

Received 2 May 2015 Accepted 5 May 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; sulfamethoxazolium; 3,5-dinitrosalicylate; molecular salt; hydrogen bonding.

CCDC reference: 1063245 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of 4-[(5-methylisoxazol-3yl)aminosulfonyl]anilinium 3,5-dinitrosalicylate

Sevaiyan Malathy, Jeyaraman Selvaraj Nirmalram and Packianathan Thomas Muthiah*

School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India. *Correspondence e-mail: tommtrichy@yahoo.co.in

The title molecular salt, $C_{10}H_{12}N_3O_3S^+ \cdot C_7H_3N_2O_7^-$, protonation occurs at the amino N atom attached to the benzene ring of sulfamethoxazole. In the anion, there is an intramolecular $O-H \cdot \cdot \cdot O$ hydrogen bond and the cation is linked to the anion by an $N-H \cdot \cdot \cdot O$ hydrogen bond. In the extended structure, the cations and anions are linked *via* $N-H \cdot \cdot \cdot O$, $N-H \cdot \cdot \cdot N$ and $C-H \cdot \cdot \cdot O$ hydrogen bonds, forming a three-dimensional framework.

1. Chemical context

{4-[(5-methylisoxazol-3-yl)aminosulfon-Sulfamethoxazole, yl]aniline} (SMZ) is a well-known antibacterial and antifungal sulfa drug (Ma et al., 2007; Hida et al., 2005). This drug prevents the formation of dihydrofolic acid, a compound that bacteria must be able to make in order to endure. The structural resemblance of p-amino benzoic acid to the sulfanilamide group enables sulfanilamide block folic acid synthesis in bacteria (Bock et al., 1974). SMZ is also known to be effective against gram positive and gram negative bacteria and some protozoans. In clinical practice, SMZ is used as a combinatorial drug along with Trimethoprim (TMP) to treat a variety of bacterial infections. In the last three and half decades, multiple crystalline forms of SMZ (Bettinetti et al., 1982; Maury et al., 1985; Price et al., 2005), metal complexes (Margues et al., 2006; Nakai et al., 1984) and salt forms (Nakai et al., 1984; Subashini et al., 2007) have been reported. We report herein on the crystal structure and supramolecular packing pattern of the title salt.

The asymmetric unit of the title salt (SMZDNS), consists of a sulfamethoxazolium cation and a 3,5-dinitrosalicylate anion (Fig. 1). The SMZ cation is L-shaped with the dihedral angle between the oxazole and anilinium rings being $81.86 (10)^{\circ}$. The geometry around the sulfur atom is slightly distorted

OPEN d ACCESS

Figure 1

A view of the molecular structure of the title molecular salt, showing the atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

tetrahedral, which is evident from the O1-S1-O2 angle of 120.44 (8)°. Protonation occurs at the amino atom N1 of the benzene moiety of SMZ. In the cation there is an intramolecular O-H···O hydrogen bond with an S(6) ring motif

Figure 2

A view of the graph set motifs formed in the crystal of the title salt, *via* $N-H\cdots O$, $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds (dashed lines; see Table 1 for details). The cations are drawn in wire mode and the anions in ball-and-stick mode.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O6−H6A…O5	0.82	1.68	2.4296 (19)	151
$N2-H2A\cdots O5$	0.86	2.12	2.7852 (18)	134
$N1-H1A\cdots O4^{i}$	0.89	1.77	2.661 (2)	177
$N1 - H1B \cdot \cdot \cdot N3^{i}$	0.89	2.24	3.041 (2)	150
$N1-H1C\cdots O6^{ii}$	0.89	2.21	3.064 (2)	160
C5−H5···O6 ⁱⁱ	0.93	2.60	3.293 (2)	132
C6-H6···O8 ⁱⁱⁱ	0.93	2.60	3.176 (2)	121

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 2, -z + 1; (iii) x, y, z - 1.

(Fig. 1 and Table 1). The cation is linked to the anion by an $N-H\cdots O$ hydrogen bond (Fig. 1 and Table 1), and the dihedral angle between the benzene rings of the cation and anion is 78.51 (8)°.

3. Supramolecular features

In the crystal of the title salt, there are various hydrogen bonds present linking the anions and cations and forming a threedimensional network (Figs. 2 and 3, and Table 1). The ammonium ion of the cation generates a C(3) chain and two $R_2^1(6)$ and $R_3^3(10)$ ring motifs (Bernstein *et al.*, 1995). The primary interaction between the cation and anion happens through an N-H...O hydrogen bond and it forms a chain of C(3) graph set. The $R_2^1(6)$ motif is formed via N-H···O and $C-H\cdots O$ hydrogen bonds that link the ammonium N1 phenyl C5 group of SMZ and the hydroxy O6 group of the anion. The $R_3^3(10)$ ring motif is a result of the linking of two symmetry-related cations and one anion via a pair of N- $H \cdots O$ and $N - H \cdots N$ hydrogen bonds. This motif is formed by the interaction of symmetry-related imino N2, oxazole N3, ammonium N1 atoms of the cation and the carboxylate (O4 and O5) group of the anion. The $R_2^1(6)$ and $R_3^2(10)$ motifs are linked by another ring motif with an $R_3^3(8)$ graph set. This motif is formed by linking two symmetry-related cations with an anion via a pair of bifurcated $N-H \cdots O$ hydrogen bonds. The amalgamation of the above ring motifs leads to the formation of supramolecular sheets along the *a* axis (Fig. 2).

Figure 3

A view along the a axis of the crystal packing of the title salt. The hydrogen bonds are drawn as dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

research communications

The sheets thus formed are linked to adjacent ones through $R_2^2(16)$ and $R_2^2(20)$ motifs. The $R_2^2(16)$ motif is formed by interaction of ammonium atom N1 and atom O2 of the sulfate group of an inversion-related SMZ ion in an adjacent sheet *via* a pair of N-H···O hydrogen bonds. The other motif, an $R_2^2(20)$ ring, is formed by the linkage of two inversion-related cations along the *b* axis. Finally, through these arrangements a three-dimensional hydrogen-bonded architecture is formed.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for 4-[(5-methylisoxazol-3-yl)aminosulfonyl]aniline revealed the presence of only two structures of the protonated form. These include, *catena*-[bis(sulfamethoxazolium)(μ 2-chlorido)trichloridocadmium(II) monohydrate] [RISZAV; Subashini *et al.*, 2008] and 4-[(5methylisoxazol-3-yl)aminosulfonyl]anilinium chloride (also known as sulfamethoxazole chloride; SIMJEE; Subashini *et al.*, 2007). The dihedral angles between the oxazole ring and anilinium ring is found to be *ca* 88° in RISZAV, similar to the value of 81.86 (10)° in the title salt, and *ca* 58° in SIMJEE.

5. Synthesis and crystallization

20 ml of a hot ethanolic solution of sulfamethoxazole (63 mg) and 3.5 dinitrosalicylic acid (57 mg) were mixed and warmed at 323 K for 30 min over a water bath. The mixture was then allowed to cool slowly at room temperature. Three weeks later, light-yellow prismatic crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: O-H =0.82 Å, N-H = 0.86-0.89 Å, and C-H = 0.93-0.96 Å with $U_{iso}(H) = 1.5U_{eq}(C,O,N)$ for methyl, hydroxy and ammonium H atoms and $1.2U_{eq}(C,N)$ for aromatic and other H atoms.

Acknowledgements

The authors thank the DST–India (FIST programme) for the use of the Bruker SMART APEXII diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. JSN thanks the UGC–SAP, India, for the award of an RFSMS.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821–828.
- Bock, L., Miller, G. H., Schaper, K. J. & Seydel, J. K. (1974). J. Med. Chem. 17, 23–28.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{10}H_{12}N_3O_3S^+ \cdot C_7H_3N_2O_7^-$
Mr	481.41
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	8.5551 (1), 10.5000 (2), 12.7576 (3)
α, β, γ (°)	106.463 (1), 100.913 (1), 108.272 (1)
$V(Å^3)$	993.72 (3)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.23
Crystal size (mm)	$0.20\times0.20\times0.16$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.955, 0.964
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24261, 6718, 4911
R _{int}	0.030
$(\sin \theta / \lambda)_{\rm max} ({ m \AA}^{-1})$	0.758
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.139, 1.05
No. of reflections	6718
No. of parameters	301
H-atom treatment	H-atom parameters constrained
$\Delta ho_{\rm max}, \Delta ho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.40, -0.40

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2008), *POVRay* (Cason, 2004) and *publCIF* (Westrip, 2010).

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cason, C. J. (2004). *POV-RAY* for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www. povray.org.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hida, S., Yoshida, M., Nakabayashi, I., Miura, N. N., Adachi, Y. & Ohno, N. (2005). *Biol. Pharm. Bull.* 28, 773–778.
- Ma, M.-L., Cheng, Y.-Y., Xu, Z.-H., Xu, P., Qu, H.-O., Fang, Y.-J., Xu, T.-W. & Wen, L. (2007). *Eur. J. Med. Chem.* **42**, 93–98.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Marques, L. L., de Oliveira, G. M. & Schulz Lang, E. (2006). Z. Anorg. Allg. Chem. 632, 2310–2314.
- Maury, L., Rambaud, J., Pauvert, B., Lasserre, Y., Berge, G. & Audran, M. (1985). *Can. J. Chem.* **63**, 3012–3018.
- Nakai, H., Takasuka, M. & Shiro, M. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1459–1464.
- Price, C. P., Grzesiak, A. L. & Matzger, A. J. (2005). J. Am. Chem. Soc. 127, 5512–5517.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, 04312–04313.
- Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2008). Acta Cryst. E64, m250-m251.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 618-620 [doi:10.1107/S2056989015008701]

Crystal structure of 4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium 3,5-dinitrosalicylate

Sevaiyan Malathy, Jeyaraman Selvaraj Nirmalram and Packianathan Thomas Muthiah

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2008) and *POVRay* (Cason, 2004); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate

 $\begin{array}{l} C_{10}H_{12}N_{3}O_{3}S^{+}C_{7}H_{3}N_{2}O_{7}^{-}\\ M_{r}=481.41\\ \text{Triclinic, }P1\\ \text{Hall symbol: -P 1}\\ a=8.5551 (1) \text{ Å}\\ b=10.5000 (2) \text{ Å}\\ c=12.7576 (3) \text{ Å}\\ a=106.463 (1)^{\circ}\\ \beta=100.913 (1)^{\circ}\\ \gamma=108.272 (1)^{\circ}\\ V=993.72 (3) \text{ Å}^{3} \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.955, T_{\max} = 0.964$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.139$ S = 1.056718 reflections 301 parameters Z = 2 F(000) = 496 $D_x = 1.609 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6718 reflections $\theta = 1.8-32.6^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K Prism, yellow $0.20 \times 0.20 \times 0.16 \text{ mm}$

24261 measured reflections 6718 independent reflections 4911 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 32.6^\circ, \theta_{min} = 1.8^\circ$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -19 \rightarrow 16$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 0.2293P]$	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or e	quivalent isotropic	c displacement	parameters	$(Å^2)$)
----------------------------------	------------------	---------------------	----------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	-0.02011 (5)	0.65153 (4)	0.38510(3)	0.0339(1)	
01	-0.12139 (15)	0.56291 (12)	0.26954 (11)	0.0467 (4)	
O2	-0.09563 (16)	0.65425 (13)	0.47595 (11)	0.0464 (4)	
O3	0.47464 (18)	0.55503 (17)	0.32047 (14)	0.0620 (5)	
N1	0.29162 (18)	1.24424 (14)	0.38400 (13)	0.0425 (4)	
N2	0.13876 (17)	0.60279 (14)	0.42019 (12)	0.0379 (4)	
N3	0.3923 (2)	0.57678 (19)	0.40572 (15)	0.0531 (5)	
C1	0.07470 (18)	0.82911 (15)	0.38933 (13)	0.0317 (4)	
C2	0.2170 (2)	0.93167 (19)	0.47915 (16)	0.0503 (5)	
C3	0.2877 (2)	1.06900 (19)	0.47852 (16)	0.0512 (5)	
C4	0.21460 (19)	1.10143 (15)	0.38930 (14)	0.0346 (4)	
C5	0.0702 (2)	1.00106 (18)	0.30178 (15)	0.0436 (5)	
C6	0.0001 (2)	0.86347 (18)	0.30136 (15)	0.0419 (5)	
C7	0.24792 (19)	0.58288 (15)	0.35500 (14)	0.0351 (4)	
C8	0.2303 (2)	0.5656 (2)	0.23927 (16)	0.0473 (6)	
C9	0.3764 (3)	0.55030 (19)	0.22403 (18)	0.0508 (6)	
C10	0.4458 (3)	0.5285 (3)	0.1246 (2)	0.0749 (10)	
O4	0.51673 (18)	0.76879 (19)	0.75742 (13)	0.0650 (5)	
O5	0.24957 (17)	0.72400 (14)	0.65907 (10)	0.0492 (4)	
O6	0.03386 (14)	0.74389 (13)	0.75511 (10)	0.0423 (3)	
O7	-0.1353 (2)	0.8493 (3)	0.89565 (18)	0.0976 (9)	
08	-0.1205 (2)	0.7661 (3)	1.02988 (15)	0.0952 (8)	
O9	0.4658 (2)	0.9039 (2)	1.25864 (12)	0.0710 (6)	
O10	0.66328 (19)	0.9064 (2)	1.17615 (14)	0.0731 (6)	
N4	-0.06166 (19)	0.8072 (2)	0.96064 (14)	0.0581 (6)	
N5	0.51517 (19)	0.88887 (16)	1.17389 (13)	0.0476 (5)	
C11	0.31809 (18)	0.78573 (15)	0.85972 (13)	0.0322 (4)	
C12	0.14695 (18)	0.77861 (15)	0.85294 (13)	0.0326 (4)	
C13	0.10795 (19)	0.80780 (18)	0.95755 (14)	0.0386 (4)	
C14	0.2252 (2)	0.84029 (18)	1.06109 (14)	0.0398 (4)	
C15	0.38950 (19)	0.84785 (16)	1.06265 (13)	0.0361 (4)	
C16	0.43768 (18)	0.82182 (16)	0.96381 (14)	0.0352 (4)	

C17	0.3688 (2)	0.75745 (17)	0.75231 (14)	0.0391 (4)
H1A	0.35880	1.24140	0.33870	0.0640*
H1B	0.35470	1.30800	0.45420	0.0640*
H1C	0.20820	1.27010	0.35590	0.0640*
H2	0.26480	0.90860	0.53940	0.0600*
H2A	0.15640	0.58830	0.48370	0.0450*
H3	0.38410	1.13910	0.53810	0.0610*
Н5	0.02000	1.02560	0.24320	0.0520*
H6	-0.09710	0.79410	0.24200	0.0500*
H8	0.13930	0.56490	0.18580	0.0570*
H10A	0.55580	0.60560	0.14430	0.1120*
H10B	0.36680	0.52770	0.05980	0.1120*
H10C	0.45950	0.43820	0.10560	0.1120*
H6A	0.07860	0.73090	0.70370	0.0630*
H14	0.19440	0.85670	1.12830	0.0480*
H16	0.54970	0.82850	0.96720	0.0420*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0360 (2)	0.0322 (2)	0.0349 (2)	0.0131 (1)	0.0121 (1)	0.0137 (2)
01	0.0460 (6)	0.0366 (6)	0.0424 (7)	0.0088 (5)	0.0010 (5)	0.0093 (5)
O2	0.0511 (6)	0.0500(7)	0.0531 (8)	0.0239 (5)	0.0301 (6)	0.0265 (6)
03	0.0505 (7)	0.0712 (9)	0.0659 (10)	0.0312 (7)	0.0241 (7)	0.0152 (8)
N1	0.0506 (7)	0.0353 (7)	0.0509 (9)	0.0180 (6)	0.0277 (7)	0.0199 (6)
N2	0.0475 (7)	0.0421 (7)	0.0347 (7)	0.0238 (6)	0.0164 (6)	0.0198 (6)
N3	0.0485 (8)	0.0614 (10)	0.0492 (9)	0.0275 (7)	0.0145 (7)	0.0134 (8)
C1	0.0344 (6)	0.0310 (6)	0.0310 (7)	0.0136 (5)	0.0102 (5)	0.0120 (6)
C2	0.0576 (10)	0.0412 (9)	0.0381 (9)	0.0092 (7)	-0.0054 (7)	0.0189 (8)
C3	0.0529 (9)	0.0367 (8)	0.0428 (10)	0.0026 (7)	-0.0037 (8)	0.0132 (8)
C4	0.0397 (7)	0.0318 (7)	0.0399 (8)	0.0169 (6)	0.0203 (6)	0.0156 (6)
C5	0.0465 (8)	0.0430 (8)	0.0434 (9)	0.0185 (7)	0.0060 (7)	0.0228 (8)
C6	0.0393 (7)	0.0390 (8)	0.0403 (9)	0.0115 (6)	0.0000 (6)	0.0165 (7)
C7	0.0409 (7)	0.0272 (6)	0.0368 (8)	0.0132 (5)	0.0132 (6)	0.0106 (6)
C8	0.0559 (10)	0.0513 (10)	0.0423 (10)	0.0243 (8)	0.0220 (8)	0.0198 (8)
C9	0.0598 (10)	0.0385 (8)	0.0567 (12)	0.0173 (8)	0.0324 (9)	0.0136 (8)
C10	0.0892 (17)	0.0710 (15)	0.0808 (18)	0.0340 (13)	0.0583 (15)	0.0270 (13)
O4	0.0475 (7)	0.0968 (12)	0.0513 (8)	0.0267 (7)	0.0256 (6)	0.0230 (8)
05	0.0571 (7)	0.0597 (8)	0.0306 (6)	0.0233 (6)	0.0132 (5)	0.0160 (6)
O6	0.0395 (5)	0.0529 (7)	0.0314 (6)	0.0198 (5)	0.0039 (4)	0.0138 (5)
07	0.0692 (10)	0.171 (2)	0.0830 (13)	0.0813 (13)	0.0218 (9)	0.0526 (13)
08	0.0515 (8)	0.167 (2)	0.0550 (10)	0.0286 (11)	0.0271 (8)	0.0321 (12)
09	0.0746 (10)	0.0941 (12)	0.0313 (7)	0.0259 (9)	0.0026 (7)	0.0211 (8)
O10	0.0468 (7)	0.0981 (12)	0.0612 (10)	0.0296 (8)	-0.0061 (7)	0.0238 (9)
N4	0.0382 (7)	0.0850 (12)	0.0393 (9)	0.0244 (8)	0.0082 (6)	0.0079 (8)
N5	0.0474 (8)	0.0447 (8)	0.0376 (8)	0.0141 (6)	-0.0053 (6)	0.0128 (7)
C11	0.0333 (6)	0.0298 (6)	0.0305 (7)	0.0109 (5)	0.0073 (5)	0.0098 (6)
C12	0.0348 (6)	0.0304 (6)	0.0288 (7)	0.0116 (5)	0.0041 (5)	0.0102 (6)

supporting information

C13	0.0327 (7)	0.0451 (8)	0.0349 (8)	0.0158 (6)	0.0079 (6)	0.0114 (7)	
C14	0.0407 (7)	0.0452 (8)	0.0294 (8)	0.0154 (6)	0.0084 (6)	0.0109 (7)	
C15	0.0361 (7)	0.0346 (7)	0.0299 (7)	0.0112 (6)	-0.0004 (6)	0.0105 (6)	
C16	0.0321 (6)	0.0336 (7)	0.0369 (8)	0.0124 (5)	0.0057 (6)	0.0122 (6)	
C17	0.0403 (7)	0.0394 (8)	0.0365 (8)	0.0134 (6)	0.0128 (6)	0.0140 (7)	

Geometric parameters (Å, °)

S1—01	1.4224 (13)	C2—C3	1.381 (3)	
S1—O2	1.4276 (14)	C3—C4	1.373 (3)	
S1—N2	1.6264 (16)	C4—C5	1.370 (2)	
S1—C1	1.7651 (17)	C5—C6	1.378 (3)	
O3—N3	1.408 (2)	C7—C8	1.408 (2)	
O3—C9	1.331 (3)	C8—C9	1.351 (3)	
O4—C17	1.221 (2)	C9—C10	1.490 (3)	
O5—C17	1.288 (2)	C2—H2	0.9300	
O6—C12	1.300 (2)	С3—Н3	0.9300	
O7—N4	1.210 (3)	С5—Н5	0.9300	
O8—N4	1.212 (3)	С6—Н6	0.9300	
O9—N5	1.221 (2)	C8—H8	0.9300	
O10—N5	1.215 (2)	C10—H10A	0.9600	
O6—H6A	0.8200	C10—H10B	0.9600	
N1—C4	1.464 (2)	C10—H10C	0.9600	
N2—C7	1.388 (2)	C11—C16	1.382 (2)	
N3—C7	1.311 (3)	C11—C17	1.493 (2)	
N1—H1B	0.8900	C11—C12	1.427 (2)	
N1—H1C	0.8900	C12—C13	1.410 (2)	
N1—H1A	0.8900	C13—C14	1.377 (2)	
N2—H2A	0.8600	C14—C15	1.379 (3)	
N4—C13	1.457 (3)	C15—C16	1.381 (2)	
N5-C15	1.463 (2)	C14—H14	0.9300	
C1—C2	1.380 (2)	C16—H16	0.9300	
C1—C6	1.378 (2)			
01-81-02	120 44 (8)	C8—C9—C10	133.9(2)	
01 - S1 - N2	108 84 (8)	03 - C9 - C8	110 33 (19)	
01 - 11 - 11	107.28 (8)	C1 - C2 - H2	120.00	
02 - 81 - N2	104 18 (8)	C3 - C2 - H2	120.00	
02 - 81 - C1	109.04 (8)	$C^2 - C^3 - H^3$	120.00	
N2 = S1 = C1	106.25 (8)	C4—C3—H3	120.00	
N3-03-09	108.82 (18)	C6—C5—H5	120.00	
C12—O6—H6A	109.00	C4—C5—H5	120.00	
S1N2C7	124.67 (12)	C5-C6-H6	120.00	
03 - N3 - C7	104.87 (15)	C1—C6—H6	120.00	
H1B—N1—H1C	109.00	C9—C8—H8	128.00	
C4—N1—H1A	109.00	C7—C8—H8	128.00	
C4—N1—H1B	109.00	H10B—C10—H10C	109.00	
C4—N1—H1C	109.00	C9—C10—H10B	109.00	

H1A—N1—H1B	109.00	C9-C10-H10C	110.00
H1A—N1—H1C	110.00	H10A—C10—H10B	109.00
S1—N2—H2A	118.00	H10A - C10 - H10C	109.00
C7— $N2$ — $H2A$	118.00	C9-C10-H10A	109.00
07—N4—08	123 4 (2)	C12— $C11$ — $C16$	121 17 (14)
07 - N4 - C13	118 79 (19)	C_{12} C_{11} C_{17}	118.90(14)
08 - N4 - C13	117.80 (18)	$C_{12} = C_{11} = C_{17}$	110.90(14) 119.92(15)
010 - N5 - C15	117.66 (15)	06-C12-C13	119.92(15) 122.61(15)
09 - N5 - 010	117.00(13) 123.92(17)	C_{11} C_{12} C_{13}	122.01(13) 116.05(14)
$O_{\rm P}$ N5 C15	125.92(17) 118.42(17)	06 C12 C11	110.03(14) 121.32(14)
S1 C1 C2	110.42(17) 121.18(13)	N4 C13 C12	121.32(14) 120.47(15)
C_{2}	121.10(15) 120.80(16)	C_{12} C_{13} C_{14}	120.47(15) 123.04(16)
S1 C1 C6	120.00(10) 118.00(13)	$N_{12} = C_{13} = C_{14}$	125.04(10) 116.48(15)
$S_1 = C_1 = C_0$	118.00(13) 110.21(17)	114 - 115 - 114	110.46(15) 118.34(15)
$C_1 = C_2 = C_3$	119.21(17) 110.55(17)	N5 C15 C16	110.34(15)
$C_2 = C_3 = C_4$	119.33(17) 121.25(16)	13-15-16	120.23(13) 121.02(15)
$C_3 = C_4 = C_5$	121.33(10) 118.02(15)	C14 - C15 - C10	121.92(13)
NIC4C3	118.05 (15)	$N_{3} = C_{13} = C_{14}$	117.80(14)
NI - C4 - C3	120.01(10)	CII = CI6 = CI3	119.46 (15)
C4 - C5 - C6	119.34 (17)	04-017-011	119.02 (10)
CI = C6 = C3	119.70 (16)	05-017-05	115.95 (16)
$N_{3} - C_{7} - C_{8}$	112.03 (16)	04-01/-05	124.43 (17)
N2-C7-C8	130.75 (16)	C13—C14—H14	121.00
N2-C/-N3	117.21 (15)	C15—C14—H14	121.00
C7—C8—C9	103.93 (17)	C11—C16—H16	120.00
O3—C9—C10	115.7 (2)	C15—C16—H16	120.00
			177 26 (16)
01—S1—N2—C7	49.04 (16)	C2—C3—C4—N1	-177.26 (16)
02—S1—N2—C7	1/8./1 (14)	$C_2 - C_3 - C_4 - C_5$	1.5 (3)
C1—S1—N2—C7	-66.19 (15)	C3—C4—C5—C6	-2.1 (3)
01—S1—C1—C2	-161.03 (14)	N1—C4—C5—C6	176.66 (16)
O1—S1—C1—C6	20.36 (16)	C4—C5—C6—C1	0.7 (3)
02—S1—C1—C2	67.01 (16)	N2-C7-C8-C9	-179.86 (19)
O2—S1—C1—C6	-111.60 (14)	N3—C7—C8—C9	-0.7 (2)
N2—S1—C1—C2	-44.74 (16)	C7—C8—C9—O3	1.0 (2)
N2—S1—C1—C6	136.65 (14)	C7—C8—C9—C10	-179.8 (3)
N3—O3—C9—C8	-0.9 (2)	C16—C11—C12—O6	-179.60 (16)
C9—O3—N3—C7	0.4 (2)	C16—C11—C12—C13	-1.1 (2)
N3—O3—C9—C10	179.7 (2)	C17—C11—C12—O6	2.1 (2)
S1—N2—C7—N3	164.49 (14)	C17—C11—C12—C13	-179.40 (15)
S1—N2—C7—C8	-16.4 (3)	C12—C11—C16—C15	1.7 (3)
O3—N3—C7—N2	179.46 (15)	C17—C11—C16—C15	179.96 (16)
O3—N3—C7—C8	0.2 (2)	C12—C11—C17—O4	177.09 (18)
O7—N4—C13—C14	144.2 (2)	C12—C11—C17—O5	-1.9 (2)
O8—N4—C13—C12	146.3 (2)	C16—C11—C17—O4	-1.2 (3)
O7—N4—C13—C12	-34.7 (3)	C16—C11—C17—O5	179.75 (16)
O8—N4—C13—C14	-34.7 (3)	O6—C12—C13—N4	-3.2 (3)
O9—N5—C15—C14	5.4 (3)	O6-C12-C13-C14	177.93 (17)
09 - N5 - C15 - C16	-176.34 (18)	C11—C12—C13—N4	178.36 (17)

supporting information

010—N5—C15—C16 3.9	9 (3)	C11—C12—C13—C14	-0.5 (3)
C10-N5-C15-C14 -1	1/4.40 (19)	N4—C13—C14—C15	-177.38 (17)
C6-C1-C2-C3 -1	1.9 (3)	C12—C13—C14—C15	1.6 (3)
S1—C1—C6—C5 17 S1—C1—C2—C3 17	79.87 (14)	C13—C14—C15—N5 C13—C14—C15—C16	177.28 (17)
C2-C1-C6-C5 1.3	3 (3)	N5-C15-C16-C11	-178.83(16)
C1-C2-C3-C4 04	5 (3)	C14-C15-C16-C11	-0.6(3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
06—H6A…O5	0.82	1.68	2.4296 (19)	151
N2—H2A···O5	0.86	2.12	2.7852 (18)	134
N1—H1A····O4 ⁱ	0.89	1.77	2.661 (2)	177
N1—H1 <i>B</i> ····N3 ⁱ	0.89	2.24	3.041 (2)	150
N1—H1 <i>C</i> ···O6 ⁱⁱ	0.89	2.21	3.064 (2)	160
C5—H5…O6 ⁱⁱ	0.93	2.60	3.293 (2)	132
C6—H6···O8 ⁱⁱⁱ	0.93	2.60	3.176 (2)	121

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y, z-1.