, b, c(\AA)$	8.0357 (3), 5.5554 (2), 12.8733 (5)
β (${ }^{\circ}$)	101.312 (1)
$V\left(\mathrm{~A}^{3}\right)$	563.52 (4)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09
Crystal size (mm)	$0.55 \times 0.48 \times 0.41$
Data collection	
Diffractometer	Bruker APEXII D8 Venture
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}, T_{\text {max }}$	0.953, 0.964
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	26314, 3449, 3414
$R_{\text {int }}$	0.023
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.715
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.037, 0.100, 1.09
No. of reflections	3449
No. of parameters	160
No. of restraints	2
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.37, -0.28

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
exhibited the stretching vibrations of $\mathrm{O}-\mathrm{H}\left(3337 \mathrm{~cm}^{-1}\right)$, $\mathrm{C}=\mathrm{N}\left(1595 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1510 \mathrm{~cm}^{-1}\right), \mathrm{C}-\mathrm{N}\left(1248 \mathrm{~cm}^{-1}\right)$ and $\mathrm{C}-\mathrm{O} \quad\left(1027 \mathrm{~cm}^{-1}\right)$. The successful synthesis was also supported by the ${ }^{1} \mathrm{H}$ NMR spectroscopic data, which showed the characteristic signals of an olefinic proton at $8.61(s, 1 \mathrm{H})$ and para-substituted aromatic protons at $7.98(d, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H})$ and $7.06(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, respectively. Moreover the ${ }^{1} \mathrm{H}$ NMR spectrum also showed typical signals of ortho-substituted aromatic protons at $7.18(d d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(t d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(t d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$ and 6.09 $(d d, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$ and a methoxy proton at $3.84(s$, $-\mathrm{OCH}_{3}$).

The antibacterial activity investigation of the title compound against Gram-positive bacteria, which are B. subtilis, S. aureus, MRSA and E. faecalis, and Gram-negative bacteria, which are P. aeruginosa, S. sonnei and S. typhi, showed moderate, mild or no inhibition. The most interesting antibacterial activity showed moderate activity against P. aeruginosa with an MIC value of $37.5 \mu \mathrm{~g} / \mathrm{ml}$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH H atom was located in a
difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Acknowledgements

The authors thank the Department of Chemistry, Faculty of Science, Prince of Songkla University, for research facilities. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding this work through research group project No. RGP-VPP-207.

References

Aslam, M., Anis, I., Afza, N., Hussain, M. T. \& Yousuf, S. (2012a). Acta Cryst. E68, o1447.
Aslam, M., Anis, I., Afza, N., Iqbal, L., Iqbal, S., Hussain, A., Mehmood, R., Hussain, M. T., Khalid, M. \& Nawaz, H. (2012b). J. Saudi Chem. Soc. doi: 10.1016/j. jscs. 2012.09.009.
Briel, O., Fehn, A., Polborn, K. \& Beck, W. (1998). Polyhedron, 18, 225-242.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, L.-X., Tang, J.-J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.P., Li, X.-Z. \& Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 24172420.

Fujita, Y., Islam, R., Sakai, K., Kaneda, H., Kudo, K., Tamura, D., Aomatsu, K., Nagai, T., Kimura, H., Matsumoto, K., de Velasco, M. A., Arao, T., Okawara, T. \& Nishio, K. (2012). Invest. New Drugs, 30, 1878-1886.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Habibi, M. H., Shojaee, E., Ranjbar, M., Memarian, H. R., Kanayama, A. \& Suzuki, T. (2013). Spectrochim. Acta Part A, 105, 563-568.
Kaewmanee, N., Chantrapromma, S., Boonnak, N. \& Fun, H.-K. (2013). Acta Cryst. E69, o903-o904.

Kaewmanee, N., Chantrapromma, S., Boonnak, N., Quah, C. K. \& Fun, H.-K. (2014). Acta Cryst. E70, o62-o63.
Lu, J., Li, C., Chai, Y.-F., Yang, D.-Y. \& Sun, C.-R. (2012). Bioorg. Med. Chem. Lett. 22, 5744-5747.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Prabhakaran, R., Renukadevi, S. V., Karvembu, R., Huang, R., Mautz, J., Huttner, G., Subashkumar, R. \& Natarajan, K. (2008). Eur. J. Med. Chem. 43, 268-273.
Puthilibai, G., Vasudhevan, S., Kutti Rani, S. \& Rajagopal, G. (2009). Spectrochim. Acta Part A, 72, 796-800.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silva, C. M. da, da Silva, D. L., Martins, C. V. B., de Resende, M. A., Dias, E. S., Magalhães, T. F. F., Rodrigues, L. P., Sabino, A. A., Alves, R. B. \& de Fátima, Â. (2011). Chem. Biol. Drug Des. 78, 810815.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sun, L.-X., Yu, Y.-D. \& Wei, G.-Y. (2011). Acta Cryst. E67, o1578.
Tamizh, M. M., Kesavan, D., Sivakumar, P. M., Mereiter, K., Deepa, M., Kirchner, K., Doble, M. \& Karvembu, R. (2012). Chem. Biol. Drug Des. 79, 177-185.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of (E)-2-hydroxy-4'-methoxyazastilbene

Suchada Chantrapromma, Narissara Kaewmanee, Nawong Boonnak, Kan Chantrapromma, Hazem A. Ghabbour and Hoong-Kun Fun

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-2-[(4-Methoxybenzylidene)amino]phenol

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
$M_{r}=227.25$
Monoclinic, $P c$
$a=8.0357$ (3) Å
$b=5.5554$ (2) \AA
$c=12.8733(5) \AA$
$\beta=101.312(1)^{\circ}$
$V=563.52(4) \AA^{3}$
$Z=2$
$F(000)=240$

Data collection

Bruker APEXII D8 Venture
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.953, T_{\text {max }}=0.964$
26314 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.09$
3449 reflections
160 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=388-390 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3449 reflections
$\theta=2.6-30.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.55 \times 0.48 \times 0.41 \mathrm{~mm}$

3449 independent reflections
3414 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-7 \rightarrow 7$
$l=-18 \rightarrow 18$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0786 P)^{2}+0.0298 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$ Extinction coefficient: 0.054 (8)

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	0.29289 (8)	0.08802 (12)	0.07528 (5)	0.01815 (14)
O2	0.92146 (10)	0.70962 (12)	0.58775 (6)	0.02323 (15)
H1O2	0.859 (2)	0.653 (3)	0.5407 (15)	0.028 (3)*
N1	0.72131 (9)	0.33548 (14)	0.53665 (5)	0.01630 (16)
C1	0.54115 (10)	0.13926 (16)	0.38967 (6)	0.01455 (16)
C2	0.55623 (10)	0.31817 (15)	0.31478 (7)	0.01598 (16)
H2A	0.6239	0.4524	0.3353	0.019*
C3	0.47132 (10)	0.29620 (15)	0.21094 (7)	0.01586 (16)
H3A	0.4826	0.4149	0.1618	0.019*
C4	0.36790 (10)	0.09459 (15)	0.17945 (6)	0.01416 (16)
C5	0.35026 (11)	-0.08418 (16)	0.25290 (6)	0.01607 (17)
H5A	0.2812	-0.2171	0.2326	0.019*
C6	0.43785 (11)	-0.05985 (16)	0.35704 (6)	0.01649 (16)
H6A	0.4273	-0.1791	0.4061	0.020*
C7	0.63122 (10)	0.15284 (17)	0.49969 (6)	0.01611 (17)
H7A	0.6229	0.0242	0.5446	0.019*
C8	0.81013 (9)	0.34278 (15)	0.64262 (6)	0.01427 (16)
C9	0.91560 (10)	0.54613 (15)	0.66557 (6)	0.01633 (16)
C10	1.01507 (11)	0.57944 (17)	0.76609 (7)	0.01860 (17)
H10A	1.0854	0.7133	0.7803	0.022*
C11	1.00837 (11)	0.41075 (16)	0.84506 (7)	0.01799 (17)
H11A	1.0752	0.4309	0.9122	0.022*
C12	0.90092 (10)	0.21016 (17)	0.82364 (6)	0.01711 (16)
H12A	0.8951	0.0994	0.8770	0.021*
C13	0.80332 (10)	0.17641 (15)	0.72308 (6)	0.01595 (16)
H13A	0.7331	0.0424	0.7092	0.019*
C14	0.19195 (12)	-0.11830 (17)	0.03898 (7)	0.02058 (18)
H14A	0.1551	-0.1096	-0.0365	0.031*
H14B	0.0948	-0.1225	0.0720	0.031*
H14C	0.2582	-0.2615	0.0570	0.031*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0188(3)$	$0.0212(3)$	$0.0130(3)$	$-0.0025(2)$	$-0.0003(2)$	$-0.0004(2)$
O2	$0.0342(3)$	$0.0193(3)$	$0.0161(3)$	$-0.0091(3)$	$0.0045(2)$	$0.0009(2)$
N1	$0.0173(3)$	$0.0180(4)$	$0.0132(3)$	$-0.0009(2)$	$0.0019(3)$	$-0.0010(2)$
C1	$0.0157(4)$	$0.0152(3)$	$0.0125(3)$	$-0.0003(3)$	$0.0023(3)$	$-0.0016(3)$
C2	$0.0172(4)$	$0.0142(3)$	$0.0162(4)$	$-0.0019(3)$	$0.0024(3)$	$-0.0010(3)$
C3	$0.0170(3)$	$0.0146(3)$	$0.0155(3)$	$-0.0005(3)$	$0.0021(3)$	$0.0013(3)$
C4	$0.0133(3)$	$0.0159(4)$	$0.0132(4)$	$0.0003(3)$	$0.0026(3)$	$-0.0010(2)$
C5	$0.0177(3)$	$0.0163(4)$	$0.0142(4)$	$-0.0031(3)$	$0.0030(3)$	$-0.0013(3)$
C6	$0.0208(4)$	$0.0158(3)$	$0.0131(3)$	$-0.0027(3)$	$0.0039(3)$	$-0.0002(3)$
C7	$0.0176(4)$	$0.0178(4)$	$0.0131(3)$	$-0.0008(3)$	$0.0032(3)$	$-0.0013(3)$
C8	$0.0148(3)$	$0.0150(3)$	$0.0131(3)$	$-0.0002(3)$	$0.0029(3)$	$-0.0014(3)$
C9	$0.0183(4)$	$0.0166(3)$	$0.0148(3)$	$-0.0022(3)$	$0.0050(3)$	$-0.0013(3)$
C10	$0.0188(4)$	$0.0196(4)$	$0.0174(3)$	$-0.0040(3)$	$0.0036(3)$	$-0.0042(3)$
C11	$0.0172(3)$	$0.0220(4)$	$0.0141(3)$	$-0.0008(3)$	$0.0013(3)$	$-0.0030(3)$
C12	$0.0179(4)$	$0.0184(4)$	$0.0147(4)$	$-0.0001(3)$	$0.0025(3)$	$0.0006(3)$
C13	$0.0172(3)$	$0.0162(4)$	$0.0141(4)$	$-0.0016(3)$	$0.0023(3)$	$-0.0005(3)$
C14	$0.0194(4)$	$0.0224(4)$	$0.0178(4)$	$-0.0031(3)$	$-0.0015(3)$	$-0.0028(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C4	1.3586 (9)	C6-H6A	0.9300
$\mathrm{O} 1-\mathrm{C} 14$	1.4287 (10)	C7-H7A	0.9300
O2-C9	1.3599 (11)	C8-C13	1.3973 (11)
$\mathrm{O} 2-\mathrm{H1O} 2$	0.772 (19)	C8-C9	1.4084 (11)
N1-C7	1.2825 (10)	C9-C10	1.3935 (11)
N1-C8	1.4107 (10)	C10-C11	1.3915 (13)
C1-C6	1.3972 (11)	C10-H10A	0.9300
C1-C2	1.4065 (11)	C11-C12	1.4035 (12)
C1-C7	1.4605 (10)	C11-H11A	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	1.3818 (11)	C12-C13	1.3884 (11)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	C12-H12A	0.9300
C3-C4	1.4062 (11)	C13-H13A	0.9300
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300	C14-H14A	0.9600
C4-C5	1.3975 (11)	C14-H14B	0.9600
C5-C6	1.3932 (11)	C14-H14C	0.9600
C5-H5A	0.9300		
C4-O1-C14	117.25 (7)	C13-C8-C9	118.98 (7)
C9-O2- H 1 O 2	101.3 (12)	C13-C8-N1	127.73 (7)
C7-N1-C8	121.55 (7)	C9-C8-N1	113.29 (7)
C6- $\mathrm{C} 1-\mathrm{C} 2$	118.64 (7)	O2-C9-C10	119.93 (8)
C6- $\mathrm{C} 1-\mathrm{C} 7$	118.99 (7)	O2-C9-C8	119.18 (7)
C2- $\mathrm{C} 1-\mathrm{C} 7$	122.36 (7)	C10-C9-C8	120.88 (7)
C3-C2-C1	120.54 (7)	C11-C10-C9	119.45 (8)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.7	C11-C10-H10A	120.3

supporting information

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.07(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$124.37(7)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$115.38(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.24(7)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.88(7)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$121.63(8)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.2
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.2
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 1$	$122.48(7)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	118.8
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	118.8
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.41(12)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.77(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.40(12)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$-1.14(12)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$177.64(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$-178.73(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.10(12)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$178.14(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.58(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.57(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.09(13)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.29(7)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$-178.67(8)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-176.38(8)$

C9-C10-H10A	120.3
C10-C11-C12	120.11 (8)
C10-C11-H11A	119.9
C12-C11-H11A	119.9
C13-C12-C11	120.24 (8)
C13-C12-H12A	119.9
C11-C12-H12A	119.9
C12-C13-C8	120.31 (8)
C12-C13-H13A	119.8
C8-C13-H13A	119.8
O1-C14-H14A	109.5
O1-C14-H14B	109.5
H14A-C14-H14B	109.5
O1-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
C2- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	4.45 (12)
C7-N1-C8-C13	-6.46 (13)
C7-N1-C8-C9	173.81 (7)
C13-C8-C9-O2	-179.42 (8)
N1-C8-C9-O2	0.34 (11)
C13-C8-C9-C10	1.49 (12)
N1-C8-C9-C10	-178.75 (7)
O2-C9-C10-C11	-179.85 (8)
C8-C9-C10-C11	-0.77 (13)
C9-C10-C11-C12	-0.61 (14)
C10-C11-C12-C13	1.27 (13)
C11-C12-C13-C8	-0.54 (13)
C9-C8-C13-C12	-0.82 (12)
N1-C8-C13-C12	179.45 (7)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 and Cg 2 are the centroids of rings $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 13$, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 O 2 \cdots \mathrm{~N} 1$	$0.774(18)$	$2.078(17)$	$2.6315(11)$	$128.7(17)$
$\mathrm{C} 14 — \mathrm{H} 14 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.71	$3.2876(12)$	119
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots C g 2^{\mathrm{ii}}$	0.93	2.93	$3.5662(9)$	127
$\mathrm{C} 13 — \mathrm{H} 13 A \cdots C g 1^{\mathrm{iii}}$	0.93	2.76	$3.4671(9)$	134

Symmetry codes: (i) $x-1,-y+1, z-1 / 2$; (ii) $x,-y+1, z-1 / 2$; (iii) $x,-y, z+1 / 2$.

